
Third Lecture

Alexander the Great and the Hellenistic period

Traditionally Greek Society consisted of small city states, the most notable be-
ing Athens and Sparta, as well as various colonies along the Mediterranean and
the Black Sea. Those states were not seldom in conflict with each other, conflicts
that occasionally resulted in war, the most famous being the Peloponnesian War
between Athens and Sparta and their respective allies. It started in 431 B.C.
and lasted in stages for almost thrity years until 404 B.C. Sparta emerged as
the victor but was not able to maintain its supremacy, and Athens revived.
Next to Greece was the powerful Persian empire, very different in spirit and a
constant threat. As usual a powerful external enemy provides an occasion for
rallying to a common cause. The Persians attacked Greece repeatedly during
the 5th century B.C. but were always ultimately expelled. And then, as out
of nowhere, more specifically Macedon, a peripheral Greek state, whose inhabi-
tans were semi-barbarians, meaning that they could not speak Greek properly,
emerged under its ruler Philip II, and conquered a large part of Greece. Philip
was murdered and his son Alexander, later to be known as the Great, assumed
the throne at the age of twenty and completed his father’s project of conquering
the whole of Greece, and thereby unifying it. Alexander born in 356 B.C. had
had as his teacher Aristotle in his early youth, thereby establishing a connec-
tion with the philosophers of Classical Greece, making him not only a military
commander but also a proponent of Greek culture. His ambitions were thus not
only confined to Greece. Two years later he crossed into Asia never to return.
He defeated the Persians under Darius III overthrew him and subjugated the
empire, furthermore he conquered Egypt and the lands of Tigris and Eufrat,
proceeding east to India, where Elephants were encountered and would from
then on play a conspicious role in calssical warfare. Most importantly Greece
culture spread, tangibly manifested by the founding in 332 B.C. of the city of
Alexandria in the Nile delta, known for its extensive library. After the death
of Alexander, his wide ranging empire disintegrated, there being no heir. The
main empires emerging were the Ptolemaic centered in Egypt, the Seleucid in
the east, including central Asia, and the Pergamon and Macedonian in the West
comprising the larger part of present day Turkey and Greece. The most impor-
tant thing was that the center of gravity of Greek culture and science moved
from Athens to Alexandria. Greece would never be the same again. The classi-
cal Greek period is known as the Hellenic, and the one following Alexander the
Hellenistic. Greek culture would have a strong influence on Rome and live on
through the Eastern Roman empire merging into the Byzantine, and Greek eth-
nic presence would prevail far into eastern Turkey until the beginning decades
of the 20th century.

As noted the center of gravity became Alexandria, which was turned into a
cosmopolitan city, involving a mixture not only of races and ethnic groups, but
also a disolution of slaves and masters, being less class-conscious than classical
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Greek society. While books were a rarity in Greece they become much more
common, due to the papyrus, in Alexandria. The above mentioned library is
rumored to have had about 750’000 volumes, and was engaged in a project of
copying any books which came its way. The famous burning of the library is to
a large extent apocryphal, true it was burned and destroyed at various times,
but revived, and although it eventually fizzled out, there is no precise point in
time on which to hang its demise. The city was in many ways quite modern with
a lot of ingenious mechanical contraptions not only to easen everyday life but
to provide entertainment and awe, such as moving parts in temples or vehicles
powered by steam.

Classical Hellenistic mathematicians

Euclid no doubt got his mathematics from the Plato academy and although
he settled and worked in Alexandria he is of the classical tradition. The same
can also be said of Apollonius, although he too worked in Alexandria during the
early Hellenistic period. He is known for his systematic treatment of the conic
sections. Those did not originate by him, but had a long history, Euclid among
others write on them as well, but his presentation of them is masterly and from a
deductive point impeccable. He does not use algebra, although the modern way
of using equations is implicit, but reasons solely synthetically, requiring great
ingenuity at each step. He incidentally was the one who introduced the termi-
nology of ’ellipse’, ’parabola’ and ’hyperbola’ noting as the first that the latter
should be considered by both its branches. As ought to be well-known they
refer to ’less than’, ’equal’ and ’more than’, a triparte division forming a com-
mon theme through much of mathematical classification ever since. An elliptic
expression is a shortened form, while hyperbole is exaggeration. A parable, as
common in the New Testament, provides an ’equality’ between two phenomena,
more precise than a metaphor or an analogy. Conic sections do not naturally
occur by taking say wooden cones and producing plane sections by a saw, but
when shadows or lights fall on oblique walls. It provides an entirely new way
of creating curves not by ruler and compass, although the ellipse can of course
be created mechanically by a fixed string nailed at two points, the foci. It is
planar geometry but created in a three-dimensional setting. Supposedly Apol-
lonius did not explore the topic because of its intrinsic beauty, although this
is what emerges from his work, but for the applications of solving geometric
problems such as the trisection of an angle or the duplication of a cube, all of
which can be effected by intersections of conics,thus greatly extending the scope
of constructions by ruler and compass, which only solves quadratic equations if
repeatedly.

Hellenistic mathematicians

The post-classical mathematicians of the Hellenistic period had a different at-
titude to mathematics than the classical ones. For one thing they were less
of purists, more concerned with applications, not staying away from numerical
calculations. Deductive reasoning was not abandoned, but there was also more
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of an indulgence towards heuristic reasoning, as there was an impatience to get
results, because the scope of Hellenistic geometry was larger than the Classical.
Yet heuristic reasoning, being a throw back to the old Egyptians occasionally
gives wrong formulas.

One example of a Hellenistic mathematician was Heron, known mainly for
his formular of the area of a triangle in terms of its sides. If s is half the
perimeter and the sides are given by a, b and c the formula is

A =
√

s(s− a)(s− b)(s− c)

By the congruence theorem that three sides determine a triangle, a formula
should exist. The area of the triangle will be zero when s = 0 or more generally
s = a, b or c. From this it is natural to set up s(s−a)(s−b)(s−c) but this scales
as the fourth power, instead of the second power, and thus it is natural to take
the square root. This is hardly deductive reasoning, at most a logically generous
example of heuristic. How should one think of it? A mnemonic principle? This
was not the way Heron came up with the formula.

Another example is Pappus, who among other things is known for the fol-
lowing theorem. Given three pairs of points on two distinct lines in the plane,
the three intersection points, also lie on a line.

A kind of result which would not appear in classical Euclidean geometry and
foreshadows projective geometry which would come to the fore later.

Another result contributed to him is that the volume of generated by the
revolution of a closed curve along an axis that does not intersect it is given by
the area of the enclosed curve times the circumference of the circle traced by
its center of gravity. No known proof of Pappus exists and the result may very
well have been known before him.

Archimedes

Archimedes was undeniably one of the most astounding humans of antiquity.
Not only was he one of the foremost mathematicians to appear on the human
scene, he was also so much more. An engineer and inventor, whose inventions
serving military needs (if not of conquest and domination but of defense) became
legendary. More peaceful inventions such as the screw to pump up water are
still used today. He was the first to put down principles of mechanics, especially
those pertaining to the lever (famous are his words: ’Give me a fixed point
and I will move the Earth’), and hydrodynamics, especially what is now known
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as the law of Archimedes (the story of his solution, running naked in the city,
shouting ’Eureka’, are known to most of us.) What is noteworthy is that in
his presentation of those results he tried to follow the deductive style of Euclid,
by first presenting some general simple principles, out of which the final results
are derived by deductive thinking. As with all such ambitions the result is a
transparent presentation which can be critizied. It is also noteworthy that he
found no need to draw a line between the science of space - geometry, and that
of physics. Indeed what distinguishes mechanics from geometry. In the latter
we are studying something static, in which time does not enter, in the former
something dynamic, in which precise movement are essential. However, it is
noteworthy that the intuition that is required is quite different in mechanics, as
compared to geometry, in the latter, the visual one seems to be enough, while
in mechanics some kind of muscular intuition apparently enters. The ambition
to present physics in the style of Euclid would prevail, and Newton’s Principia
is written in that style. It bespeaks an intention to master the physical world
through deductive thinking anchored in a few strategically chosen empirical
facts, and to extract some simple principles. It is no doubt the feasibility of this,
which can explain the spectacular success of the physical sciences, to which we
will return later. Let us just observe that the ultimate synthesis of geometry
with physics was achieved by the Relativity theory of Einstein.

Archimedes was born in Syracuse, a Greek settlement on Sicily in 287 B.C.,
he was educated in Alexandria but did return to Syracuse. That settlement
was attacked by the Romans, during which he had the opportunity to show off
the skills of a military engineer, to which we have already alluded. The Greek
could not withstand the superiority of the Roman attackers, and supposedly
Archimedes perished in the aftermath - 212 B.C. According to legend1, he was
attacked and killed by a Roman soldier, admonishing him not to disturb the
circles he had traced in the dust. Whether the story is true or not, is of less
importance, than what it adds to his legend. Mathematical contemplation is
seen as something transcending quotidian affairs, even those engaging a victo-
rious army. We can only hope that the distraught commander of the Roman
troops, had this hot- and thick-headed soldier executed for his transgression.
Archimedes was clearly worth his weight in gold, to anyone considering a se-
rious military venture. It should, however, be stressed, that admired as those
inventions were of the general public, Archimedes himself disdained them, as
being mere diversions. Pure mathematics was his metier and great love.

Now striking as his more practical achievments may be, we should concen-
trate on his mathematical work. The method of exhaustion was already em-
ployed by Euclid, and hence there is good reason to suspect that it was known
before him. In the hand of a master, such as Archimedes, it was employed to
perfection. However, each use required great ingenuity, and Archimedes did
not develop a more systematic tool, as did Newton and Leibniz nearly two-
thousand years later, which would allow lesser men and women to routinely
achieve results, which would have baffled an Archimedes. There has been no
lack of speculations as to how close Archimedes actually was to achieving such
a theory, and also some daring suggestions to the effect that had such a method
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been made available, the course of human development would have been ad-
vanced by two millenia. Personally I find such suggestions somewhat naive and
simplistic, but anyone is entitled to their opinions on the matter. It certainly
puts mathematics and mathematical progress in an exalted position.

Remarkable as the results of Archimedes may have been, given the time at
which he achieved them, what is more remarkable and enduring is the ingenu-
ity he displayed, invoking not only geometrical arguments but also dynamical,
mechanical ones, giving witness to a fertile imagination ranging freely over dis-
ciplines.

The most basic one concerns the comparison of areas and volumes of a sphere
and that of a circumscribed cylinder, which so excited him that he reportedly
wished to have the accompanying figure on his tomb2 This result is now eas-
ily proved by any first year student of calculus, at the time maybe only an
Archimedes might have been able to find it.

The works of Archimedes

To get an idea of the range and productivity of this great sage, let us include a
table of contents to his works.

• Arithmetics Measurement of a Circle, Sandrecogner

• Mechanical construction of curves The problem of νǫνσιζ

• Cubic Equations (by means of intersection of conics)

• Volumes and areas of various geometric figures (parts of spheres, parabolids,
spirals

• On the Sphere and Cylinder

• Measurement of a circle (3 10

71
< π < 3 1

7
)

• Conoids and Spheroids

• On spirals

• On the Equilibrium of planes

• The Sand-reckoner

• Quadrature of the Parabola

• On Floating Bodies

• Book of Lemmas

• The Method
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As an illustration of his style we will consider in some detail his derivation of
the area of a parabolic segment.

Consider the figure below.
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We have a parabolic arc ABC where B is chosen such that the area of the
triangle is maximal. This is easily seen to be the case if the tangent at B is
parallel to the linear segment AC. Now form the triangle ACF by taking the
tanget at C and the diameter through A. (By the diameter of a parabola is
meant any line parallel to its axis3). Now form the line through C and B which
will intersetct AF at K. Extend the line to H such that the length of CK is
equal to KH, and think of it as a lever with its fulcrum at K. Now for any point
P on the parabolic arc, think of the linesegment OP made up of the diameter
through P , and move it to O′, P ′. Now it is a property of the parabola that
we have the proportions KH : KN and OM : OP are equal (or if you prefer
(HK)(OP ) = (KN)(OM)). This can be interpreted as that the weight of the
segment O′P ′ exactly balances the weight of OM placed at N . Doing it for
all the points P on the arc, we are in effect moving the parabolic segment as a
weight to H balancing the entire triangle ACF . Now the latter can be replaced
by having all its weight moved to the center of gravity X on the line. (We need
to observe that the line CK is a median, i.e. KF = KA). As X is placed one
third along the line KC counted from K we conclude that the weight, i.e. the
area of the triangle ACF is three times that of the parabolic segment. Now the
area of the triangle ABC is half of that of ACK (they have the same base AC
while the height of one is half of the other), while that of ACK is obviously half
of ACF . Thus the area of the parabolic segment is 4/3 of the triangle.

Now Archimedes did not think of this as a proof, only a so called heuristic
method of getting to the proof. The remarkable thing is the mechanical imag-
ination entering the picture. Why did he not think of it as a rigorous proof?
Obviously he thought of those figures as made up of line segment. To get the
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area we only needed to add up all the lengths of the segments, which we could
think of as weights as well, getting the weights of the areas. (As they are going
to be compared it does not matter what exchange rate we use). But as the areas
of the lines are zero, how could they add up? or if there is an infinite number
of line segments what do we mean by adding them up? That the argument
is fallacious is easy to see, given any two rectangles with the same height, but
different bases, they would be shown to have the same area, as we can easily
get a 1-1 correspondence between segments of equal height.

Could we make Archimedes argument rigorous?
Archimedes indicated another way.

C

D

B

A

E

F

Let AC be a chord of a parabola. It determines
a parabolc segment, whose area we want to com-
pute, or rather to compare with that of a simpler
figure. For that purpose let DB be a diameter of the
parabola bisecting all chords parallel to AC 4. Then
form a parallelogram ACEF by letting BF and BE
be the length of DA(= DC). Clearly the triangle
ACB has half the area A of the parallelogram. Now
we can proceed to do the same construction on the
chords BC and BA
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The thing to note is that the length of the segment
B′D′ is just one fourth of the length of BD, this
being a characteristic property of the parabola. This
means that the area of the triangle CBB′ is one
quarter of the triangle CDB. The same thing will
of course be true on the other side. Hence the areas
of the two triangles we add will be one fourth of the
area of the original triangle CBA. Thus if we denote
the latter area by ∆ we are going to sum the infinite
geometric sum

∆+
1

4
∆ +

1

42
∆+

1

43
∆ . . .

which gives 1

1−
1
4

∆ = 4

3
∆. But Archimedes would not be so rash. He would note

that in a geometric series with ratio 1

4
we would have the identity

∆ +
1

4
∆ + . . .+

1

4n
∆+

1

3

1

4n
∆ =

4

3
∆

5 in other words an exact error term at the end being a third of the last term
δn = 1

4n
∆. He would then argue that if the area A of the segment satisfy

A > (4/3)∆ then we could find a finite sum of triangles whose area S would
satisfy A > S > 4

3
∆, because the triangles exhaust the area of the segment.

Being finite means that for some n we would have S+ 1

3
δn = 4

3
∆ hence S < 4

3
∆

which gives a contradiction. Similarly if A < (4/3)∆ we can look at the number
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4

3
∆ − A > 0. As the numbers δn can be arbitrarily small6 we can find n

such that 4

3
∆ − A > δn. We can then find a finite sum of triangles such as

∆ + 1

4
∆ + . . . + 1

3
δn = 4

3
∆ hence A < ∆ + . . . δn which is absurd as it would

imply that the segment is contained in a finite number of triangles. Of course
what Archimedes does is to derive the limit of an infinite geometric series in a
very careful way, making precise by the geometric problem what is supposed to
be meant by such an infinite sum.

Astronomy and Spherical Geometry and Trigonometry

Our field of vision is the sphere. The sphere parametrizes all directions em-
anating from a point. Thus the spherical geometry is the one with which we
are most intimate. This may appear as a paradoxical fact. First we can ex-
perience the sphere in two different ways. Usually we think of it as embedded
in 3-dimensional space as a ball we can touch. The great circles, which are
intersections of the sphere with planes through the center and play the role of
lines, are obviously no straight lines but curved. We can only see half of the
sphere, and a large part of that in strong distortion, but we can of course turn
the sphere around and get a feeling for it. This is typical for our instinctive
knowledge of Euclidean through our ability to move around and touch things.
Thus our spatial sense is an integration of many senses, not only the visual. The
Earth (which of course is not a perfect sphere, neither locally (uneven terrain)
nor globally (an ellipsoid), but that is of minor concern for our present pur-
poses) we cannot literally turn around, but we can imagine it, and we certainly
can move around it. But secondly we can also experience a sphere from the
inside, which makes it very different. The most tangible manifestation of it is
the starry vault above us. Great circles are no longer curved but straight lines,
being the intersection of planes through the eye, as being in the center. The
celestial sphere is only accessible to us by sight, not by touch, and could be,
for all what we know infinitelt distant to us. Thus the Greeks knew about two
geometries, the flat on earth (although of course Greek culture was well aware
that the earth was ’round’) in which we can move around and touch, and which
is extended to a flat 3-dimensional space, although our vertical movement is
somewhat hampered, and the spherical celestial. The latter can of course be
modelled in flat three-dimensional space, and was thus thought of something
ultimately reducible to flat three-dimensional geometry. But as noted, the ce-
lestial sphere does not need to be embedded as a sphere in space, if so, the
natural question is what lies beyond it, but can be seen more abstractly as the
space of all directions and situated beyond all points in space, thus at infinity.
It is not clear that the Greek did make this possibility explicit.

The Greeks did realize at an early stage that the Earth was not flat, some-
thing manifested by the different positions of the horizon visavi the celestial
sphere. From this they concluded that the Earth was a sphere, this being the
most perfect solid. Thus the spherical nature of the celestial vault led to the
spherical form of the Earth. But they did not draw the conclusion that the
Earth rotated, that contradicted common sense. They had no understanding of
inertia and imagined that if this was the case there would be a strong from west
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to east, which would be the case would the universe be filled with stationary
air.

The movement of the fixed stars was easy enough, but that of the Sun and
the Moon and the ’wandering stars’, the so called planets with their at times
retrograde motion was something quite different. Already Plato proposed as
a research projects to give a mathematical explanation, not necessarily physi-
cally supported, to ’save the appearences’, meaning to give a model. To do so
they were hampered by the ideological commitment that movements had to be
circular, the most perfect of all movements. As straightfoward models did not
confirm with observations, of which there were long series stemming from the
Babylonians, this had to be modified, by what eventually would be intricate
systems of epi-cycles. Thus astronomy provided an intriguing blend of pure
mathematics and empirical observation.

One problem that confronts the astronomer is to have a way of assigning
positions of the celestial objects, and the solution is the use of spherical coor-
dinates which thus has a long history of a couple of thousand years, and thus
predates so called Cartesian coordinates. The simplest thing is of course to look
locally at the hemi-sphere above us, bounded by the great circle of the horizon.
Two natural measurements present themselves. One is the altitude of the object
above the horizon, the other is its direction. The first is godgiven so to speak
as we have the horizon as the reference, for the second you need to fix a point
on the horizon. In principle there is no canonical choice, however, due to the
rotation of the celestial sphere (from a mathematical point of view it does not
make any difference in the context) there is a natural plane going through the
axis and perpendicular to the horizon (except at the poles of course). It cuts
the horizon in two antipodal points, North and South. Which one to take as a
reference is a matter of choice. Note that it takes some effort to locate the line.
During historical time there has been a fairly bright star close to the north pole
- the Polar Star7 which would have made it easier. Length on the sphere are
measured by angles. Those measures have nothing to do with scaling and the
units to be used intrinsic to the sphere, and having nothing to do with arbitary
units of measurement, as in flat Euclidean space, but refer to fractions of cir-
cles, or if you prefer great circles on the sphere8. Now the positions of the fixed
stars move during the night, to get a more invariant position, we need invariant
references, such as the celestial equator.
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To find a point of references on it, one uses the fact that there is another
important great circle on the celestial sphere, namely the ecliptic, traced by the
movement of the sun. The ecliptic cuts the celestial equator in two antipodal
point, corresponding to the equinoxes. The one corresponding to the vernal
equinox is taken as the point of reference. The (signed) distance to the equator
is referred to as the declination, and the distance to the reference point as the
right ascension counting counter clockwise (positive direction), while the sky
rotates in the opposite direction (from east to west when facing south). The
sun moves in the the same positive direction (i.e. opposite to that of the sphere)
thus the time between two culminations (facing due south) is somewhat longer
than 23h 56m, in fact about 1/360 of 24 hours meaning about 4 minutes hence
24 hours9.

ε

Equator

Ecliptic

The celestial equator is given by the plane
of the equator of the Earth, hence the plane
perpendicular to the axis of rotation, while
the ecliptic is given by the plane of the or-
bit of the Earth. The inclination (ǫ) of the
two relative to each other is rather easy to
measure, one checks the difference between
the altitude of the sun when it culminates
in the south on midwinter and midsum-
mer, and it varies slightly. It is roughly
23.5o. More remarkeble though is that the
rotating axis of the Earth is not fixed. It
performs a slow circular movement around
the poles of the ecliptic in about 26’000
years. This amounts to about 50′′ a year,
too little to detect by crude instruments
over a year, but the Greeks (Hipparchos)
were nevertheless able to do so over long
intervals of observations10. Another irreg-
ularity discovered by the Greeks was that

the lengths of the seasons are not the same, which would have been the case if
the movement of the Sun along the ecliptic had been uniform. The solution was
to put the Earth not quite at the center of the orbit of the Sun.

Anyway the situation gave rise to purely mathematical problems having to do
with rotations of spheres with respect to each other, which had to do with both
spherical geometry as well as with trigonometry, but first (plane) trigonometry
had to be developed.
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Ptolemy took as his basic definition the length of
a chord given by a certain angle. He also normal-
ized the radius of the circle to 60. Thus in modern
notation he introduced chord(α) = 120 sin α

2
. In

order to get systematic tables you needed to ob-
tain addition formulas. For this purpose the fol-
lowing classical theorem comes in handy. Given a
quadrilateral inscribed in a circle, denote its ver-
tices by A,B,C,D. Denoting the length of a seg-
ment given by X and Y with XY we have the
following identity

AC ·BD = AB · CD +AD ·BC

Which can be translated into the modern addi-
tion formulas for sine and cosine11. Further more
Ptolemy knew how to find the chord of half an
angle by solving a quadratic equation, so one sees
here the practical value of such exercises, but of
course for it to be applied it has to be translated
into numerical values

Furthermore Ptolemy knew from the Greek tradition how to construct a
regular pentagon12, in particular how to compute the chord of 72o and thus
that of 12o as the chord of 60o is elementary. By halfing we get to 6o, 3o and
1 1

2

o
degree. Ptolemy would like to go down to 1

2

o
but he considered the trisection

of an angle impossible and resorted to an approximation based on the fact that
if α < β then chord(β) : chord(α) < β : α. Comparing with 3

4

o
and 3

2

o
he

was able to bracket the value of chord(1o) and then proceed. In the end he
produced a table of chords at 1

2

o
intervals, presented in sexigesimal notation

inherited from the Babylonians, hence in fact using the positional system. To
put this in a tabular form shows the gradual increase of the values in front of
your eyes and you are invited to numerically interpolate between values. For
the aid of this Ptolemy provided the thirtieth of each increase to enable a quick
computation of additional minutes to the degree. Such a tabular presentation
with quick possibilities of interpolation would be in use for serious computations
well into the 20th century. Ptolemy was not afraid of getting his hands dirty,
he had to in order to achieve his objectives.

Once numerical plane trigonometry was in place one could tackle spherical
geometry and trigonometry. This was part of astronomers tools until the mid-
dle of the 20th century although not part of regular mathematical instruction.
Spherical geometry can be reduced to three-dimensional euclidean geometry,
and hence their theorems can be rediscovered. One typical problem is to find
out the declination of the sun at a specific time of the year.
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Thus given γ (the longitude of the sun in the eclip-
tic system, equal to zero at the vernal equinox) and
the inclination ǫ to figure out the angle δ. We see
that the length of AB is sin γ and hence we have
that sin δ = sin γ sin ǫ. This is a theorem in spher-
ical trigonometry. To see the larger context, con-
sider a triangle with sides a, b, c and opposite angles
A,B,C. Computing the height h we can express
it as either a sinB = b sinA or sinA

sinB
= a

b
. Thus

sinA

sinC
= a

c
and sinC

sinB
= c

b
. In spherical geometry we

have sinA

sinB
= sin a

sin b
instead. If one of the angles, say

B is a right angle this simplifies to sinA = sin a sin b
as in our case.

Other examples are given when you more gen-
erally want to convert to one coordinate system to
another, especially to the one based on the hori-
zon. When the declination is positive means that
the object is above the horizon and hence in prin-
ciple visible. An object on the sky moves around
a circle centered at the poles, from where it intere-
sect the horizon (if ever) you can compute how long
it will be above the horizon and hence when it will
rise and set. Thus we see that astronomy gives rise
to purely mathematical problems, which the Greek
could solve.

However the most impressive was the ’saving of
appearances’ in the words of Plato. To give a math-
ematical model to predict the motions of the planets
(and the Moon). Ptolmey was able to do this with
an extremely elaborate system of epicycles upon epicy-
cles giving a quite good approximation. As it turned
out to be a dead end is quite another thing, Coper-
nicus, Kepler and Newton affected a total revolution
and launched us into the scientific age.

But the general approach of Ptolemy is by no means dead, in fact it provides
rather the rule than exception when it comes to quotidian scientific research,
providing mathematical models which are fine turned in order to conform better
and better with observation. As far as ingenuity, patience and perserverance
are concerned the achievment by Ptolemy is indeed very remarkable.
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Notes

1There are many variations on the theme, the one presented here is the most elaborated
from a literary and dramatic point of view.

2It is reported that some notable Roman citizen, (in fact by Cicero) actually stumbled over
the grave of Archimedes, which by then was in decay. Cicero saw to it that the neglect was
discontinued and the monument restored.

3In more modern parlance, a parabola is a conic tangent to the line at infinity. The
diameters will then be the lines emenating from that point.

4The parabola will have the property that given any set of parallels chords, their midpoints
will lie on a line, in fact a diameter. From this we conclude that the tangenmt at B is in fact
parallel to AC. This fact is trivial to prove by the techniques of so called analytic geometry.
Consider lines with slopes k intersecting the parabola y = x2. The solutions x1, x2 to the
quadric x2 = kx + h will satisfy x1+x2

2
= k/2 thus the the midpoints of intersection points

will lie on the vertical line x = k/2.

5How do you get such a result? Recall how you sum 1+ a+ a2 + . . . an. Set the sum equal
to S and we get the identity 1+aS = S+an+1 and solve for S (which works out if a 6= 1 and
from this you get the finite formula above. (Note this trick is what you do when you compute
the sum of a periodic decimal, but then applied to an infinite sequence with no tail.) But
Archimedes may have proved it directly. Observe that 1

4n
∆ + 1

3
1
4n

∆ = 1
3

1
4n−1 ∆ and start

from the identity ∆ + 1
3
∆ = 4

3
∆ and replace the final term on the left with 1

4
∆+ 1

3
1
4
∆ and

proceed inductively.

6If 1 > r > 0 we want to show that rn → 0. Argue that rn > r0 > 0 and look at
the numbers 1

rn
r0 we need to show that those go to infinity, assuming that we can find

a largest such number less than all rn and rename it r0. Then we have for some n that
0 < r0 < rn < 1

r
r0 from which follows that rn+1 < r0 a contradiction. In modern matehatics

we would argue that any subset of reals bounded from below has a biggest upperbound, which
we would choose as r0 this would lead to the conclusion. In the same way if 1

rn
is bounded

above there would be a smallest number bounding them. Archimedes might instead have
argued that 1

r
r0 − r0 = δ > 0 and hence that 1

rn+1
r0 − 1

rn
r0 > δ, thus the sequence steps

up by at least δ at each step. We now take as an axiom of the reals, referred to as the
Archimedan axiom, that for any δ > 0 no matter how small nδ tends to infinity, i.e. can be
made arbitrarily large. Thus in particular no infintesimals.

7Actually the Polar Star is getting closer and closer to the North Pole, it will reach its
closest around 2100 A.D. At the moment it is 40 minutes from the pole.

8To speak about the Moon as large as a six-pence does not make much sense, you need to
specify at which distance it is observed at. As a rule of thumb, a coin one centimeter across
held at armlength (60 cm) extends one degree. The convention of dividing the sphere into 360
parts goes back to the Babylonians, who using the sextigesmal system, furthermore divided
the degree in 60 minutes, and the minute in 60 seconds, conventions still used in astronomy.
One explanation of the choice of 360 is that it is fairly close to the nunber of days in a year,
and thus the movement of the sun against the fixed stars is roughly 1o a day. There is some
additional confusion as the Babylonians also divided the horizon, or thus any other great circle
of reference in 24 hours, each subdivided in minutes and seconds.

9The sun is not a very good clock, only at the average does it keep a 24 hour interval, the
deviations are known as the equation of time. Although the diurnal errors are small over the
months it can accumulated to around twenty minutes.

10The positions of stars are recored with respect to the equatorial axis, dismissing their
proper motions, which at most amount to some seconds a year, those positions systematically
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shift, and every 50 years new coordinates are published. This is the reason why the positions
of stars change visavi the pole, and that only a certain times in history there is a bright star
close to the pole. The southern hemisphere does not at the moment have a polar star of any
significant brightness

11 We find AB = chord(α), BC = chord(β), CD = chord(180 − (α + β)), DA = 120, AC =
chord(α+ β), BD = chord(180− α).

α
β

A

B

C

D

This leads to the formula

chord(α + β)chord(180 − α) = chord(α)chord(180 − (α + β)) + 120chord(β)

Set γ = α+ β and hence β = γ − α and rearrange the formula above to

chord(γ − α) =
1

120
(chord(γ)chord(180 − α) − chord(α)chord(180 − γ))

which is, if in disguise, a familiar addition formula for trigonometric func-
tions. The factor of 60 chosen by Ptolemy for the convenience of the nu-
merical values turns out from a mathematical point of view to be a bit
cumbersome.

In particular setting α = −γ we obtain as chord(180−γ) = chord(180+γ) and chord(γ) =

60
chord(2γ)

chord(180−γ)
and as chord2(180 − γ) + chord2(γ) = (120)2 we can compute the chords of

half-angles inductively.

12This is a striking construction to be found in the Elements of Euclid. From the modern
perspective it is a question of constructing the complex number z such that z5 = 1 and z 6= 1
(i.e. a primitive fifth-root of unity.) This amounts to solving the equation z4+z3+z2+z+1 =
0. Divide by z2 and obtain z2 + z + 1 + 1

z
+ 1

z2
= 0, set w = z + 1

z
and we translate into

the quadratic equation w2 +w− 1 solving the quadratic equation gives you actually the roots
2 cos 2π

5
, 2 cos 4π

5
or 1

2
(1 ±

√
5) and to get the corresponding sines you need to take further

square roots.
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