
Fourier analysis. Additional exercises.
1. Consider the wave equation u′′tt = c2u′′xx. By d’Alemberts solution (Folland Ex. 1.1.6), any

solution is of the form u(x, t) = f(x+ ct) + g(x− ct).

(a) Show that u(x, t) = sin(x) sin(ct) is a solution of the wave equation, and write it in
the form of d’Alemberts solution.

(b) Using d’Alemberts method, find a solution to the wave equation u′′tt = 4u′′xx, valid for
all x and t, such that u(x, 0) = x2, u′t(x, 0) = x.

2. Consider the vibrating string with fixed endpoints, u(0, t) = u(π, t) = 0. Suppose that the
initial conditions are u(x, 0) = sin(2x), u′t(x, 0) = 3 sin(5x). What is the solution u(x, t)?

3. If you know the complex Fourier coefficients of f , what can you say about the Fourier
coefficients of f(x− a) and of eikxf(x) (where a is real and k is integer)?

4. When f and g are 2π-periodic Riemann integrable functions, define their convolution by

(f ∗ g)(x) =
1

2π

∫ 2π

0

f(y)g(x− y) dy.

Denoting Fourier coefficients by cn(f), show that cn(f ∗ g) = cn(f)cn(g).

5. Let f be the 2π-periodic function defined by f(x) = ecos(x
2) for 0 ≤ x < 2π. What is the

value of its Fourier series at x = 4π?

6. Find numbers cn such that

∞∑
n=1

cn sin(nx) =

x, 0 < x < π
2
,

0, π
2
< x < π.

What is the sum of the series for x = π/2?

7. Determine the Fourier series in real form of the 2π-periodic function that equals x(x2−π2)
in [−π, π]. What is the sum of the series at the points 2π and 3π/2?

8. Let f be the 2π-periodic function defined by f(x) = cosh(x) = (ex + e−x)/2 for |x| ≤ π.
Express it as a complex Fourier series. Compute

∞∑
k=0

1

k2 + 1
.

9. Let f be the 2π-periodic function defined by f(x) = cos(ax) for |x| ≤ π, where a is not
an integer. Express it as a complex Fourier series. Deduce the identity

π cot(πa) = lim
N→∞

N∑
n=−N

1

a+ n
, a /∈ Z.
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10. Show that
sinx

x
=
b0
2

+
∞∑
n=1

bn cos(nx), 0 < x < π,

where

bn =
1

π

∫ (n+1)π

(n−1)π

sinx

x
dx.

Use this result to compute ∫ ∞
0

sinx

x
dx.

11. Expand the function cosx as a sine series on the interval (0, π). Use the result to compute

∞∑
n=1

n2

(4n2 − 1)2
.

12. Solve the heat conduction problem
u′t = 3u′′xx, 0 ≤ x ≤ π, t > 0,

u(0, t) = u(π, t) = 0, t ≥ 0,

u(x, 0) = sinx cos(4x), 0 ≤ x ≤ π.

13. Solve the problem 
u′t = 2u′′xx, t > 0, 0 < x < π,

u(0, t) = u(π, t) = 0, t > 0,

u(x, 0) = 1, 0 < x < π.

14. Solve the problem 
u′t = 2u′′xx, t > 0, 0 < x < π,

u(0, t) = u(π, t) = 0, t > 0,

u(x, 0) = cos(3x), 0 < x < π.

15. Solve the problem 
u′t = u′′xx, t > 0, 0 < x < π,

u′x(0, t) = u′x(π, t) = 0, t > 0,

u(x, 0) = 1, 0 < x < π/2,

u(x, 0) = 0, π/2 < x < π.
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16. Solve the problem

u′t = u′′xx, u′x(0, t) = u′x(π, t) = 0, u(x, 0) = cos
(x

2

)
,

in the region t > 0, 0 < x < π.

17. A large steak with thickness l and heat diffusivity a is to be cooked in an oven with temper-
ature T . It is taken directly from the fridge, where the temperature is 0. The temperature
inside the steak can then be described by

u′t = au′′xx, 0 ≤ x ≤ l, t > 0,

u(0, t) = u(l, t) = T, t > 0,

u(x, 0) = 0, 0 ≤ x ≤ l.

(a) Determine, as a series, u(x, t). Since the boundary conditions are inhomogeneous,
one should shift the temperature scale so that T corresponds to 0 (equivalently, intro-
duce the function v(x, t) = u(x, t)− T ).

(b) Suppose all terms in the series except the first can be ignored. When will the steak be
cooked if that happens when the temperature is everywhere at least T/4? How much
longer does it take if the thickness of the steak is doubled?

18. Addendum to Folland, Exercise 2.5.5: Where should the string be plucked if we do not
wish to hear the sixth overtone (corresponding to the seventh term in the Fourier series)?
Motivation: The first five overtones are close to tones in the usual scale. The sixth overtone
is somewhere between two half-tones, and thus sounds false (at least to people accustomed
to European music).

19. Addendum to Folland, Exercise 2.5.6: Can we choose δ so the sixth overtone is avoided?

20. Let f(t) = 1− t2 for |t| ≤ 1 and let f be 2-periodic. Determine a bounded solution to
∂u

∂t
=
∂2u

∂x2
, x > 0, −∞ < t <∞,

u(0, t) = f(t), −∞ < t <∞.

21. Solve the Laplace equation ∆u = urr + r−1ur + r−2uθθ = 0 in the annulus 1 < r < 2
(polar coordinates), with boundary values u(1, θ) = 0,

u(2, θ) = 1− θ2

π2
for |θ| ≤ π.

22. Solve the problem 
∂2u

∂x2
+
∂2u

∂y2
= y, 0 < x < 2, 0 < y < 1,

u(x, 0) = 0, u(x, 1) = 0,

u(0, y) = y − y3, u(2, y) = 0.
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23. Solve the problem 
√

1 + t
∂2u

∂x2
=
∂u

∂t
, 0 < x < 1, t > 0,

u(0, t) = 1, u(1, t) = 0,

u(x, 0) = 1− x2.

24. Solve the problem
u′′xx + u′′yy + 20u = 0, 0 < x < 1, 0 < y < 1,

u(0, y) = u(1, y) = 0,

u(x, 0) = 0, u(x, 1) = x2 − x.

25. Solve the inhomogeneous problem
u′t = 2u′′xx + cosx, 0 < x < π, t > 0

u′x(0, t) = u′x(π, t) = 0, t > 0,

u(x, 0) = 1, 0 < x < π.

26. Solve the problem 
∂u

∂t
− ∂2u

∂x2
= t sin πx, 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0,

u(x, 0) = sinx.

27. Solve the problem (for 0 < x < π and t > 0){
u′t = (t+ 1)u′′xx,

u(0, t) = 0, u(π, t) = 1, u(x, 0) = 0.

28. Solve the problem
∂u

∂t
= 2

∂2u

∂x2
, 0 < x < 1, t > 0,

u(0, t) = t+ 1, u(1, t) = 0,

u(x, 0) = 1− x.
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29. Solve the problem 
uxx + 1 = 1

4
utt, 0 < x < 2, t > 0

u(0, t) = 0, u(x, 0) = x− x2,
u(2, t) = −2, ut(x, 0) = 0.

30. Solve the Dirichlet problem

uxx + uyy = 0,
√
x2 + y2 < 1,

with boundary values f(θ) = sin2 θ + cos θ (in polar coordinates).

31. Let cn be the coefficients in the Fourier series

ex
2

=
∞∑

n=−∞

cne
inx, 0 < x < 2π.

Is it true or false that

2xex
2

=
∞∑

n=−∞

incne
inx, 0 < x < 2π?

32. Using known facts on Fourier series, find all 2π-periodic and twice continuously differen-
tiable functions u such that u′′(x) = u(x+ π) for all x.

33. Find a 1-periodic solution to the equation

x′′ + 2x′ + x = {t},

where {t} is the fractional part of t (that is, the 1-periodic function defined by t for 0 ≤
t < 1). Give the answer in real form.

34. The function f(x) is 2-periodic, and f(x) = (x + 1)2 for −1 < x < 1. Determine a
2π-periodic solution to the equation

2y′′ − y′ − y = f(x).

35. The function f(t) is 3-periodic, and

f(t) =


t, 0 ≤ t ≤ 1,

1, 1 < t < 2,

3− t, 2 ≤ t ≤ 3.

Determine, as a Fourier series, a periodic solution to

y′′ + 3y = f(t).
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36. Show that, in an inner product space, if un → u and vn → v (in norm), then 〈un, vn〉 →
〈u, v〉.

37. Show that, if (ek)
∞
k=1 is a complete orthonormal system in an inner product space, then

〈f, g〉 =
∞∑
k=1

〈f, ek〉〈ek, g〉.

38. Find an orthonormal basis for the space of first degree polynomials, with inner product

〈f, g〉 =

∫ 1

0

f(x)g(x) dx.

39. Use the previous exercise to determine the constants a, b that minimize the integral∫ 1

0

|ex − ax− b|2 dx.

40. Determine the solution y(x) to y′′ − y = 0 which minimizes
∫ 1

−1
[1 + x− y(x)]2dx.

41. Determine the polynomial P (x) of degree at most 2 that minimizes

(a)
∫ ∞
0

[
√
x− P (x)]2e−xdx, (b)

∫ ∞
0

[ex/4 − P (x)]2xe−xdx.

42. Determine the polynomial of the form P (x) = x2 + ax+ b that minimizes
∫ 1

0

[P (x)]2dx.

43. Let
Qn(x) =

dn

dxn
(xn(1− x)n) , n = 0, 1, 2, . . . .

(Up to a change of variables, these are called Legendre polynomials.)

(a) Prove that ∫ 1

0

f(x)Qn(x) dx = (−1)n
∫ 1

0

f (n)(x)xn(1− x)n dx

for sufficiently differentiable functions f .

(b) Show that Qn(x) and Qm(x) are orthogonal in L2(0, 1) if n 6= m.

(c) Determine the norm ‖Qn‖ of Qn in L2(0, 1).

44. Find numbers a and b such that the integral∫ 2π

0

∣∣ex − aeix − be−ix∣∣2 dx
is minimized. Also compute the minimal value of the integral.
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45. Apply Parseval’s formula to the 2π-periodic function f(x) = x, |x| < π. Use the result to
compute

∑∞
1

1
n2 .

46. Apply Parseval’s formula to the 2π-periodic function f(x) = x2, |x| < π. Use the result
to compute

∑∞
1

1
n4 .

47. Prove that

x(π − x) =
8

π

∞∑
n=1

sin((2n− 1)x)

(2n− 1)3
, 0 < x < π,

and use the result to compute
∑∞

n=1
1

(2n−1)6 .

48. Find the complex Fourier coefficients of the function (cosx)n, with n a non-negative inte-
ger. Use the result to compute

∑n
k=0

(
n
k

)2.
49. Define Jn(x) through the Fourier series

eix sin(t) =
∞∑

n=−∞

Jn(x)eint

(they are called Bessel functions). Compute, for x ∈ R,

∞∑
n=−∞

|Jn(x)|2.

50. Solve the heat conduction problem
u′t = u′′xx, 0 ≤ x ≤ π

2
, t > 0,

u(0, t) = u′x(π/2, t) = 0, t ≥ 0,

u(x, 0) = x, 0 ≤ x ≤ π
2

51. Determine all eigenvalues and eigenfunctions for the Sturm–Liouville problem f ′′ + λf = 0, 0 < x < a,

f(0)− f ′(0) = 0, f(a) + 2f ′(a) = 0.

52. Determine all eigenvalues and eigenfunctions for the Sturm–Liouville problem −e
−4x d

dx

(
e4x

du

dx

)
= λu, 0 < x < 1,

u(0) = 0, u′(1) = 0.

Expand the function e−2x as a series in the eigenfunctions.
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53. A metal thread is bent into a circle. The ends are attached so that they are partially, but
not completely, insulated from each other. The corresponding heat transfer problem can
be modeled by

u′t = ku′′xx, 0 < x < 1, t > 0, ux(0) = ux(1) = α
(
u(0)− u(1)

)
,

where α and k are positive constants. Looking for separated solutions, u(x, t) = X(x)T (t),
one finds that X satisfies the Sturm–Liouville problem

X ′′(x) + λX(x) = 0, X ′(0) = X ′(1) = α
(
X(0)−X(1)

)
.

(a) Prove that the problem is symmetric in the sense that 〈f ′′, g〉L2([0,1]) = 〈f, g′′〉L2([0,1]),
when f and g are sufficiently differentiable and satisfy the boundary conditions.

(b) Prove that the problem has a non-trivial solution when λ = 4n2π2, n ∈ Z. Prove that
there are infinitely many other values of λ for which the problem also has a non-trivial
solution.

54. Using the table in Folland’s book, compute the Fourier transform of

(a) xχ[−1,1](x),

(b) sinxχ[−π,π](x),

(c) e−xH(x),

(d) e−|x| cos(x),

(e)
1

x2 + 6x+ 13
,

(f)
x

(x2 + 1)2
,

(g)
1

(t2 + 1)2
.

Here, H is Heaviside’s function and χ[a,b](x) is the characteristic function of [a, b], that is,
χ[a,b](x) = 1 for x ∈ [a, b] and 0 else.

55. Use Fourier transform to compute, for a ∈ R,∫ ∞
−∞

cos(ax)

x2 + 1
dx.

56. If f(x) has Fourier transform f̂(ξ), what is then the Fourier transform of cos(x)f(2x+1)?

57. Complete the proof of (a) and (b) in Folland, Theorem 7.5.

58. Find a function u such that ∫ ∞
−∞

u(x− y)e−|y| dy = e−x
4

.
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59. For a and b positive and with ga(x) = 1/(x2 + a2), compute∫ ∞
−∞
|(ga ∗ gb)(x)|2 dx.

60. Use Fourier transform to compute

(a)
∫ ∞
−∞

1

(x2 + 1)2(x2 + 4)2
dx,

(b)
∫ ∞
−∞

(x2 + 2)2

(x4 + 4)2
dx,

(c)
∫ ∞
−∞

cos(x)

(x2 + 1)2
dx,

(d)
∫ ∞
−∞

sin(x− 1) sin(2x)

(x− 1)x
dx,

(e)
∫ ∞
−∞

sinx

x(x2 + 1)
dx.

61. With f(x) = sin(πx)/(x2 − 1), show that

f̂(ξ) =

{
πi sin(ξ), |ξ| ≤ π,

0, |ξ| > π.

Use this to compute ∫ ∞
−∞

sin2(πx)

(x2 − 1)2
dx.

62. The function f(t) has Fourier transform f̂(ω) = ω
1+ω4 . Compute

a)
∫ ∞
−∞

tf(t)dt, b) f ′(0).

63. The function f(t) has Fourier transform
1

|ω|3 + 1
. Compute

∫ ∞
−∞
|f ∗ f ′|2dt.

64. Determine the Fourier transform of the function

f(t) =

∫ 2

0

√
ω

1 + ω
eiωtdω.

Compute a)
∫ ∞
−∞

f(t) cos tdt, b)
∫ ∞
−∞
|f(t)|2dt.

65. Let f(t) =

∫ 1

0

√
ω eω

2

cosωt dω. Compute
∫ ∞
−∞
|f ′(t)|2dt.
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66. The continuous function f(x) has Fourier transform f̂(ξ) = ln(1+ξ2)
ξ2

. Determine f(0) and∫∞
−∞ f(x) dx.

67. Let φn(x) denote the function that equals 1 for x ∈ [n− 1
2
, n + 1

2
] and 0 otherwise. Prove

that (φ̂n)∞n=−∞ is an orthogonal system in L2(R). Prove that it is not complete.

68. Show that the functions ϕn(x) =
sin x

2

πx
einx, n ∈ Z, are pairwise orthogonal in L2(R).

Determine numbers cn such that∫ ∞
−∞

∣∣∣ 1

1 + x2
−

N∑
n=−N

cnϕn(x)
∣∣∣2dx

is minimal. Is the orthogonal system (ϕn)n∈Z complete?

69. Let φn(x) = sin(nx) for 0 < x < π and φn(x) = 0 else. Compute values of cn which
minimize the integral ∫ ∞

−∞

∣∣∣∣∣sin ξξ −
∞∑
n=1

cnφ̂n(ξ)

∣∣∣∣∣
2

dξ.

Also compute the minimum value.

70. Find (as an integral) a solution to the heat equation uxx = ut for t > 0, x ∈ R, where
u(x, 0) = 1 for |x| < 1 and 0 else.

71. Find a bounded solution to ut = kuxx, −∞ < x <∞, t > 0,

u(x, 0) = (1− 2x2)e−x
2
, −∞ < x <∞.

72. Find a bounded harmonic function u(x, y) in the upper half-plane with boundary values

u(x, 0) =

{
1, |x| < 1,

0, else.

73. Show that, if f is even, then under suitable conditions

f(x) =
2

π

∫ ∞
0

F (ξ) cos(ξx) dξ,

where
F (ξ) =

∫ ∞
0

f(x) cos(ξx) dx.

Also give a corresponding formula for odd functions.
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74. Let f ∈ L2(R) be given by f(t) = sin(at) sin(bt)/t, with a and b positive. Show that f is
band-limited in the sense that f̂(ω) = 0 for |ω| > a+ b.

75. If δ and Ω are two numbers with 0 < π/Ω < δ, find a function f ∈ L2(R), such that
f̂(ω) = 0 for |ω| ≥ Ω and f(nδ) = 0 for n ∈ Z, but f 6= 0 as an element of L2(R). This
shows that the Shannon–Nyquist sampling distance ∆t = π/ωmax is the largest possible.
Hint: Use the previous Exercise.

76. Use Laplace transform to solve the initial value problems

(a) x′′(t)− 3x′(t) + 2x(t) = et, x(0) = x′(0) = 0,

(b) x′′(t)− 2x′(t) + x(t) = et, x(0) = 0, x′(0) = 1.

77. Compute the Laplace transform of the function

f(x) =

{
x− x2, 0 ≤ x ≤ 1,

0, x > 1.

78. Find a function with Laplace transform (1− e−s)2/s2. Sketch the graph of the function.

79. Let

f(t) =

{
sin t, 0 ≤ t ≤ π,

0, else.

Use Laplace transform to solve the initial value problem

x′(t) + x(t) = f(t), x(0) = 0.

80. Let

f(t) =

{
t, 0 < t < 2,

2, t > 2.

Using Laplace transform, solve the initial value problem

x′′(t) + x(t) = f(t), x(0) = 0, x′(0) = 1.

81. Find a function with Laplace transform

1 + e−πs

(1− e−πs)(1 + s2)
.

Sketch the graph of the function.

82. Determine the finite (discrete) Fourier transform of the sequence (1, 0, 0,−1). Check the
inversion formula.
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83. Give a version of Plancherel’s formula for finite Fourier transform.

84. Let x(n) be N -periodic, and

x(n) =

 1, 0 ≤ n ≤ k − 1,

0, k ≤ n ≤ N − 1.

Compute the discrete Fourier transform. Using Parseval’s formula, compute the sum

N−1∑
µ=1

1− cos 2πµk
N

1− cos 2πµ
N

.

85. Determine the discrete Fourier transform of theN -periodic function x(n) = sin
nπ

N
, n =

0, . . . , N − 1.

86. Which of the following functions are piecewise continuous? Which are piecewise C1?

(a) f(t) =

{
sin(1/t), t > 0,

0, t ≤ 0,

(b) f(t) =

{
t sin(1/t), t > 0,

0, t ≤ 0,

(c) f(t) = 3
√
t,

(d) f(t) =

{
t{1/t}, t > 0,

0, t ≤ 0,

where {t} denotes the fractional part, e.g. {π} = 0.1415 . . . .
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Answers and hints:
1. (b) x2 + 4t2 + xt.

2. u(x, t) = sin(2x) cos(2ct) +
3

5c
sin(5x) sin(5ct).

5.
ecos(4π

2) + e

2
.

6. c2k = (−1)k+1/2k, c2k+1 = 2(−1)k/π(2k + 1)2. The value is π/4.

7. 12
∑∞

n=1
(−1)n sin(nx)

n3 . 0 resp 3
8
π3.

8. The Fourier series is
sinh(π)

π

∞∑
n=−∞

(−1)neinx

1 + n2

and the sum is
π

2
coth(π) +

1

2
.

9. The Fourier series is
a sin(πa)

π

∞∑
n=−∞

(−1)neinx

a2 − n2
.

10. The integral equals π/2.

11. cosx =
8

π

∞∑
n=1

n

4n2 − 1
sin 2nx (0 < x < π). The value of the sum is π2/64.

12. u(x, t) =
1

2
(e−75t sin(5x)− e−27t sin(3x)).

13. u(x, t) =
4

π

∞∑
k=0

sin((2k + 1)x)e−2(2k+1)2t

2k + 1
.

14. u(x, t) =
8

π

∞∑
k=1

k

(2k + 3)(2k − 3)
sin(2kx)e−8k

2t.

15. u(x, t) =
1

2
+

2

π

∞∑
k=0

(−1)k

2k + 1
cos((2k + 1)x)e−(2k+1)2t.

16. u(x, t) =
2

π
+

4

π

∞∑
n=1

(−1)n+1

4n2 − 1
cos(nx)e−n

2t.
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17. (a) T − 4T

π

∞∑
k=0

1

2k + 1
e−(2k+1)2π2at/l2 sin((2k + 1)πx/l).

(b) The cooking time is approximately
l2

aπ2
ln

(
16

3π

)
, so a twice as thick steak takes four

times as long to cook.

18. Second question: In one of the points a = kl/7, k = 1, 2, . . . , 6. Note that these are the
nodes of the sixth overtone.

19. Second question: Yes, take δ = kl/7, k = 1, 2, . . . , 6.

20. u(x, t) =
2

3
+
∞∑
n=1

4(−1)n−1

n2π2
e−
√

nπ
2 cos

(
nπt−

√
nπ

2
x

)

21.
2

3 ln 2
ln r +

2

π2

∞∑
n=−∞
n6=0

(−1)n+1

n2(2n − 2−n)
(rn − r−n)einθ

22. u(x, y) =
1

6
(y3 − y) +

2

π3

∞∑
n=1

(−1)n−1

n3 sinh 2nπ
(sinhnπx+ 7 sinhnπ(2− x)) sinnπy

23. u(x, t) = 1− x+
8

π3

∞∑
k=0

1

(2k + 1)3
e−

2
3
(2k+1)2π2[(1+t)3/2−1] sin(2k + 1)πx

24. u(x, y) = − 8

π3
sin πx

sin(
√

20− π2y)

sin
√

20− π2
−

− 8

π3

∞∑
k=1

1

(2k + 1)3
sin(2k + 1)πx

sinh(
√

(2k + 1)2π2 − 20y)

sinh
√

(2k + 1)2π2 − 20

25. u(x, t) = 1 + 1
2
(1− e−2t) cosx.

26. u(x, t) = e−t sin(x) +
2 sin(π2)

π

∞∑
n=1

(−1)n+1

(n2 − π2)n3

(
e−n

2t − 1 + n2t
)

sin(nx)

27. u(x, t) =
x

π
+
∞∑
n=1

2(−1)n

πn
e−n

2(t+t2/2) sin(nx).

28.

u(x, t) = (t+ 1)(1− x) +
∞∑
n=1

1

n3π3
(e−2n

2π2t − 1) sinnπx

= (t+ 1)(1− x) +
x2

4
− x

6
− x3

12
+
∞∑
n=1

1

n3π3
e−2n

2π2t sinnπx
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29. u(x, t) = −x2

2
+ 16

π2

∑∞
k=0

1
(2k+1)3

cos((2k + 1)πt) sin( (2k+1)π
2

x)

30. u(x, y) = 1
2
(y2− x2) + x+ 1

2
, or in polar coordinates u(r, θ) = −1

2
r2 cos 2θ+ r cos θ+ 1

2
.

31. False.

32. u(x) = A cosx+B sinx.

33. x(t) =
1

2
−
∞∑
n=1

sin(2πnt− 2 arctan(2πn))

πn(1 + 4π2n2)
.

34. y = −4
3

+ 2
π2

∑∞
n=−∞
n6=0

(−1)n−1(1+inπ)
n2(2n2π2+inπ+1)

einπx

35. y(t) =
2

9
−
∞∑
n=1

3(1− cos 2nπ
3

)

π2n2(3− 4
9
n2π2)

cos
2nπt

3

36. Hint: Write 〈u, v〉 − 〈un, vn〉 = 〈u, v − vn〉+ 〈u− un, vn〉.

37. Hint: Use the previous exercise.

38. For instance 1 and
√

3(2x− 1).

39. a = 6(3− e), b = 2(2e− 5).

40.
2 sinh 1

1
2

sinh 2 + 1
coshx+

2e−1

1
2

sinh 2− 1
sinhx

41. (a)
√
π

16
(3 + 6x− 1

2
x2) (b)

8

81
(x2 + 12)

42. x2 − x+ 1
6

43. (c) n!/
√

2n+ 1.

44. a = (e2π − 1)(1 + i)/4π, b = (e2π − 1)(1− i)/4π, minimum (π(e4π−1)−(e2π−1)2)/2π.

45. π2/6.

46.
π4

90
.

47. π6/960.

48. The Fourier expansion is cosn x =
∑n

k=0

(
n
k

)
e(2k−n)ix and the value of the sum is

(
2n
n

)
.

49. 1, for any x.
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50.
4

π

∞∑
k=0

(−1)k

(2k + 1)2
e−(2k+1)2t sin((2k + 1)x).

51. Eigenvalues λk = ν2k , where νk are the positive solutions to tan νa = 3ν
2ν2−1 .

Eigenfunctions: νk cos νkx+ sin νkx.

52. λ1 = 4− β2
1 , where β1 is the positive root of tanh β =

β

2
; u1(x) = e−2x sinh β1x

λn = 4 + β2
n, where βn, n = 2, 3, . . . are the positive roots of tan β =

β

2
; un(x) =

e−2x sin βnx

e−2x =
∞∑
n=1

2
√
λn[
√
λn + 2(−1)n]

βn(λn − 2)
un(x)

54. (a) 2i
ξ cos ξ − sin ξ

ξ2
, (b)

2i sin(πξ)

ξ2 − 1
, (c)

1

1 + iξ
, (d)

2(ξ2 + 2)

ξ4 + 4
, (e)

1

2
πe3iξ−2|ξ|, (f)

−1

2
πiξe−|ξ|, (g)

π

2
(1 + |ω|)e−|ω|.

55. πe−|a|.

56.
1

4

(
e

1
2
i(ξ−1)f̂

(
ξ − 1

2

)
+ e

1
2
i(ξ+1)f̂

(
ξ + 1

2

))
.

58. u(x) = (1 + 12x2 − 16x6)e−x
4
/2.

59. π3/2a2b2(a+ b).

60. (a) 11π/432, (b) 3π/8, (c) π/e, (d) π sin(1), (e) π(1− e−1).

61. π2/2.

62. a) i b)
i

2
√

2

63.
1

9π

64. f̂(ω) =
2π
√
ω

1 + ω
when 0 < ω < 2, 0 else. a)

π

2
, b) 2π

(
ln 3− 2

3

)
65.

π

8
(e2 + 1)

66. f(0) = 1,
∫∞
−∞ f(x)dx = 1.

68. cn =

 π(e
1
2 − e− 1

2 )e−|n|, n 6= 0

2π(1− e− 1
2 ), n = 0.

The system is not complete.
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69. cn = 1− cos(n)/πn. The minimum value is 1/8π.

70. u(x, t) =
1√
4πt

∫ 1

−1
e−(x−y)

2/4t dy.

71. u(x, t) =
4kt+ 1− 2x2

(4kt+ 1)5/2
e−

x2

4kt+1

72. u(x, y) =
1

π

(
arctan

(
x+ 1

y

)
− arctan

(
x− 1

y

))
. Geometrically, u(x, y) = θ/π,

where θ is the angle at (x, y) in the triangle with corners (x, y), (−1, 0) and (1, 0).

73. See Folland, page 238.

76. (a) x(t) = e2t − (t+ 1)et, (b) x(t) =
(
t2

2
+ t
)
et.

77. F (s) =
s− 2 + e−s(s+ 2)

s3
.

78. f(t) =


t, 0 < t < 1,

2− t, 1 < t < 2,

0, t > 2.

79. x(t) =

{
1
2
e−t − 1

2
cos t+ 1

2
sin t, 0 < t < π,

1
2
(1 + eπ)e−t, t > π.

80. x(t) =

{
t, t < 2,

2 + sin(t− 2), t > 2.

81. f(t) = | sin t|.

84. The value of the sum is k(N − k).

85. X(µ) =
N−1∑
n=0

x(n)e−2πiµn/N =
sin π

N

cos 2µπ
N
− cos π

N

86. (b) and (c) are piecewise continuous; none of the functions is piecewise C1.
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