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The calculus of integrals and derivatives is often presented as having
started with Newton and Leibniz, but of course there were many
predecessors. We have already seen how versions of of integration
was already used in antiquity, by Eudoxus and Archimedes.

Another early theorem that today would be interpreted as a theorem
about integrals is Cavalieri’s principle (1635).

It says that if we have two regions in the plane, both defined by the
graph of functions

Ri = {(x , y);gi(x) < y < fi(x)},

and if
f1(x)− g1(x) = f2(x)− g2(x)

for all x then the areas of the two regions are equal.
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Similarily, already Pascal (?), Descartes and Fermat used and
calculated tangents. Here is as an example how Fermat computed the
local maximum of a third degree polynomial:

Say the polynomial is

p(x) = 2x3 − 9x2 + 12x .

If a is a local maximum there will be two distinct points x1 and x2 close
to a such that p(x1) = p(x2) (one on each side of a). Now calculate

0 =
p(x1)− p(x2)

x1 − x2
= 2(x2

1 + x1x2 + x2
2 )− 9(x1 + x2) + 12.

Since this holds for points arbitrarily close to a it must hold for
x1 = x2 = a. We get

6a2 − 18a + 12 = 0,

which gives a = 1 or a = 2. (One is the local minimum, the other the
local maximum.) Of course there is a passage to the limit hidden here.
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Perhaps the most fundamental discovery of calculus is how the notions
of integral and derivative are related, i e the fundamental theorem of
calculus which says that

(d/dx
∫ x

f (t)dt = f (x).

Apparently this was first noted my Newton’s teacher, Barrow. (Barrow
was reputedly a ‘wild character’, sent off to academic studies by his
wealthy father who did not want him involved in the family business. As
subject of study he choose – theology. Theology lead to chronology
and attempts to reconcile the age of the earth according to the bible
with known historical records. Chronology in turn lead to astronomy
and, then, mathematics.)
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Barrow’s results were however not as clearly formulated as in the
succint equation above. The honor of having discovered the
fundamental theorem of calculus is instead ascribed to Newton and
Leibniz. The story is complicated by the fact that Newton did not
publish his work on derivatives until fairly late, in 1693. By that time,
Leibniz had already published his version of the theory, in 1684, which
lead to a long controversy between the two.

Newton is said to have stated that any person in science must make a
choice: Either to publish nothing, or to devote all his life to a struggle
for priority. According to the russian mathematician Arnold, a great
admirer of Newton’s, Newton made the worst of these alternatives; he
published almost nothing – and was constantly struggling for priority.
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Most of Newton’s most well known work was carried out between 1665
-1667, during the plague years. (He was born in 1642). This includes,
probably, his work on the method of derivatives and also the
Newtonian theory of classical mechanics that was not published until
1687, in his Principia Mathematica.

The story of how the Principia of Newton came to be has many
interesting parts. In 1679 Newton was approached by Hooke, who
asked Newton if he could give a mathematical proof that the inverse
square law of gravitation forces the planets to move in elliptic
trajectories. Hooke had already claimed that the inverse square law
implied ‘ellipthoid’ trajectories, where his choice of word indicates that
he was not happy with the rigour of the argument. Newton answered
that at his age (he was now 36) it was difficult to be interested in
mathematics and philosophy.
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It was instead E Halley (known for Halley’s comet) that convinced
Newton to publish his findings in his Principia, sent to the Royal society
in 1986.

This was complicated by economic matters – the society
would not accept to take the costs – but Halley offered to pay. The 700
page volume was finished in 18 months.

In principia Newton formulated what is now known as Newton’s laws,
essentially the law of acceleration

~F = m~a

and the law of gravitation

F =
mM
r2

or rather
~F = −mM

~r
r3 ,

(the inverse square law).
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He then went on to draw all sorts of consequences using mathematical
analysis, including the elliptic shape of planetary orbits.

He probably
also proved that conversely elliptic orbits implies the inverse square
law.
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But: he did not use derivatives in the book. The reason for this was
probably that he was not satisfied with the mathematical correctness of
dividing infinitely small quantities. (There was no exact definition of
limits at this time.)

Instead, his major tool was expansion of functions in
(Taylor) series. The mathematical correctness of these arguments, like
checking convergence of the series, is perhaps also a bit dubious, but
Newton used the series method for practical computations and could
see that they converged rapidly, so he was not worried.
How did Newton prove that the orbits of planets are elliptic? In modern
language, it follows from Newton’s laws that the differential equation
governing the motion is

r̈ = −
~r
r3 .

Newton substituted the formula of an ellipse for r and saw that it fit.
This method of solution is basically ok if you know uniqueness – which
was probably also obvious to Newton.
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Leibniz won the controversy with Newton in the sense that his formal
method of computation became very popular, and it is his notation that
has survived. In the eighteenth century, the method of calculus was
brought to perfection, through the work of many mathematicians like
Lagrange, Laplace and Legendre.

Euler and Lagrange introduced the method of calculus of variations.
Here is a very simple example: A line is the shortest path between two
points.

Let x(t) where t runs from a to b be a curve, such that it is the shortest
curve between A := x(a) and B = x(b). We may assume that x is
parameterized by arc length. Let

L(s) =
∫ b

a
|ẋ(t) + sẏ(t)|dt ,

where y(a) = y(b) = 0. Then L′(0) = 0.
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But

L′(0) =
∫ b

a

ẋ · ẏ
|ẋ |

dt =
∫ b

a
ẋ · ẏdt ,

since |ẋ | = 1 when the curve is parametrized by arc length.

Integrating
by parts we get ∫ b

a
ẍ · ydt = 0

for all such y . But then we must have ẍ = 0, so x is a line.

Similarily one can show that a circle is the curve of a given length that
encompasses the greates area. (Much more difficult though.) But all
these methods presuppose that there exists a curve that gives the
minimum. Such problems were not solved until much later, after the
rigorous introduction of the real number system, limits and the
supremum axiom, by Cauchy, Weierstrass and Dedekind.
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|ẋ |
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One of the most important applications of the calculus of variations is
the principle of least action in mechanics.

Let x = x(t) be the position
vector and let ẋ = ẋ(t) be the velocity vector. We define the
Lagrangian as

L(x , ẋ) :=
mẋ2

2
− V (x),

where V is the potential energy. Thus, the Lagrangian is the difference
between the kinetic energy and the potential energy, as opposed to the
total energy which is the sum of kinetic and potential energy.

Newton’s laws can be written

mẍ(t) = ~F = −∂V
∂x

.

This can be written elegantly in terms of the action:

d
dt
∂L
∂ẋ

=
∂L
∂x
.
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mẋ2
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So far this is just a rewrite. Now introduce the total action of a curve
γ = x(t),a < t < b:

S(γ) =

∫ b
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L(x(t), ẋ(t))dt .

Assume that γ minimizes the action among all curves with the same
end points x(a), x(b). Then
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So, a curve x(t) satisfies Newton’s equations when it minimizes the
action integral (or, more precisely, is stationary for the action integral).
This is called the principle of least action.

This simplifies a lot! No need to write down all the forces and, more
importantly, it does not depend on the choice of coordinates.

This is very important in modern physics where a new physical law is
not defined in terms of forces, but given as a new Lagrangian.

It also shows that if
∂L
∂xj

= 0,

then the corresponding ‘momentum’

∂L
∂ẋj

is conserved ( i e constant). This is called Noether’s principle, after
Emmy Noether (1882-1935), and has been called the most important
theorem in physics.
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Let us give simple example in the plane, where V (x) = V (|x |), i. e. we
have a potential energy that only depends on the radius.

Then we use polar coordinates: x = r(cos θ, sin θ). In these
coordinates the Lagrangian is

L =
m|ẋ |2

2
− V (r) =

m(ṙ2 + r2θ̇2)

2
− V (r).

(Because:
ẋ = ṙ(cos θ, sin θ) + r θ̇(− sin θ, cos θ).

Since the two terms are orthogonal we get that |ẋ |2 = ṙ2 + r2θ̇.)

Since ∂L/∂θ = 0, Noether’s principle gives

∂L
∂θ̇

= 0,

or
r2θ̇2 = constant .

This is Kepler’s law.
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One culmination of the theory was Laplace’s ‘Mecanique Celeste’. An
anecdote tells that when Laplace presented his work to Napoleon,
Napoleon asked: Where in this system is God?

To this Laplace
responded: I have not needed to use that hypothesis.

After all these discoveries there was also a feeling that all that can be
found by mathematical reasoning had now been found. In a letter to
d’Alembert in 1781, Lagrange wrote:

‘I also think that the mine has become too deep and sooner or later it
will be necessary to abandon it ... Physics and chemistry display now
treasures much more brilliant and easily exploitable.’

This was a few years after the births of Fourier and Gauss, whose
work would mark a new era in mathematics.
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