
Solution (with details). Exam in MMG710/TMA362 Fourier Analysis,
2014-10-27

1. In which space Ck are the following periodic functions? Find the best (i.e. the largest) k.

(a)
∞∑
n=1

cos(nθ)

n2
, (b)

∞∑
n=−∞

einθ

5n
, (c)

∞∑
n=1

sin(2nθ)

5n
.

Motivate your answers.

Solution We use the Theorem on term-wise differentiation of Fourier series. Write the given
series as f(θ). In the cases (a)-(b) f(θ) is a well-defined convergent series and thus a well-
defined function.

(a) Differentiating the series formally term-wise we get a series
∞∑
n=1

d

dθ

cos(nθ)

n2
= −

∞∑
n=1

sin(nθ)

n

which is convergent but not absolutely convergent. Thus (the best we can say) f is C (but
not C1).

(b). The series
∑0

n=−∞
(in)jeinθ

5n
is divergent. Thus the series has no regularity. (However the

series
∑∞

n=1
(in)jeinθ

5n
is C∞, since diferentiating term-wise of the series j-times results in an

absolutely convergent series, for
∑∞

n=1
nj

5n
<∞.)

(c) We perform differentiation twice on the series, and find

−
∞∑
n=1

(2n)2 sin(2nθ)

5n
,

which is absolutely dominated by
∑∞

n=1
(2n)2

5n
=

∑∞
n=1(

4
5
)n < ∞, whereas differentiating

one more time it is

−
∞∑
n=1

23n sin(2nθ)

5n
,

which is divergent, e.g. for θ = π
3
, π
5
, π
7

etc. Thus f ∈ C2.

2. Compute the following integral ∫ ∞
−∞

sin(x) cos(2x)

x(x2 + 1)
dx

Solution Write sin(x) cos(2x) = 1
2
(sin(3x)− sin(x)) and thus

I :=

∫ ∞
−∞

sin(x) cos(2x)

x(x2 + 1)
dx =

1

2
(

∫ ∞
−∞

sin(3x)

x(x2 + 1)
dx−

∫ ∞
−∞

sin(x)

x(x2 + 1)
dx)

We compute, for any a > 0, the integral
∫∞
−∞

sin(ax)
x(x2+1)

dx. Write f(x) = sin(ax)
x

, g(x) =

(x2 + 1)−1 and use Plancherel formula:∫ ∞
−∞

sin(ax)

x(x2 + 1)
dx = (f, g) =

1

2π
(f̂ , ĝ)

=
1

2π
(πχa, πe

−|·|) =
π

2

∫ a

−a
e−|ξ|dξ

= π

∫ a

0

e−ξdξ = π(1− e−a)

Thus taking a = 3, 1 we find

I =
1

2
(π(1− e−3)− π(1− e−1)) = π

2
(e−1 − e−3).



3. Solve the following ordinary differential equation

u′′(t)− 4u(t) = f(t), u(0) = 0, u′(0) = 1,

where

f(t) = H(t− 1) =

{
1, t ≥ 1

0, else

Solution We apply the Laplace transform L to the equation, writing Lu(z) = U(z),

z2U(z)− u′(0)− zu(0)− 4U(z) = 8L[H(t− 1)](z) = 8
e−z

z
.

(z2 − 4)U(z)− 1 = 8
e−z

z
.

Solve U(z) and perform partial fractional decompositions:

U(z) = 8e−z
1

z(z − 2)(z + 2)
+

1

z2 − 22
= e−z(

−2
z

+
1

z − 2
+

1

z + 2
) +

1

z2 − 22

Its inverse transform gives the solution

u(t) = H(t−1)(−2+e2(t−1)+e−2(t−1))+1

2
sinh(2t) = 2H(t−1) (−1 + cosh 2(t− 1))+

1

2
sinh(2t)

4. Solve the following inhomogeneous wave equation
utt = c2uxx + t sin(2x), t > 0, 0 < x < π

u(0, t) = 0, u(π, t) = 0, t > 0

u(x, 0) = x(π − x), 0 < x < π

You may use (without proof) the following Fourier sine series on (−π, π)

θ(π − |θ|) = 8

π

∞∑
n=1

sin(2n− 1)θ

(2n− 1)3
.

Solution . We find first a special solution solving the inhomogeneous equation and preserv-
ing the homogeneous condition. Ansats

w(x, t) =
1

c2
t sin(2x) .

Then wtt = 0 and c2wxx = −t sin(2x), namely c2wxx + t sin(2x) = 0, w solves indeed the
inhomogeneous equation along with the boundary condition since sin(2x) = 0 for x = 0, π.
Now writing u = w + v and ut(x, 0) = g(x) the function v satisfies

vtt = c2vxx

v(0, t) = 0, v(π, t) = 0

v(x, 0) = x(π − x), vt(x, 0) = g(x)− 2
c2
sin(2x),

Let βn be the Fourier sine coefficients of g and write

αn =

{
βn, n 6= 2

β2 − 2
c2
, n = 2.



The Fourier sine series of v(x, 0) = x(π−x) on (0, π) is given by 8
π

∑∞
n=1

sin(2n−1)x
(2n−1)3 ,whereas

the Fourier sine series of vt(x, 0) is
∑∞

n=1 αn sinnx. The solution for v is given by

v(x, t) =
8

π

∞∑
n=1

cos((2n− 1)ct) sin((2n− 1)x)

(2n− 1)3
+
∞∑
n=1

1

nc
αnsin(nct) sinnx

Answer: u(x, t) = w(x, t) + v(x, t) .

5. Evaluate the sum of the following series by using the above Fourier expansion. Motivate
your answer.

(a)
∞∑
n=1

1

(2n− 1)2
, (b)

∞∑
n=1

1

(2n− 1)6
.

Solution The function f(x) = x(π − |x|) on (−π, π) has continuous derivative and piece-
wise second order derivative: f ′(x) = π − 2xsgn(x) is continuous, f ′′(x) = 2sgn(x) is
piece-wise continuous. Thus f ′(x) has its Fourier series given by term-wise differentiation
and the series converges to f ′(x),

f ′(x) = π − 2xsgn(x) = θ(π − |θ|) = 8

π

∞∑
n=1

cos(2n− 1)x

(2n− 1)2
.

Taking x = 0 we find

8

π

∞∑
n=1

1

(2n− 1)2
= π,

∞∑
n=1

1

(2n− 1)2
= π2/8,

We apply Parseval’s (Pythagoras’) theorem to the Fourier expansion of f(x) on (−π, π)∫ π

−π
f(x)2dx = π(

8

π
)2S, S :=

∞∑
n=1

1

(2n− 1)6
,

since
∫ π
−π sin

2(2n− 1)xdx = π. Now the left hand side is∫ π

−π
f(x)2dx = 2

∫ π

−0
x2(π−x)2dx = 2

∫ π

−0
(π2x2−2πx3+x4)dx = 2(π2π

3

3
−2ππ

4

4
++

π5

5
) =

π5

15
.

Thus

S =
π6

26 · 15
.

6. Formulate and prove the Theorem on Uniform Convergence for Fourier Series of 2π-periodic
C1-functions.

Solution See the textbook.


