
First Lecture

Thales and the Beginnings

When to begin with mathematics? Its origin is lost in prehistory and if you
are sympathetic enough you can even attribute to animals mathematical skills,
although hardly of a conscious kind. And nature, of course, abounds in mathe-
matics. So let us begin in Media Res.

One name to commit to memory is Thales. He was a Greek philosopher,
mathematician and merchant, although not necessarily in that order. People of
the past were never unduly specialized. He lived in the 7th century before Christ,
thus a few centuries ahead of Plato and other figures of the Greek Civilization
at its ripest, and hence at the verge of its demise.

The Greeks are the heroes of our Western Civilization and for many centuries
the study of the Classics carried with it high prestige and to be educated meant
that you could read Classical Greek. Thus the subject may have been studied
to its death, after all there are only so many documents to read and ponder, and
most educated people of today probably know less about Classical Greek than
reluctant school-boys did a few generations ago. Educational projects imposed
from above invariably invite resentment, but for us blessed with ignorance, an
encounter with the Greek may be very refreshing.

So here we have that race of Ancient men sprung upon the scene, God
knows from where. Naturally any talk about race today is sensitive, and more
to the point speculative and irrelevant, however, there is no denying of a com-
mon language as a unifying and defining feature of a population, so deeply
implanted that it survived a temporary collapse of Civilization1. The Greeks
were traders. They established colonies all over the Mediterranean and the
Black Sea. They acquired wealth and leisure and an independence of spirit
making them rather immune to religious dogma, which tends rarely to develop
in poly-theistic religions2. All kinds of arguments can be found to explain the
sudden and unprecedented rise of science in the Greek culture. So let us return
to Thales.

I noted he was a businessman and apparently of some astuteness, if we
are to believe anecdotes which are told about him. Sensing that the harvest
of olives would be particularly good he laid his hands on all the olive presses
he could get hold on, so that he during harvest time could rent them out at
exorbitant prices. This is the kind of smartness that people in general can relate
to. That according to another anecdote he fell into a well, while walking staring
at the stars, is more apt to provoke derision among the same than admiration
and desire for emulation. He is thought to be the first mathematician in the
sense that he introduced deductive thinking into mathematics. Even that is
by hearsay, we know what Thales reasoned about, but we do not know of any
explicit examples, which makes it hard to judge him. The point is that although
the script has a long tradition, actually writing things down was something else.
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Few things were written down in the old Greek times, especially as far back
as Thales. The necessary material for it was scarce. Furthermore much of the
written documentation from those times have been lost over the ages. Some of it
preserved only through translation. Thus the Greek legacy is a very fragmented
one, tantalizing pieces of which have intrigued generations of later scholars. We
know enough to be able to appreciate what has been lost. Yet, Greek society
was an oral one. You did not learn by reading books, you learned by word
of mouth, necessitating extensive travels around the known world. Thales had
traveled widely getting into contact with traditional mathematics, especially the
Egyptian kind.

’Geometry’ is a Greek world based on the Egyptian practice of measuring
land. Some European languages such as Dutch have made translated loans of
the term (Meetkunde) but we mostly have adopted the Greek word wholesale.
The Egyptian practice was purely practical, taxes were levied proportionally
to the amount of land. Those holdings were periodically affected by floodings
of the Nile and it was of some importance to be able to measure the changes.
The Egyptians used a medley of methods of computations, seldom accurate,
but accuracy was of less importance than getting a figure for taxation purposes.
Thus such ambitions that would go beyond, would easily have been dismissed as
’academic’. With Thales the interest in geometry took on a more fundamental
aspect and it was done, so to speak for its own sake. This is very important,
any inquiry that is merely practical, will never develop beyond its preset limits,
because the questions you can ask are bound to be limited and superficial.
There needs to be a curiosity which probes deeper. Such a curiosity the Greeks
possessed. This is why we admire and idealize them.

Here we give some examples of what it is reported that Thales had done and
considered.
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Every diameter of a circle cuts it in two equal parts.

The angles at the base of an isosceles triangle are equal.

When two lines intersect the vertical angles are equal.

The angle in a semi-circle is a right angle.

The sides of similar triangles are proportional.

Two triangles are congruent if they have two angles and
a side respectively equal.
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What to make of them? As noted Thales was supposedly the first to reason
deductively in mathematics and thus making it mathematics in the sense we
now have of the word, but this is, as we have already noted, hearsay, we have
no account of how Thales actually reasoned, we can only speculate.

Now one has to make one thing clear. Deductive reasoning is no guarantee
for correctness. First, the reasoning itself maybe incorrect, and more seriously
deductive reasoning cannot be done in a void, it has to be based on something,
be it intuition or empirical findings. In fact the correctness of the reasoning is
based on our rational intuition. The point of deductive reasoning is to provide
arguments to make the process more transparent. By doing so it exposes itself to
criticism. The point of criticism is not so much to reject as to improve. Providing
arguments one may establish a dialog. Certain things may be agreed on, others
may be matter for dispute. Any such discourse invites alternative arguments,
new questions, maybe even tests and experiments. This is the essence of the
scientific attitude. Thales had the right attitude. He encouraged his students
not to take what he said as dogma, but to criticize it. According to Popper, with
Thales started not only the mathematical but also the scientific tradition3. His
students did not transmit so much his teachings as his attitude. This attitude
survives until this day. If the attitude dies out it may never revive again. Mark
that there was a time when the light of this attitude tended to flicker thus
threatening to fade. It was kept alive through what is known as the Dark
Ages by being documented, and then during the Renaissance it served as an
inspiration. This historical presentation is of course simplified. Every historical
presentation by necessity is, but it is accurate enough to illustrate the main
point. Traditions need continuity. After a rupture there is no guarantee that
they will occur spontaneously again, just as a species that has gone extinct may
not be revived again.

It may be no coincidence that the scientific attitude started with mathemat-
ics. Unlike empirical inquiries it does not require an elaborate apparatus. It is
an inquiry of thought verbally transmittable and aided by a crude sketching in
sand or chalk onto stone, or whatever the technology at the time may provide.
It is worth to point out that to this day the most effective means of transmit-
ting mathematical knowledge and know-how (known as understanding) is by
personal conversation. Mathematics also has both a deeper and a more tangible
connection to the real world, than do other human cerebral exercises such as
the law.

So after this digression we may return to Thales achievements. As mathe-
matical achievements they strike us as rather pedestrian. Some of them appear
rather obvious, such as the first one, and it is not clear how Thales argued for
its validity, or why he found the reason to do so. One may speculate that he
showed that any chord not through the center cut it in two unequal parts. The
third example can be given an easy formal argument4. and the exercise seems
to consist in how you could use a formal argument to support your intuition.
The case by the right-angle in the semi-circle is more interesting. It is not en-
tirely obvious and may strike most of us on first acquaintance as a surprise.
Using the second statement it is easy to see that it is equivalent to the trian-
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gle in question having angular sum π, and thus that every triangle has such
a sum. There is of course an easy argument for this, to the effect that a line
hits parallel lines in equal angles (and the assumed possibility that through any
point a line parallel to a given can be drawn) which Thales might have thought
to be obvious. Most interesting though is the statement that similar triangles
have proportional sides. This has striking practical consequences and lies at the
heart of all the real-life applications of Euclidean Geometry. All our estimates
of astronomical distances are based on it5. Did Thales have a proof of it, or was
it merely a guess based on actually measuring triangles, noting that at the time
of day when your own shadow is equal in length to that of your height, this is
true for anything6. According to legend, this is how he measured the height of
a pyramid in Egypt.

Pythagoras and Number Mysticism

Pythagoras was supposedly a student of Thales. Like with Thales no written
documents of his have survived (maybe there never were any?). Thus his teach-
ings and doctrines have to be fitted out of fragmentary evidence, not an enviable
situation. It seems clear though that like Thales and others Pythagoras traveled
extensively this being, as noted, the only way of getting an education. He finally
settled in Southern Italy. The exact location being of secondary interest, and
only mentioned to remind you that Greek Civilization was not confined to the
Ægean Sea.

Pythagoras is mainly remembered for the number mysticism of his school, or
rather his brotherhood, and Pythagoras Theorem. As to the latter Pythagoras
may have had very little to do with the eponymous theorem. It was certainly
known before his time and there is no indication that he provided a proof of
it, but he certainly applied it. On the other hand you do not need to know
Pythagoras theorem to get that the length of the diagonal is the square root
of two, only that areas scale by the square, and that the square formed by a
diagonal has twice the area of the original square. This leads to an embarrassing
problem. The square root of two cannot be rational. The proof of this fact is
very easy, and you have all seen it, and once you have seen it, you cannot
forget it. Nevertheless let us try and recall it. You cannot solve the equation
p2 − 2q2 = 0 in integers, which would be the case if (p/q)2 = 2 would have a
solution. You can also assume that not both p, q are even, because if so we can
cut it out. But obviously p has to be even, because an odd square is always
odd (note you do not need unique factorization for this you just check that
(2n+ 1)2 = 2(2n2 + 2n) + 1)7 but then writing p = 2p0 we get 2(2p0 − q2) = 0
hence q is even too.

By using unique factorization you can easily see that for an integer N

p2 −Nq2 = 0 has a solution iff N is a square, because each prime factor

has to have even multiplicity. If you do not know this fact, you have to

treat laboriously each single case, as was reported in one of the dialogs
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of Plato, where the case of up to N = 17 was treated. Take the case of

17 you have in fact to check that 17 does not divide any of the sixteen

numbers 12, 22, 32 . . . 162 which becomes a bit laborious, and certainly

earns you credit for hard work and perseverance, and qualifies you for

further grants to attack N=19 .

This had consequences and led to the notion of incommensurability. Given
two lengths it is not unreasonable to suggest that there will be a common unit
of length of which each is a multiple, in fact that they are commensurable,
literally meaning to be jointly measured. This was a kind of scandal and it
is rumored that the Pythagorean decided that geometry is more general than
number theory.

We may pause here and make a short digression. The proof of the irra-
tionality of

√
2 (and similar numbers) may be short, elegant and compelling.

And as the British philosopher and historian R.G.Collingwood notes that any
deductive reasoning is marked by this element of compulsion8, but does it ex-
plain, or do you feel that it is a trick of some sort, the conclusions of which
you are forced, or compelled, to accept? As we will discuss later in the course,
you do not understand mathematics through chains of arguments, especially
not formal ones, the meaning of mathematical statements only become clear
when viewed in appropriate contexts, and especially seeing how they connect
with other mathematical statements. There is another more geometrical proof
of incommensarubility which is far more visual. It does not in its simplest form
involve

√
2 but the solutions to the equation x2 − x − 1 = 0, the so called

Golden Ratio. Let us consider a triangle of width 1 and length x, we say that
it is Golden if the remaining rectangle you get if you remove the square of side
1 is still Golden9. If so the procedure can be repeated indefinitely never coming
to an end. This means exactly that the lengths 1 and x are incommensurable.
If there would be a common measure between 1 and x, there would also be the
same for x and 1− x

1

1

x-1

Thus if there would be a common measure, this would eventually show up
after a finite number of steps.

Now this proof is rather different from the first one. The first is very short,
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simple and elegant, but maybe it leaves you in the lurch. You feel almost tricked
having no choice but to believe the conclusion, as we have already noted. The
second proof on the other hand gives you a different kind of understanding,
more visual and tangible, in a sense you pass through all those infinite number
of steps, each one identical to the previous, which allows you the repetition. You
may argue that this proof is not very rigorous nor convincing but is based on
figures that very well may be misleading. This is a good objection, and shows
that you are a Platonist in a very dutiful sense. Our senses can indeed play
tricks on us. However, the proof may be by figure, but this is not exactly true,
if I present it to youm and do not draw all those infinite number of rectangles,
but you get the idea that it can in principle be done. Thus the crucial part of the
proof is indeed cerebral, the idea of indefinite repetition, because the remaining
rectangle has exactly the same shape as the initial, and hence we can repeat the
argument. It is possible to make it all formal and thus to satisfy more exacting
criteria, but admittedly this formalization is not obvious, but without this visual
idea those pictures indicate you would not be able to do it. This points at a
crucial fact of mathematical understanding. Deductive chains of reasoning tends
only to give so called local understanding. One step compelling another to a
conclusion you have no choice but to accept. It like being made to walk a route
blindfolded, each step leading to another, and when reaching you destination,
there is no reason to doubt its fact, although you really have no idea how to
get there. To be honest many of the proofs you encounter in mathematics are
like that. Thus it is nice once in a while to find a more conceptual proof, even
if it is not as rigorous. Proofs like that were known to the Greeks. The one I
showed you is the simplest one10. The problem is of course to show that there
is such a measure, the case of

√
2 was easily exhibited as a diagonal in a square,

thus it needs to be constructed, or equivalently to appear in a natural way, and
indeed it will show up using diagonals in a regular pentagon. The first proof
has additional advantages, it can be vastly generalized, while the second one
requires ingenuity from case to case. Thus it is in a sense more ’artistic’ with a
greater emphasis of the individuality of each case.

The Pythagorean obsession with numbers had both a silly and a profound
aspect. The silly aspect is to associate with various low numbers different prop-
erties, and maybe also the obsession with the shapes of different numbers such
as triangular, squares and pentagons and notions of perfect numbers and ami-
able pairs, which smack too much of recreational mathematics and turned out
to be ultimately sterile. The profound part, that everything can be explained by
numbers, still very much dominates computer science and artificial intelligence.
The idea that everything can be codified by numbers (such as the contents of
your brain including its thoughts) and thus be copied and subjected to calcu-
lations, which in their turn can be codified by even bigger numbers. Of course
given the primitive technology and knowledge of the Pythagoreans, examples of
the explaining role of numbers are not so many among them, except by one no-
table example, which we will briefly explain, and which has earned Pythagoras
the accolade of being the first mathematical physicist.
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Some people are blessed (or cursed) by so called absolute pitch. This means
they can identify a single note by its frequency. Whether it is congenital or can
be acquired through patient training is not known, and its relation to ’musical-
ity’ is not clear. For most people they can only relate relative frequencies. If
that ratio is 2 the sounds will in a sense sound ’the same’. We are thus talking
about a cyclic group R

+/{2n} in modern notation. Now to measure frequencies
of sounds was beyond the capabilities of the Pythagoreans, on the other hand
they could measure directly the lengths of strings giving rise to notes. If there
was a simple relation such as 3 : 2 (meaning that the numerators and denomina-
tors of the corresponding fractions were small) the two notes harmonized. This
was a remarkable discovery directly relating an abstract numerical relation with
a sensual impression. Now the difference between two notes of ratio 2:1 is called
a scale. Traditionally in Western music this is discretized into eight intervals
hanec referred to as an octave. Ideally they should be invariant under transla-
tion, meaning that the subsequent ratios are equal. This leads to an impossible
mathematical problem having to do with the eight-root of two being irrational.
Various compromises have been worked out. The old Pythagorean scale was
gradually replaced by a so call well-tempered one in the 17th century or so,
intended to make the spacing more uniform, at the expense of small denomi-
nators. There are many elementary connections with music and mathemaatics
related to Pythagoras, but they are at a rather elementary level.

Hipparchus and the squaring of the circle and other Greek problems

The Greeks considered three problems of construction. One was the trisection of
the angle, the bisection of one is easily effected by ruler and compass. Another
one was the duplication of the cube, and the final one was the squaring of
the circle. The first two were eventually solved by considering more general
constructions, in particular by invoking other curves than straight lines and
circles. The impossibility of construction by ruler and compass was not effected
until the beginning of the 19th century, when it was shown in an elementary
way that a cubic field cannot be generated by successive quadratic extension 11.
The impossibility of the third had to wait for the end of the 19th century when
Lindemann showed that π is transcendental, i.e. not the root of any algebraic
equation, in particular not one given by extension of quadratics. However certain
figures bordered by curves, in fact by circular arcs could be squared. Using the
fact that the areas of circles are proportional to the squares of their diameters
it enabled Hipparchus of Chios to note that the shaded lunes (see figure below)
had a total area equal to the shaded triangle, and from which it is not hard to
find a square with the same area.
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In fact the sum of the areas of the two smaller
half-circles are equal to the area of the big
half-circle, as areas of circles are proportional
to the square of the diameters. Now from
those two areas we subtract the common parts
(those unshaded) and hence that remains have
to have the same areas.

The remarkable thing of the example is that some rather complicated regions
- the lunes, could have their areas so simply expressed. Would there not perhaps
be some clever way of also finding a simple area for the circle? Hipparchus
example was something of a fluke and as such a dead-end.

Zeno and his paradoxes

Zeno presented three paradoxes. They had to do about indefinite indivisibility
and the problem of continuity. They can be paraphrased as follows:

0 1 2 3 4 5 67

Let the turtle and swift-footed Achilles have a race,
with the turtle given a head-start. Will Achilles ever
catch up with the turtle? Common sense tells us
that this will always be the case, and we can easily
cook up a formula in terms of the length of the head-
start, and the constant velocities of the turtle and
Achilles respectively to compute where and when
this overtaking will take place. Zeno argued that
Achilles could not in fact catch up by postulating an
infinite number of positions Pn defined inductively
as P0 being Achilles initial position and Pn+1 being
the position of the turtle when Achilles is at Pn.
To assume that Achilles catches up with the turtle
means that in finite time Achilles passes through an
infinite number of points, or if you want experiences
an infinite number of events.

If the experience of each event would take a minimum amount of time, strictly
positive, then indeed Achilles would not catch up, he would at each position Pn

make a short stop and reflect something to the effect now I have reached the
turtles position that was yonder a moment ago.

This is clearly a so called thought-experiment. In real physical life we cannot
keep on determining the points with the increasing precision which is required.
However, if we think in terms of distance quanta, i.e. that the continuous line
is made up of small indivisible points adjacent to each other, new problems will
occur. There will be time quanta and the velocities of the opponents would be
measured by those units, and the actual positions they would occupy would not
cover all the possible.

In modern mathematics we see little trouble here. It is a question of adding
infinite geometric series which may converge even if an infinite number of terms
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are involved. As distances go to zero (i.e. distances between the two runners)
so will the times needed to cover them. So what Zeno seems to say from a
mathematical point of view is that before a certain time has elapsed, Achilles
has not yet caught up. Big deal. Mathematicians hence tend to dismiss Zeno
as if not mathematically irrelevant at least overcome. There is no paradox
here to ponder. Philosophers tend to think otherwise. Maybe because they are
mathematically unsophisticated?

A similar paradox has to do with movement itself. Can something, like an
arrow, move in fact? Before it reaches position P0 it has to reach a position
P1 halfway to P0 and so on. This is of course a species of pedantry with which
we are familiar in many other contexts, and known as infinite regress, when
it comes to logical reasoning. What is meant by continuous movement? Can
you speak about movement at a time instance at all? One naive thing is to
think in terms of a sequence of still frames, in each the arrow is at rest, yet at
each subsequent one it has moved. Twenty-four frames a second seems to be
enough for the human brain to experience the illusion of continuous movement.
This remark has relevance to physiology not mathematics but is nevertheless
not without interest. Imagine that we could have needed hundreds of frames.
Movies would have been much more involved and the development of the movie-
industry would have been retarded. Also movies would have demanded much
more storage space in the computer. The number 24 seems to be peculiar to
humans, flies apparently would detect a flickering light where we would only
notice a continuous one. The interpretation seems to be that they are living
at a quicker pace, thinking quicker, maybe because their thoughts are simpler.
But let us not digress.

Plato and Mathematical Platonism

Plato was no mathematician of renown. No result of any importance is at-
tributed to him. On the other hand his influence on mathematics was very
important, not just at his time, but also for posterity. He, if anyone, deserves
to be acclaimed as the patron saint of mathematics. Famously there was a sign
at the entrance to the Academy, that no one unversed in geometry should be
allowed to enter. The idea of using mathematics as a filter has a long tradition
and it was revived at the time of Napoleon, when the various State Ecoles were
founded, ostensibly to supply the Government with competent administrators
and engineers, especially military such. Mathematics was accorded high status
in the educational systems in the West at least until the end of the 20th century,
and still so very much in modern France. Plato thought that mathematics was
a very good training for the mind to deal with the underlying forms. In fact
the proper objects of mathematics were not to be found in the world of sensory
experience, the lines that one could draw in the sand, or chalk on a board,
were but poor representations of the real thing, the underlying mathematical
object. While Plato’s idealism is considered as outmoded in current philosoph-
ical circles, and the Platonist is considered with amused condension (at best),
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mathematics is the last stronghold of Platonism. In fact nothing that humans
have encountered seem more fit to illustrate Plato’s ideas. Mathematicians tend
to be Platonists, at least in an unsophisticated non-philosophical mood, con-
vinced that the objects they manipulate are real, if impossible to physically pin
down, and that they are engaged in exploration and discovery not in mere in-
vention and convention. This not to say that there is no invention or convention
in mathematics, only that inventions have unintended consequences, and hence
tend to live their own life, independently of their creators, and mathematics as
a human activity need its conventions, as in any linguistic activity. Mathemati-
cal Platonism essentially boils down to mathematical realism, and as noted the
spirit of discovery has guided mathematician ever since, without it notions such
as question of logical rigor would not be meaningful. In fact a real challenge to
mathematical realism has only been mounted during the crisis of foundations
during the early 20th century. The only serious contender to mathematical re-
alism, whose roots, as so much in modern science and philosophy,ontological as
well as ethical, can be traced back to Aristotle. This notion is that mathematics
far from having an independent existence, is just a tool, a language in fact, to
describe the real world, and thus potentially be replaceable. The notion of lan-
guage should of course be taken metaphorically and not literally. When taken
literally a metaphor ceases to stimulate the imagination and becomes merely
silly.

Plato was not a mathematician, and his direct influence on mathematics
has not been entirely beneficial. Supposedly his insistence that only ruler and
compass should be used in geometrical constructions has rightly been criticized
as far too restrictive. In fact, anti-Platonists have pointed this out as typical of
Platonistic mathematics, and that subsequent developments of mathematics has
been a release from constrained mathematical Platonism. Maybe a release from
Plato, but not from Platonism. The Platonistic conception of mathematics has
rather been vindicated than contradicted by the triumph of mathematics, espe-
cially as to its spectacular success in fundamental physics. In modern cosmology
mathematics tends to be prior to the physical world, mathematical concepts
somehow existing before physical objects. The spirit being turned into flesh at
the Big Bang, a narrative that has very strong religious overtones. Which, for
many people, may be a sufficient reason to be skeptical about it. More fruitfully
Plato suggested a mathematical research program, essentially involving a devel-
opment of three-dimensional geometry, with a view of describing the movements
of celestial bodies. This would not take place in the time of Plato, but would
occur only some two thousand years later, and eventually surpass anything that
Plato concretely could have envisioned. After all he was but human.

Euclid and the Axiomatic Method

The great revolution of scientific thought due to the Greek was the introduc-
tion of deductive reasoning, both as a method to assure certainity but also to
achieve clarity and transparency through the necessary intellectual hygiene of
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clear definitions and piecemeal reasoning. Euclid made a compendium of the
geometrical knowledge available at the time, it is doubtful whether he in any
way contributed any important new results, and besides the body of knowl-
edge was very limited when seen in retrospect. But what he did was to present
those results in a very nice and systematic way that has served as a model for
natural science and mathematics ever since. For the first time really the per-
tinent features of an axiomatic presentations were spelled out. True, he had
predecessors, Aristotle had presented a systematically deductive presentation of
syllogisms somewhat before (Euclid and Aristotle did overlap biographically),
but that task was much easier and much more formal, then the one confronting
Euclid. Euclid did not want to formalize something already formal, but some-
thing physically palpable as the physical space in which we are embedded. As
such it was not just a mathematical project it was a physical one.

Euclid first laid down the rules of the game so to speak. He gave a list
of axioms and postulates, an important distinction which tends to be blurred
today. Axioms involve principles of thought common to all logical thinking,
while postulates concern self-evident facts about the subject matter, in this
case physical (or mathematical?) space. He also tried to give clear definitions
of the objects, such as points and lines. The first metaphysical insight is that one
has to start from something, one cannot start from a void. Out of nothing, only
nothing can ensue. Already by making some basic assumptions you make some
concessions to arbitrariness, by admitting that some things cannot be proved
but need to be taken on faith, and whatever that faith is based on, it cannot be
deductive reasoning.

Now with the ground clear and all the cards shown, we can proceed piece-
meal. The ambition is to make short steps and not to rely on anything but the
basic assumptions and what can be derived from those deductively. In particu-
lar there should be no reference to drawn figures, which of course always tend
to be particular. Now in this way Euclid proves a lots of facts, some auxiliary,
referred to as lemmas, some central referred to as theorems, and some immedi-
ate consequences called corollaries. The general trend is to go from the simple
to the more involved, gradually constructing an impressive edifice, in which ev-
ery fact results from a sequence of compelling steps. But the presentation is
not mindless, although deduction can be thought of as a mechanical process.
Not all the facts are of equal importance, there is a structure in which some
results are far more central than others. To single out the important theorems
is something that goes beyond mere deduction. The achievement of Euclid is
impressive. Much more goes on behind it than meets the eye. Still it is not
perfect, as later generations of mathematicians would point out, there are many
flaws.

First the definitions are far from satisfactory. Just as there are unproven
statements there has by necessity to be undefined notions. If every notion
has to be properly defined in terms of other notions, we either end up in an
infinite regress, where the explanatory notions will be necessity become more
and more complicated (as we run out of simple notions) or we will be caught in
circularities. Neither of those stratagems is acceptable. Infinite regress means
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indefinite postponement, circularity means nonsense. In no case will there be
anything of substance conveyed. The solution to this dilemma is to think of
objects instrumentally. They are not defined explicitly, but implicitly in terms
of the postulates, that allows us to manipulate them. This instrumental point
of view was stressed by Hilbert. The objects undefined could be anything. The
important thing was not what they were but how they interacted. Just as the
pieces of chess has only meaning as to how to move them on the board, their
actual shape and appearances being of no importance12. Now by the time of
Hilbert the axiomatic approach had taken on a slightly different hue, and Hilbert
went to pains to stress its purely formal aspects. Euclid was no formalist. To
him and the Greek it was physical space that mattered, and lines and points had
definite interpretations. Thus his circular definitions of the basic geometrical
objects was to direct the intuition of the reader into the relevant furrows. Just
as truth can be intuitive, so can definitions.

Now, especially from a modern point of view, postulates are neither true
nor false in any metaphysical sense, just as little as the rules of a game are
true and false, they are just conventions that define a game. However, Euclid
was not concerned with a game, he was concerned with real physical space.
His postulates about space, were not of the same type as the so called axioms
of groups, but in the nature of self-evident truths about space. In modern
axiomatics, the notion of self-evident has become irrelevant, not to Euclid. The
truth of a statement, or rather the claiming of the truth of a statement becomes a
moral stand. To say that something is an axiom involves a moral responsibility.
This Euclid understood well. His notorius fifth postulate, on which all the
deeper parts of Euclidean geometry depend, is a case in point. This postulate
stands out, although intuitively obvious, or at least apparently so, it does not
have the same simplicity and immediateness as the other postulates. It has
the character of a theorem, of something deducible from simpler statements. It
lacks the irreducibility that characterizes the others. It is tempting to assume
that Euclid tried to prove it and eventually had to give up. To clearly state
it as an unproven assumption was a testimony to intellectual honesty, which is
of course a moral issue. In so doing, Euclid further clarified the nature of the
axiomatic method, and by evading obfuscation (which a lesser mind may have
succumbed to) he did generations of future mathematicians a great service.

Finally when we come to the axioms, we come to the heart of the matter,
because axioms, in the initial distinction made between axioms and postulates,
refer to principles of thought. Those are, unlike the postulates, inseparable from
thinking. They are central to the very process of thinking, and thus something
internal that cannot be externalized. The whole point of the deductive approach
is to put the world under the power of our rational faculties. While postulates
can be matter of convention, our thinking is not. The nature of the axioms are
thus much more intimately than anything else in the character of being self-
evident. Thinking itself is its sole justification. It is very hard to be aware of
your thinking process, and in the process of deductive engagement it is easy to
bring into play principles of reasoning which are not explicitly declared at the
beginning. Many such tacit and implicit principles are used by Euclid, even
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those which may be more postulary in nature than axiomatic, such as metrical
invariance of movement in space. The principle of superposition of triangles is
repeatedly invoked. Or that a line segment joining an interior point of a circle
with an exterior will actually intersect the circle. Thus although Euclid has the
ambition to dismiss diagrams as anything more than as an imaginative support
to the intuition, occasionally he subconsciously relies on them for unwarranted
assumptions.

But flawed as Euclid may be under a closer scrutiny, the results he derives
are still valid, which cannot be claimed, except for few obvious examples, for
scientific claims of antiquity, and this alone is a noteworthy achievement. Fur-
thermore the flaws of Euclid are not only understandable but inevitable. One
may see the axiomatic presentation as a Platonic form, and any human repre-
sentation of it is bound to be imperfect, just as the triangles we draw in the
sand. Like all our human efforts they can be improved, but never made per-
fect. Hilbert’s modification of Euclid is of course in the technical sense an im-
provement, but even modern axiomatic representations are bound to be flawed,
because, as stressed, it is impossible to completely axiomatize all principles of
thought, which makes the ambition of a universally formalizing mathematics an
impossible one13.

Euclid, although not perfect, has provided a lasting inspiration for mathe-
matics, and also more generally for the scientific project, as we will see when we
bring up Descartes. The axiomatic method has achieved even greater signifi-
cance in the 20th century, as it is seen as a unifying strategy, doing multiple work
simultaneously, by stripping matters of their inessentials, and high-lightening
common structures. As such it has played an important role in the drive to-
wards abstraction in mathematics, which has inspired in particular much of 20th
century mathematics.

Notes

1The story of Linear B is fascinating, in the process of deciphering this strange script on
clay-tablets, it turned out that the language was Greek, and thus the history of the Greek
civilization was pushed back several hundred years. There had been, unsuspected by histori-
ans, a Greek Bronze Age Civilization associated to the archaeological finds at Mycenae, with
a script. That Civilization perished and the memory of it seems to have been forgotten by
later day Greeks, yet the language survived and the Greek were to flower a second time.

2To get a feel for an Ancient Greek temple you could do worse than visit a modern Hindi
one in India with its gaudily painted figures and bustle. The classical Greek sculptures we
today admire for their purity (and even disfigurement) may very well have been painted for
enhanced likeness. Similarly with the white temple ruins. It is of course speculations, just to
remind us about how much we do not know about the past as most of its traces have vanished.

3It also lies at the heart of democracy. Democracy is not about elections, ultimately it is
about open discussions and the right as well as the necessity of scrutinizing arguments. This
is the ideal way of arriving at a consensus.

4incidentally it was given to me as a child by my mother and for some reason the occasion
has never faded from my memory
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5With modern technology we have in some instances direct measurement of some close
astronomical distances within the solar system. Those are based on the velocity of light,
assumed to be constant throughout space. Note though that the first estimates of that velocity
was done in the 17th century by the Dane Rømer, using the Doppler effect of the Galilean
satellites, and thus being based on geometrically based distances. Modern calculations are
confined to the earth.

6This reminds me of a grandfather of mine who was a farmer and for the sake of construction
of some machinery systematically measured the circumferences and diameters of wheels of
different diameters. and thus chanced upon the number π. Thus similarity is not something
which is innate, but something we discover.

7True, the Greeks did not have access to modern algebraic notation, but it does not take too
much to convince you that the product of two odd numbers is an odd number by a graphical
representation if nothing else. But compare the remarks below.

8More exactly. ’Deduction compels, induction permits’ Collingwood (1889-1943) was
known for his opposition to the more and more technical emphasis on philosophy due to
the school of Analytic philsophy developing primarily in the Anglo-Saxon World in the 19th
century, although many philosophers think of it as the true heir of the great philosophers
of the past, thus part of the main tradition. Collingwood, whose ideas about history are
fascinating, was no wooly-minded thinker and had also incisve things to say about logic.

9This means of course that 1

x
= x−1

1
which translates into x

2
−x−1 = 0 with the solutions

x = 1±
√
5

2
the bigger solution corresponding to our case.

10The number x has, as the Eucldan algorithm shows you, the continued fraction expansion
1 + 1

1+ 1

1+ 1
1+...

.

11nevertheless there has been a steady stream of attempted solutions sent in by amateurs
of trisecting an angle. Thus a trisector has become synonymous with a crank, the second
problem of constructing the cube-root of two does not seem to have inspired a similar flurry
of activities.

12Of course if you want to physically manifest the game of chess there will be constraints
on the physical properties of the pieces. They have to fit on the squares, and stably so, not
toppling over, nor evaporating during the time it will take to play the game. But this is just
a concession to interior decoration and fetishism, serious players of chess supposedly have no
problems with so called blind chess.

13There are of course other obstacles to axiomatization as a means of achieving certainty,
due to the impossibility of proving consistency, to which we will return.
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