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THE ISOPERIMETRIC INEQUALITY

The problem, which closed plane curve of given length encloses the largest area, was already
known in antiquity, with its solution the circle. According to legend, the Phoenician
princess Dido founded the city of Carthago on a piece of land obtained from the local king.
As she got only as much land as could be encompassed by an oxhide, she let the hide be
cut into thin strips, so that she had enough to encircle an entire hill nearby. A satisfactory
proof that the solution is a circle was first obtained in the 19th century.

The famous geometer Jacob Steiner give a proof, based on geometric constructions, which
starting from a curve, different from a circle, leads to a curve with the same length, but
enclosing a strictly larger area. Dirichlet, his colleague in Berlin, tried without success
to convince him that this does not suffice as proof, without showing the existence of a
solution.

Many proofs are now known. The one below goes back to Hurwitz. The analytic part can
be isolated in the following lemma.

Wirtinger’s inequality. Let f(t) be a piecewise smooth, continuous 2π-periodic function
with mean value 0, i.e.,

∫ 2π

0
f(t)dt = 0. Then∫ 2π

0

(f ′)2dt ≥
∫ 2π

0

f 2dt ,

with equality if and only if f(t) = a cos t+ b sin t, where a and b are constants.

The condition for equality can also be stated as f(t) = a cos(t+b), where a and b are (new)
constants; this follows from the addition formulas for sine and cosine. Using Wirtinger’s
inequality we can give a simple proof of the isoperimetric inequality.

Theorem. Let γ be a simple closed curve with length l, enclosing an area A. Then l2 ≥
4πA with equality if and only if γ is a circle.

Proof. We parametrise γ with constant speed l/2π. By a translation we may assume that∫ 2π

0
x(t)dt = 0. Now l2/2π =

∫ 2π

0
‖γ ′(t)‖2dt =

∫ 2π

0
(x′)2 + (y′)2dt. We compute the area

with Green’s theorem to be A =
∫∫

int(γ)
dxdy =

∫ 2π

0
xy′dt. This gives us

l2 − 4πA = 2π

∫ 2π

0

(x′)2 + (y′)2 − 2xy′dt = 2π

∫ 2π

0

(x′)2 − x2 dt+ 2π

∫ 2π

0

(y′ − x)2dt ≥ 0 ,
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where the first integral is non-negative by Wirtinger’s inequality for the function x(t), and
the integrand of the second is non-negative.

Equality holds if and only if x(t) = a cos(t + b) and y′ = x, so y(t) = a sin(t + b) + c.
Because

√
(x′)2 + (y′)2 = l/2π we find a = l/2π, so γ is a circle with centre (0, c) and

radius l/2π.

The maybe most natural proof of Wirtinger’s inequality uses Fourier analysis. There are
also elementary proofs (this does not mean that they are simple). We follow [Hardy,
Littlewood, Polya. Inequalities ]. To start we analyse the proof for the weaker form of the
inequality, which is the version in Pressley’s book.

Wirtinger’s inequality. For a continuous function f : [0, π]→ R, smooth on (0, π), such
that limt→0+ f

′(t) and limt→π− f ′(t) exist, and with f(0) = f(π) = 0, one has
∫ π
0
f 2dt ≤∫ π

0
(f ′)2dt with equality if and only if f(t) = a sin t.

We want to show that
∫ π
0
(f ′)2 − f 2dt ≥ 0. We can do this if we find a suitable function ψ

such that ∫ π

0

(f ′)2 − f 2dt =

∫ π

0

(f ′ − fψ)2dt .

We rewrite:
I =

∫ π

0

2ff ′ψ − f 2(1 + ψ2)dt = 0 .

Integration by parts gives

I = f 2ψ
∣∣∣π
0
−
∫ π

0

f 2(ψ′ + 1 + ψ2)dt = 0 .

The differential equation −ψ′ = 1 + ψ2 has solution ψ(t) = − tan(t + t0). The function ψ
is defined everywhere on the interval (0, π) if we take t0 = 1

2
π, so

ψ(t) =
cos t

sin t
.

We compute with L’Hôpitals rule

lim
t→0+

f 2 cos t

sin t
= lim

t→0+

2ff ′ cos t− f 2 sin t

cos t
= 0 ,

as limt→0+ f
′(t) exists; likewise limt→π− f 2ψ = 0. Therefore I = 0. Now∫ π

0

(f ′)2 − f 2dt =

∫ π

0

(
f ′ − f cos t

sin t

)2

dt ≥ 0

with equality if and only if f ′ − f cos t/ sin t = 0. This is a differential equation with
solution f(t) = a sin t.
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Proof of Wirtinger’s inequality. We cannot use directly the argument above, as f/ sin t has
poles in general. The trick is to first observe that f(t0) = f(t0 + π) for some 0 ≤ t0 < π,
because the function h(t) = f(t) − f(t + π) has opposite signs for t = 0 and t = π. Put
f(t0) = f(t0 + π) = c. Now we apply the previous argument to the function f(t)− c with
ψ(t) = cos(t− t0)/ sin(t− t0). This gives∫ 2π

0

(f ′)2 − (f − c)2dt−
∫ 2π

0

(
f ′ − (f − c)cos(t− t0)

sin(t− t0)

)2

dt = (f − c)2 cos(t− t0)
sin(t− t0)

∣∣∣∣2π
0

= 0 ,

so ∫ 2π

0

(f ′)2 − (f − c)2dt ≥ 0 ,

with equality if and only if f(t)− c = a sin(t− t0). To get rid of the unknown constant c
we use the assumption

∫ 2π

0
fdt = 0, so 2c

∫ 2π

0
fdt = 0. Then∫ 2π

0

(f ′)2 − f 2dt ≥ 2πc2 ≥ 0 ,

with equality if and only if c = 0 and f(t) = a sin(t− t0).

Fourier expansion

The functions sinmt, cosmt form an orthogonal basis of the space of 2π-periodic functions:
one has

∫ 2π

0
cosmt cosnt dt =

∫ 2π

0
sinmt sinnt dt = 0 if m 6= n, while

∫ 2π

0
cos2mtdt =∫ 2π

0
sin2mtdt = π for m > 0, and

∫ 2π

0
cosmt sinnt dt = 0. This can be shown using the

addition formulas for sine and cosine:

cos(m+ n)t = cosmt cosnt− sinmt sinnt ,

cos(m− n)t = cosmt cosnt+ sinmt sinnt .

The claim follows because
∫ 2π

0
cos kt dt = 0 if k 6= 0, and has value 2π för k = 0. In the

same way one gets
∫ 2π

0
cosmt sinnt dt = 0 from the formulas for sine.

Every 2π-periodic function f(t) can be expanded as

f(t) ∼ a0
2

+
∞∑
k=1

(ak cos kt+ bk sin kt) ,

where am = 1
π

∫ 2π

0
f(t) cosmtdt and bm = 1

π

∫ 2π

0
f(t) sinmtdt. The question, when the

series converges point-wise to f(t), is dealt with in a course on Fourier analysis. It is true
for continuous piecewise smooth functions, and we write equality. By differentiating the
series we find the Fourier expansion of f ′ to be

f ′(t) =
∞∑
k=1

(−kak sin kt+ kbk cos kt) .
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Wirtinger’s inequality is now easily proved. The assumption
∫ 2π

0
f(t)dt = 0 gives a0 = 0.

Furthermore
∫ 2π

0
f 2(t)dt =

∑∞
k=1 π(a

2
k + b2k) (integrate term-wise the square of the Fourier

series; actually, the formula can be understood from the fact that sinmt, cosmt are an
orthogonal basis). Likewise

∫ 2π

0
(f ′)2(t)dt =

∑∞
k=1 π(k

2a2k + k2b2k). Therefore∫ 2π

0

(f ′)2 − f 2dt =
∞∑
k=1

π(k2 − 1)(a2k + b2k) ≥ 0 ,

with equality if and only if ak = bk = 0 for all k ≥ 2, i.e., f(t) = a1 cos t+ b1 sin t.

Exercises

1. Let γ: [α, β] → R2 be a curve with length l and end points on the y-axis, forming a
simple closed curve together with the line segment γ(α)γ(β). Let A be the enclosed
area. Show that l2 ≥ 2πA with equality if and only if γ is a semicircle. Hint: use
the weak form of Wirtinger’s inequality.

2. Use the previous exercise to prove the isoperimetric inequality for convex curves.
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