
Fifth Lecture

Renaissance Mathematics

Why was there such an upswing during the 15th century? An upswing usu-
ally referred to as the Renaissance. One date that is often quoted is that of
1453 when the Turks conquered Constantinople. During the Crusades West-
ern Europe had come in contact with the East Roman Empire, known as the
Byzantine, and the contacts had not always been benign. Constantiople was
cruelly sacked by crusaders in X, but with the advent of the Turkish invasion,
there were common military interests with the Byzantines. Acquaintance with
Greek culture were much older, but during the Medieval times this was mostly
relayed through Arabic, with the expulsion of Greek scholars, there was an exo-
dus to the West bringing with them a lot of manuscripts, enabling a more direct
contact with Greek civilization. But of course the ground was already been laid.

During late Medieval times Italy was very active. Internally through a lot of
civil strife, the peninsula divided into many city-states (reminiscent of classical
Greece), externally there was a lot of trade, the peninsula having a strategic
position. This generated wealth and leisure and an upswing in the arts. There
was a great demand for artisans, artists who could not only paint pictures but
also plan fortifications and construct buildings. There was a lot of demand
for engineering. This required practical knowledge of the kind not available
in ancient documents. It also was pragmatic, what worked and how, not so
much why, was the overriding question. This paved way for a more empirical
approach. On the other hand theory was important, nothing as practical as a
good theory, and here mathematics came into its own. Plato was rediscovered,
and to Plato mathematics played a more important role than it did for Aristotle.
In a way God became identified with mathematics. God created nature through
mathematics, and by studying mathematics one was extolling God. It also made
the study of nature more quantitative, and here we may see if we want a return to
Pythagoras. Religion and mathematics in a sense fused. Mathematics was seen
as the secure knowledge, something that the axiomatic presentation of Euclid
certainly contributed to. In this way one could escape the strictures of dogma,
while still paying lipservice to it. The Renaissance was a forerunner of the
Enlightenment, or perhaps rather the Enlightenment was a logical consequence
of the Renaissance as the latter gained momentum.

Concomitant with this study of nature there was a desire not only to un-
derstand nature, but to control it for the purposes of the well-being of man. In
other words rather than to submit to the whims of nature man should domi-
nate it. The man more responsible for that view than anyone else is Francis
Bacon, and his vision very much permeates modern science. In particular he
proposed that useful knowledge could be produced more or less automatically
on an industrial scale provided one only knew how to read the book of nature
properly. In other words everyone could be taught to observe and draw the right
conclusions. This is a view which is very much in accordance with the popular
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view of science, to say nothing of the view shared by politicians. Science is a
method that requires of its practitioners scrupulous objectivity and adherence
to impeccable scientific standards, whatever is meant by those. It also reflects
an almost unbounded optimism, to some extent serving as an inspiration to this
day, that with the scientific attitude, no problem will remain insoluble and that
it will continue to serve the wellbeing of mankind. In other words science is like
a tap, you just turn it and water will flow to your content.

The Artist as Scientist

As noted the Artist was expected to be a jack of all trades, not only adept
at painting and drawing, but also active as an engineer, an inventor and con-
structor, an architect, and what not. Thus Leonardo da Vinci was in no way
exceptional as a phenomenon, only that he was so much superior to anyone else
in his multi-disciplinary ambition. The age of specialization was to come later.
Nowadays our view of artists is almost antipodal to that of scientists. While
the latter are expected to be objective and to devote themselves to the practical
problems of mankind, the artist stands apart, more dedicated to expressing his
own subjective feelings than to address the material welfare of his fellow man.

An overriding concern was the study of nature, in particular its faithful de-
piction on a flat canvas of a 3-dimensional reality. The later was almost a purely
mathematical problem, resulting in the so called laws of perspective. That prob-
lem was solved during the 14th and 15th century and needless to say da Vinci
mastered it. But that was not enough to solve the problem of so called mimesis,
to properly paint a human body you have to ’understand’ it. It is not enough to
make superficial observations, you need to acquire anatomical knowledge. Da
Vinci did, and not only that, to paint a tree you need to understand how it is
built up, and da Vinci observed that when a tree forks the sum of the surface
areas of the sections of the branches equal that of the section of the original
stem. Da Vinci made drawings, and a drawing differ essentially from a photo-
graph, as a drawing is a report on an observational inquiry, not a mechanical
reproduction, it involves not just registration but active interpretation. Thus
the salient features are emphasized.

The principle of perspective is very simple. We are given a point O (the eye
of the artist) and a plane Π (the canvas) and to every point P we draw the line
OP which will intersect the plane in a point P ′, thus we get a correspondence
between points in space and points in the plane. The image of a line L will be
the intersection of the planes LO and Π, and given two parallel lines L,L′ they
will give rise to two non-parallel planes LO,L′O (as they have at least the point
O in common) which will intersect in a line l which typically will intersect Π in
a point p, thus on the image parallel lines meet. Now consider the flat ground
which typically is a plane F perpendicular to the canvas. An interesting plane
H will be the plane parallel to F and passing through O. It will meet Π in a
line h which will be denoted the horizon. It disconnects the canvas in two parts.
Points on F will be mapped below the horizon, and more generally any point
belowH i.e. of height above F less than O. Points aboveH will then be mapped
’against the sky’. The further away a point on F is the closer it will be mapped
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to the horizon. No point on the horizon will, however, correspond to any point
on F . One says that they correspond to points infinitely far away. Here we have
the embryon of projective geometry which developed out of perspectives.

O

P 

P’

Now in modern algebraic representation in terms of coordinates, the whole
thing can be easily described and explained. If O is given at (a, b, h) and Π by say
y = c and P by (x, y, z) it is straightforward to find the line OP and compute the
image of (x, y, z) as the intersection of the line with Π. The principle becomes
transparent when reduced to the essentials as in the figure below.

Note that x′ = d
D
x. Thus when D

increases with x fixed we have that x′

decreases. Things farther away looks
smaller. If the eye is far away from
the canvas but the objects are not (i.e.
d is large compared to D − d) there
will be a very modest foreshortening
effect and the picture will look rather
flat (the tele lens effect). On the other
hand if d is small, the effects will be
exaggerated (the wide-angle effect).

O

P

P’x

x’

d

D

So let us look at a checkered board.
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Celestial predictions

The prediction of the movement of celestial bodies has been a common theme
through human civilization. This is one reason why spherical geometry was
conceived and spherical trigonometry developed before plane trigonometry. As
noted, spherical geometry is more basic than the plane Euclidean, as this is the
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one we have an intimate relation to through our visual sphere. It had many
important applications, such as navigation and keeping calenders. Also, even
more so, it had momentous applications to the fates of humans, a science known
as astrology, and which was predominant during the late Middle Ages. (It went
against the creed of Christianity, but that does not seem to have hampered its
popularity. It touches on deep needs of the human psyche, which now seem to
be supplanted by genetic determination.)

The most accurate preditions were provided by Ptolemy’s system of epi-
cycles. Its basic assumptions were that celestial bodies moved in circles with
constant angular velocity. But one circular movement was not enough to predict
the movement of a body, you needed many circular movements superimposed on
each other. In the end Ptolemy presented an elaborate system of close to eighty
circles. He was well aware that his stratagem was, what we now would call a
mathematical model, a scheme intended for calculation, not necessarily with any
literal ontological interpretation. In order to adjust his scheme to observation
he showed great ingenuity. By not compromising on his basic assumptions, he
showed great flexibility as to how to center the various epi-circles. His approach
is very modern, most of so called scientific fine-tuning of mathematical models
consist in such tinkering. When it comes to predicting positions on the celestial
sphere of bodies, it is fully adequate, higher and higher precision is achieved by
adding more and moreepi-cycles. One should also be impressed by the consum-
mate skills that went into such models, involving lot of calculations and visual
imagination.

Copernicus simplified Ptolemy by putting the sun in the center with an earth
revolving around its axis as well as around the sun. As a mathematical model
there was little to object to, on the contrary it gave as accurate predictions and
in a simpler way to boot. What was problematic was the ontology of it. It
had striking counter-intuitive consequences. If the Earth was rotating at such
speed, how come we were not thrown off? And if the Earth rotated around the
sun, how come we noted no parallax? Francis Bacon rejected the hypothesis
as absurd in obvious contradiction to the senses. And mind you the world of
the senses is the world of which we have the most intimate connection, while
theories are just born out of our imagination. This is called an instrumental
point of view and had its early proponents in the Middle Ages, such as Occam
with his proverbial razor, and is still very much in vogue, especially among the
so called Post-Modernists. Thus the Copernican point of view had consequences
well beyond the technical problem of positional prediction.

Mathematical Advances

The Renaissance involved foremost a discovery of nature and thus an extroverted
’Weltanschaung’ in repudation of the Classical Christian one of salvation in a
next world. It created an important niche for the role of mathematics, but by
itself it did not immediately involve any spectacular development of mathemat-
ics as a science. One, however, merits special attention, and that is the solution
of the third and fourth degree equation concomitant with the advancement of
algebraic notation.
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Cardano and the solution of the third and fourth degree equations

Tartaglia, Cardano, Ferrari and Bombelli are the main names connected
with the explicit formulas for finding the roots. Of those Cardano was the most
colorful and flamboyant character and the one making the deepest impression
on posterity. The so called Cardanos formulas was supposedly given to him
by Tartaglia under oath of secrecy, but Cardano decieved him and had them
published under his name anyway. The procedure may be thought of morally
reprehensible but as is not unusual in those cases, highly successful. To un-
derstand what is going on let us consider the quadratic equation known to the
Babylonians. The key to its solution is the completion of the square, this is
an idea that immediately gives the solution, and it is important to realize that
this is not the same thing as giving a formula for the solution. A formula is
indeed a neat thing, as we will see, but not necessary. The Babylonians had no
formula for the solution only a strategy. The strategy can be clothed in words
and be applied to each particular case. A formula, rightly understood, is just
an encoding of the strategy, and to understand it, it is not enough to learn it
mechanically but to learn the strategy behind. From a modern point of view
what is important about an equation is not its solutions per se, but the linear
space generated by its solution. If the equation is irreducible the dimension of
this linear space is given by the degree of the equation. This linear space defines
a field, and every equation thus defines a unique field, but conversely every field
defines many equations, and the point is to find some kind of canonical one. In
the case of quadratic equations, a natural equation is of the type x2 = d. Given

a general equation x2+ax+b we can write it as (x+ a
2 )

2+b− a2

4 = 0 and setting

y = x+ a
2 we reduce it to y2 = D where D = a2−4b

4 . Another way of looking at
it is to consider the trace of elements in the field. The trace is a linear function
and its value on a constant k is 2k and in general it is given by −a if x satifies
x2 + ax+ b = 0. Thus if the trace is −a of x it will be 0 for y = x+ a

2 and thus
y will satisfy an equation of type y2 = D. Now for those equations we give the
solutions y = ±

√
D but this does not in any way make any real progress, it is

just a short form of saying y2 = D (where
√
D is the positive root). In order to

get a numerical value we need successive approximations, something which had
been known for a long time. Now that the trace is in fact a linear function is far
from trivial. If x2i + aixi + bi = 0 are given for i = 1, 2 it is not so easy to show
that x3 = x1+x2 satifies an equation of type x23+(a1+a2)x3+b = 0 for some b.
A modern argument would go something like this. Consider the linear space of
all numbers η = λ+ µx where x is the solution of some quadratic equation. By
construction it is closed under addition, but also because of the special nature
of x it is also closed under multiplication. In particular the map η 7→ xη is a
linear map and can be represented by a two by two matrix. Two such a matrix
we can associate the trace which depends linearly on the matrix. Incidentally
the characteristic equation of the matrix is the same as the qudratic equation
of x. Such an approach would not be available until the 19th century although
it is quite easy and elementary, testifying that even more important than good
terminology are good concepts. We should also note that the expression 4a− b2
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which turns up is very important. It is the discriminant of the equation and
it is equal to zero iff we have a double root, i.e. the quadratic polynomial is a
square. If it is positive then we have two real roots, and if negative two complex
conjugate roots. If it is a square it means that the solution to the equation is to
be found in the given field itself and that the numbers λ + µx is actually one-
dimensional, as the x can be identified with a constant. Thus from the modern
point of view the field of the coefficients of the equation is crucial, and the field
being the smallest field over the rationals containing them. Such distinctions
would not to be clear to the ancients, the notion of a field being unknown to
them. As Gauss noted ’notions’ are more important than ’notations’.

What the ancients wanted to do was to split up the solution of higher order
equations by reducing them to simpler ones like xn = d and thus to give formulas
involving higher roots. As to a cubic equation it could be reduced to the form
x3 + px+ q = 0 although for the Old Italians they were uneasy about negative
numbers so they considered many subcases such as x3+px = q, x3+q = px where
the coefficients were tacitly understood to be numbers i.e. positive. This we
would consider as a psychological hang-up and force them to repeat essentially
identical arguments unnecessarily. Now, the trick of Cardano is to consider
x as a sum x = u + v we then get (u + v)3 = u3 + v3 + 3uv(u + v) now
set 3uv = −p and try to find u, v such that u3 + v3 = −q, if so we get the
identity x3 = −px − q i.e. x3 + px + q = 01. This leads to the problem
of finding two numbers whose sum and product are known which reduces to
a quadratic equation known since classical times. The reason for this is of
course the connection between the roots of a quadratic and its coefficients, clear
through (x− α)(x− β) = x2 − (α+ β)x+ αβ which was not explicitly written
down at the time. Now we have the problem of finding u3, v3 knowing its sum

−q and its product −p3

27 . We thus have to find the solutions of the quadratic

equation x2 + qx − p3

27 = 0. We can write down its solutions by the quadratic
formula (which you can always rediscover every time you complete a square)

giving u3 = − q
2 +

√

27q2+4p3

108 and v3 = − q
2 −

√

27q2+4p3

108 . Now you take the cube

roots of each expression. To do so is only determined upon a cuberoot of 1 of
which there are two in addition to the obvious. And those factors cannot be
chosen arbitrarily as the product uv is fixed. Those things were not perfectly
clear to them, after all the two other cube roots are non real numbers. Anyway
Cardano came up with the formula

x =
3

√

−q
2
+

√

27q2 + 4p3

108
+

3

√

−q
2
−

√

27q2 + 4p3

108

or as he would have put it prefering a numerical example (say p = −6, q =

−40 leading to x =
3
√

20 +
√
392 +

3
√

20−
√
392 )

ℜv : cu.20p : ℜ392p : ℜv : cu20m : ℜ392
where ℜ denotes square root of, while v means that everything that comes

after should be under the domination of the symbol ℜ. The cu means that
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we should take the cube root, while p and m stands for ’+’ and ’-’ respectively.
Now the importat thing to remember is not the formula itself but the procedure.
A formula is easy to forget or remember wrongly, but with a procedure this is
different. However, the formula presents some strange surprises. Crucial to the
formula is the quantity D = ( q2 )

2 + (p3 )
2. This can very well be negative, but

then what will be the meaning of its square root, and how do you take cuberoots
of the − q

2 ±
√
D?

Let us make a short digression on x3 + px + q. The curve y = x3 + px is
a cubic with a local maximum and minimum provided that 3x2 + p = 0 i.e.
when p < 0 the values will be given by y = (x2 + p)x = − 2

3px. If the value
−q lies between those two values, there will be three real roots, otherwise just
one. This is expressed by q2 < 4

9p
2x2 and as x2 = − 1

3p we get the condition
D = ( q2 )

2 + (p3 )
3 < 0. I.e. when we have three real roots the formula does not

make sense, but if manipulated in some formal way, it will in the end give the
right result. This is truly a mystery the type of which often will occur in the
history of mathematics. So the formula is very awkward when applied to the
case of three roots, and how do you get all three roots from the formula? The
trick is of course to look at all three roots of x3 = d meaning prefixing them
with a cuberoot of 1 chosing the inverse (or conjugate for the second).

Let us look at a particular example where we already know the roots, say
(x−1)(x−2)(x+3) = 0 i.e. x3−7x+6 = 0 we get the discriminantD = − 100

27 and

thus we will have to look at cube roots of −3+ 10
3

i√
3
and −3− 10

3
i√
3
respectively.

Those being complex conjugate the sum will be real (also if prefigured with
complex conjugate cube roots of one), but how to compute the actual values?
How do we take cube roots in practice of complex numbers? We put them
into polar forms reiθ and consider

3√
reiψ where ψ = θ

3 + 2πn
3 for n = 0, 1, 2.

Note that 2πn
3 are the cube roots of one. Thus we can as well consider Vieta’s

trigonometric solution of the cubic.
This hinges on the identity cos(3θ) = 4 cos3(θ)− 3 cos(θ) obtained by itera-

tion of the addition formulas for cosine. We are thus considering the equations
4x3−3x = t for |t| ≤ 1 (as t takes values of cosine). Multiply it with 2λ3 and we
can write (2λx)3−3λ2(2λx) = 2tλ3, or if we set y = 2λx simply y3−3λ2y = 2tλ3.
If we have a general equation of the form y3 + py+ q = 0 we see that p < 0 and
we should choose λ such that λ2 = − 1

3p then q = −2tλ3 = 2
3ptλ. In order for

|t| ≤ 1 i.e. t2 ≤ 1 we need q2 = 4
9p

2t2λ2 = − 4
27p

3t2 ≤ − 4
27p

3 thus D ≤ 0.
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Returning to the cubic above we should

choose λ2 = 7
3 and from −6 = 2t 73

√

7
3

we should choose t = −3 3
7

√

3
7 . Set t =

cos θ. The solutions will then be given by

2
√

7
3 cos(

θ+2πn
3 ) for n = 0, 1, 2. An ac-

tual value for θ will then be 147.32 . . .o.
In the figure to the left we see the three
real solutions 1, 2 and −3. Note however
that the value of θ is transcendental and
that we would never be able to get the
exact solutions in this way. In fact the
Cardano formulas turned out to be fairly
useless when it came to find actual nu-
merical values of solutions to cubics and
other strategies would be developed.

The great interest of those formulas were algebraic and were not revealed until
the 19th century.

It may also be of some interest to present Vietas alternative solution to
the cubic. Given the cubic in the standard form y3 + py + q = 0 we make

the substitution y = z − p
3z transforming it into z3 − p3

27z3 + q = 0 which is a

quadratic in z3 given by z6 + qz3 − p3

27 = 0. Then solve it and we regain the
Cardano formulas. The connection should be obvious. If z = u then − p

3z = v

and both of them are solutions to the equation above.
From the modern point of view we have to cases. Either the quadratic

equation X2 + qX − p3

27 = 0 has solutions U, V in the field K generated by p, q,

this happens exactly when the discriminant q2+ 4p3

27 = 4D is a square in K. Or

this is not the case and so the quadratic field L generated by K and
√
D makes

up a 2-dimensional vector space over K. There are many choices of basis, one
is given by 1,

√
D another one by 1, U or even if you prefer U, V . In L we can

find a cubic equation z3 = U and denote one solution by u. Then the field M
generated by L and u is six-dimensional over K and a basis over L will be given
by 1, u, u2 and over K by 1, U, u, uU, u2, u2U or if you prefer 1, u, u2, u3, u4, u5.
There is an automorphism τ of L over K given by u 7→ v(= − p

3u ) which extends
to the whole of M . Now assume that there is a non-trivial cuberoot ρ of 1
in M . Two cases occurs, it could either have been present already in K or

appearing in L. The discriminant of the quadric is given by 4p3+27q2

27 which up
to a square can be written as 1

3 (4p
3 +27q2). In L the discriminant is made into

a square. We have ρ ∈ K iff − 1
3 is a square in K and if so −d = 4p3+27q2 (the

discriminant of the cubic) becomes a square in L. If ρ appears in L means that
− 1

3 is a square in L and hence also −d. If −d is already a square in K then
automatically − 1

3 becomes a square in L and thus ρ ∈ L. Now we can define
σ(u) = ρu and we get an automorphism of order three. If ρ ∈ K already then
σ and τ commute and generate Z6. If ρ appears first in L then τ(ρ) = ρ2 and
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thus τσ(u) = τ(ρu) = ρ2τ(u) = σ2τ(u) and we get the group S3. L is the fixed
field of the cyclic group generated by σ which acts as the automorphisms of the
field extension M over L. In the first case ρ ∈ K we may also take the fixed
field L′ of the group generated by τ , this will be the cubic extension generated
by the root x of x3+px+q andM will be a quadratic extension of L′. Now u, v

do not belong to it and hence will satisfy a quadratic equation over L′ whose
roots will be u, v as τ(u) = v. Thus the trace and determinant will be given
by u + v = x and uv = −p

3 and thus they will satisfy the quadratic equation
Z2 − xZ − p

3 = 0 which is easily checked. Furthermore σ(u) + σ(v)(= ρu+ ρ2v)
and σ2(u)+σ2(v)(= ρ2u+ ρv) will both be invariant under τ and hence belong
to L′ which will then have an automorphism of order 3. In the other case those
two roots will be permuted by τ and hence not belong to L′ they will satisfy a
quadratic equation over that field and their traces will be −(u + v) = −x and
their determinant u2 − uv + v2 = (u+ v)2 − 3uv = x2 + p and thus the quadric
will be given by Z2 + xZ + (x2 + p) = 0. If we compare the two discriminants
we will get ( 4p3 + x2) and −(3x2 + 4p) as they determine the same quadratic
extension M of L′ they have to differ by a square. In fact they differ by a factor
−3 which is indeed a square inM . In this case multiplication by ρ will cyclically
permute L′, ρL′ and ρ2L′ which are not cubic Galois extensions of K.

Let us look at the case K = R. If D > 0 then there is a real solution
3√
d1 +

3√
d2 (where d1, d2 are the roots of the associated quadraric, but the two

other cube roots are not real. On the other hand if D < 0 then L = C and in
particular ρ ∈ L. The roots are then

3
√

ρid1 +
3
√

ρ2id1 for i = 0, 1, 2 and which
are closed under conjugation and hence real.

Ferrari a young pupil of Cardano managed to solve the quartic (or bi-
quadratic) equation by reducing it to a cubic. In modern notation we start
out with

x4 + px2 + qx+ r = 0

where we have gotten rid of the cubic term. Now rewrite it as

(x2 + p)2 = x2 + 2px2 + p2 = px2 − qx+ p2 − r

Now perturb p to p+ y and write

(x2 + p+ y)2 = (p+ 2y)x2 − qx+ (p2 − r + 2py + y2)

Now we want the right hand side to be a square, which means that the discrim-
inant of the quadratic should be a square i.e.

4(p+ 2y)(p2 − r + 2py + y2) = q2

which amounts to solving a cubic in y. Once this is done we are reduced to
solving the equation

A2(x) = B2(x)

where A,B are linear in x, which amounts to solving the two quadratic equations
A+B = 0 and A−B = 0.
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As an illustration let us look at the equation

x4 + 8x− 7 = 0

This leads to the equation

(2y)3 + 28(2y)− 64 = 0

By inspection one root is given by y = 1 the two others will be given by y =
−1±

√
−31

2 . Setting y = 1 we have

(x2 + 1)2 = 2(x− 2)2

which leads to

(x2 + 1 +
√
2(x− 2))(x2 + 1−

√
2(x− 2)) = 0

with the four roots x = −
√
2
2 ±

√

4
√
2−1
2 and x =

√
2
2 ±

√

− 4
√
2+1
2 and

What happens if we instead choose another root say y = 1
2 (−1 +

√
−31)?

We cannot very well get other roots to the quartic, after all there are only four.
But if we get the same answer, what happens to the mysterious

√
−31?

We obtain

(x2 + −1+
√
−31

2 )2 = (−1 +
√
−31)(x2 − 1

4 (−1−
√
−31)x+ (1+

√
−31)2

64

= (−1 +
√
−31)(x+ 1

8 (1 +
√
−31)2

We thus get the quadrics

x2 +
−1 +

√
−31

2
= ±

√

−1 +
√
−31(x+

1

8
(1 +

√
−31)

Those will not be the same as above, but if we combine the roots in an other
way say look at

−
√
2

2
+

√

4
√
2− 1

2
+

√
2

2
+

√

−4
√
2 + 1

2

which simplifies to
√

4
√
2− 1

2
+

√

−4
√
2 + 1

2

square it and we will obtain

−1 + 2

√

4
√
2− 1

2

√

−4
√
2− 1

2
= −1 +

√
1− 32 = −1 +

√
−31

which tallies with the above. That the product of the two roots will as well will
be left to the curious reader.
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