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Gibbs phenomenon

We have seen (Folland, Thm. 2.5) that if f is 27-periodic, piecewise C* and continuous,
then its Fourier series converges uniformly on R. If, on the other hand, f is not continuous,
convergence cannot be uniform. This follows from the fact that if a sequence of continuous
functions (e.g. the partial sums " ¢,e"®) converges uniformly, then the limit function
is continuous. It turns out that for Fourier series the situation is even worse. The partial
sums develop “spikes” close to each jump point, whose heights remain positive as N — oo
(the limit height of the largest spike is about 9% of the height of the jump). This fact is
known as the Gibbs phenomenon. See Folland, Figure 2.8 for an illustration.

We will first illustrate the Gibbs phenomenon by an explicit example, and then explain
how the general case actually follows from that example. Consider the 27-periodic function
s defined by s(z) = 7 — x for 0 < z < 2x. It has a jump of height 27 at = 0. Its Fourier

series is
>, sin(nx)
2
>
n=1
Thus, the error in the Nth Fourier approximation, for 0 < z < 7, is

on(z) = 22 sin(nz) (r — 1),

n

n=1
Since we are interested in the maximum error, we compute the derivative

N

gy(z) =1+ 2Zcos(nac). (1)

n=1
We recognize this as the Dirichlet kernel, which we have seen can be written
sin(N + )z

in L
SlIl2

!

gn(z) =

From Figure 2.8 it seems that the error gy is maximal at its smallest positive critical point,
that is, at zy = /(N + 3). If we can show that the error at this point remains positive
in the limit N — oo, that is,

1\}'1—I>Iolo gN(mN) > O: (2)

then we can conclude that the Gibbs phenomenon holds for the function s.
We prove (2) using Riemann sums. Namely, we can write

sin(nz sin
gn(zn) —22 - N _ (m—zn —22 §n — (m—zn),
n=1
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where &, = nzy = nr/(N + 1/2) are points at distance Az = xy = /(N + 1/2) in the
interval 0 < x < 7. By known facts on Riemann sums,

. T sing
JJE,I;OQN(%N) = 2/0 " dr — 7.
This is approximately 0.562, in particular it is positive. A different proof, using (1), is
indicated in Folland, Exercise 2.6.1.

We now know that the Gibbs phenomenon holds for the function s. This can be used to
prove it for any piecewise C* but discontinuous f. We sketch how this can be done. Note
first that % s(z — a) has a jump of height h at = a. Suppose that the jumps of f in

0 <x<2mare hy,...,h, at the points a4, ..., a,. Then,
o) = f(2) = 3 Ss(w—ay) (3
j=1

is piecewise C'' and continuous, so its Fourier series converges uniformly on R (Folland,
Thm. 2.5). On the other hand, close to a jump point aj, one can show that the kth term in
the sum (3) exhibits the Gibbs phenomenon, whereas all the other terms do not (the first
statement follows from what we did above, but the second statement needs a little work).
The Gibbs phenomenon for the kth term must then be cancelled by a corresponding Gibbs
phenomenon for f. Thus, f exhibits the Gibbs phenomenon at each jump point.

Periodic solutions of ODE

In applications, one is often interested in finding periodic solutions to a problem. For
instance, consider the ODE
z" + 22" + bx = u(t),

with u(t) 2m-periodic. This models the position z(¢) of a body (of mass 1) attached to
a spring (with stiffness 5) experiencing some friction (with coefficient 2) and a periodic
force u(t), in suitable units. Alternatively, consider an inductor (inductance 1), a resistor
(resistance 2) and a capacitor (capacitance 5) connected in series with a source of periodic
voltage u(t). The charge in the capacitor is then described by z(¢). In both examples, one
expects that z(t) is essentially 2m-periodic for large ¢. More precisely, as we shall se, any
solution is the sum of a periodic solution and a function that tends to 0 rapidly as ¢ grows.
We are thus led to the problem

2" + 22" + 5z = u(t), z(t) 2m-periodic. (4)

We will solve this in terms of Fourier series.
Suppose that v and x have Fourier series representations

o
u(t) ~ Z cne™,

n=—oo
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x(t) ~ i dpe™.

n=—oo
Suppose also that the series for x can be differentiated termwise, that is,

o0

z'(t) ~ Z ind,e™,

n=—oo

o0

2"(t) ~ Y (—n?)dne™.

n=—oo

Plugging into (4) and identifying Fourier coefficients gives
(=n? + 2in + 5)d, = c,.

Thus, we are led to the formula

o o
_ Cn int __ - int
z(t) = Z e reer Z e, G(in)e'™, (5)
n=—oo n=—0oQ
where 1
G(s)= ——
(5) s2+2s+5
is the Laplace transform of the impulse response/fundamental solution (see previous lecture
notes).

This derivation is slightly formal. Let us indicate how to see that x really solves (4) when
u is continuous and piecewise C*. Then, (Folland, proof of Thm. 2.5) >~ |¢,| < co. Using
Weierstrass’ test, it follows that both (5) and the series obtained by formally differentiating
(5) once and twice converge uniformly. This guarantees that we are allowed to differentiate
termwise twice in (5), so the derivation above is fine. However, even if u is less regular
it still makes sense to consider (5) as the solution to (4). In particular, jumps in u will
correspond to jumps in z”.

The same computation can be carried through for any equation

am ™ + a1 2™ 4+ aer = u(?). (6)

To be even more general, suppose that u has period 27 /w, and seek solutions x with the
same period. Writing

o
u(t) = Z €™,
n=—00
we find the periodic solution

o0

z(t) = Z cnG (inw)e™, (7)

n=—oo
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where
1

ams™ + -+ ao

Equivalently, writing G(s) = |G(s)|e?®8(E) in polar form,

G(s) =

.T(t)z Z cn|G(inw)|€i(nwt+arg(G(inw)))'

n=—oo

This is useful to know for electrical engineers: signals with frequency nw go through an
amplitude modulation by |G(inw)| and a phase shift by arg(G(inw)). If the Fourier series
is written in real form

A o
=5 + Z (A, cos(nwt) + By, sin(nwt)),

n=1

then the same principle applies:

o0

Z (inw)| (A, cos(nwt + arg(G (inw))) + By sin(nwt + arg(G(inw)))).

z(t) =

Remark: Equation (4) breaks down if, for some n, inw is a zero of the characteristic
polynomial a,,s™ + --- + ag. This is not a problem with our method but corresponds to
an obstruction for the existence of periodic solutions to (6). In fact, you might remember
from previous studies that solutions of, say,

amx(m) + am—lx(m_l) t--tar = COS(nOJt)

will in this case typically contain terms like ¢ cos(nwt) and t¢sin(nwt), and can thus never
be periodic. Physically, this is an example of resonance.

In applications, one is particularly interested in the stable case, which means that all
zeroes of the characteristic polynomial have negative real part. Then, all solutions of the
homogeneous problem

amz™ + a1 2™ 4t ar =0
cos(bt)
sin(bt)
solution, with p a polynomial). In this situation, let = be an arbitrary solution of (6) and
let per be the periodic solution (7). Then, £ —zpe, will solve the homogeneous problem and
will thus quickly tend to 0. So, regardless of initial data, any solution will approach the
periodic solution zpe,. In applications, zper is called the steady-state solution and x — Tper

a transient solution.
Example: Let us return to the equation (4), with

tend to zero as t — oo (a zero a + ib leads to terms e~ { }p(t) in the homogeneous

1, O0<t<m,
u(t) =
0, w<t<2m.
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In the example with the electric circuit, this corresponds to a constant voltage source,
which is periodically turned on and off. The Fourier series of u is

1 2 sin((2k + 1)t)
2T DT R 2k+1
k=0
The periodic solution is then
_G0) | 2 N|GE(REk+ 1)) :
Tper(t) = =5+ = kZ:: Tl ((2k + 1)t + arg(G(i(2k + 1)))),
where 1 .
G(s) =

2+25+5 (s+1+2i)(s+1—2)
Note that the zeroes of the denominator have negative real part, so any solution will quickly
approach the periodic solution. We compute
1 B 1
[(1+2(2k+3))(1+i(2k = 1))| /(14 (2k +3)%)(1 + (2k — 1)?)
1
V/(4k2 + 12k + 10) (4k2 — 4k +2)

|G(i(2k +1))| =

arg(G(i(2k+1))) = —arg(1+i(2k+3))—arg(1+i(2k—1)) = — arctan(2k+3)—arctan(2k—1).
This gives

sin ((2k + 1)t — arctan(2k + 3) — arctan(2k — 1))

1 2
xer :_+_
’ 10 w,; (2k + 1)+/(4k2 + 12k + 10) (4k2 — 4k + 2)

Let us now compute the solution in closed form and compare. The solutions to z” +
22" + 5z = 0 are e *(C cos(2t) + Dsin(2t)), while the solutions to z” + 2z’ 4+ 5z = 1 are
: + e (Ccos(2t) + Dsin(2t)). Thus, for some constants,

1t :
To(t) = 4 7 + e *(Acos(2t) + Bsin(2t)), 0<t<m,
e '(C cos(2t) + Dsin(2t)), T <t<2m.

The constants must be chosen so that x and z’ are continuous at ¢ = 7 and so that the
right limits of z and 2’ as ¢ — 0 agree with the left limits as ¢ — 27. This gives four
equations for the four unknowns A, B, C, D, and we find the solution
1 e '(2cos(2t) + sm(2t))’ 0<t<nm,
Tour(t) = 5 10(1 +?_”)
per e™ (2 cos(2t) + sin(2t))
10(1+e ™) ’

T <t<2m,
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which should be extended to a 27-periodic function. Below we have plotted the exact
solution in red together with the partial sum

sin ((2k + 1)t — arctan(2k + 3) — arctan(2k — 1))

3
12
TREPD 2 ?
T (2k +1)/(4k? 4 12k + 10)(4k> — 4k + 2)

in green. Even with so few terms in the Fourier approximation, the two curves are almost
indistinguishable.
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