
Ninth Lecture

Gauss - the Prince of Mathematics1

Gauss was born at Brunswick (Braunschweig) in 1777 the son of an uneducated
laborer and his wife, who could hardly read. Early on he showed remarkable
abilities in mathematics. It is said that even at the tender age of three he spotted
his father making a mistake when giving out the renumerations to his staff. At
ten he astonished his teacher Büttner by immediately adding an arithmetic
series2. He then got to be tutored by an older student Barthels, who soon
realized he no longer had anything to contribute. His father had no interest
in furthering the promising career of his son, but was persuaded to allow it to
happen as the duke of Braunschweig took a personal interest in the prodigy and
gave him a stipend to study and in the process Gauss also got quite interested in
classical languages and philology, which he, to the alarm of his father, considered
pursuing, but one thing made him turn to mathematics to which we will return
below. He kept a diary with elliptic, not to say laconic, notes from then on for
twenty years. Mathematically he was extremly productive, ideas rushed into his
head with such force that he only had time to attend to a few, and even those
he did not have time to develop properly and publish, thus he anticipated much
of 19th century mathematics such as the theory of elliptic functions, hyperbolic
geometry, least squares, fast Fourier transform.

Gauss was exceptionally productive and worked in a wide variety of fields,
not only mathematics, but also doing empirical as well as theoretical work in
Astronomy, Geodesy, Magnetism. It is tempting to compare him with Euler,
with whom he shared many characteristics, such as a love and incredible ability
to perform numerical computations as well as an omnivorous taste in all kinds of
mathematics, as well as physics3. But while Euler published almost everything
he wrote, Gauss did not, as noted above, have time for that, famous for his motto
pauca sed matura (few but ripe), he wanted only to present the thoroughly
thought out and polished. When it came to computations it is tempting to
conclude that Euler did it by brute force like a idiot savant, Gauss could never
resist doing it in a clever way finding short-cuts. The difference is telling when
it came to celestial calculations, what took Euler three days and made him blind
in the process, Gauss did in a matter of hours (saving his eye-sight).

As to his personal life, he had no affection for his father Gebhard, whose
honesty and comptence he respected but whose brutality he resented, and thus
was rather relieved than sorry when he died while Gauss was still in his early
thirties. His mother Dorthea (b. Benze) though, who was always very proud of
him and his achievements, lived on in his home until her death at 97 in 1839.
Gauss was married twice and widowed twice and the unions brought three plus
three children of whom five reached adulthood. With one son - Eugene - he
quarreled, referred to him as a ’Taugenicht’ (good for nothing). The son early
on emigrated to America, where he died at the age just short of 85 in 1896, and
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showed some remarkable talents, including a prodigious memory and capacity
for calculating in his head, as well a mastery of many languages including Sioux4.
Another son - Joseph - was of a more docile character and assisted his father in
survey work.

Gauss was not only a swift worker, but also a hard one, unbelievably diligent.
Much of that activity taken up by what we now would consider mindless com-
putations in celestial mechanics and surveys. However, in whatever activity he
found himself, he turned it to good use, literally transforming everything to gold
that he touched. He took a keen interest in designing telescopes (cf. Newton
who made himself his own reflecting telescope) and actually made several very
useful inventions such as the heliotrope very useful for surveying by reflecting
sunlight visible as a bright star for many miles. Another, even more remarkable
invention was the first telegraph in 1833 together with his assistant Weber who
exploited the recent discovery of Ørsted as to the connection between electricity
and magnetism.

Gauss was fond of literature and read in many languages apart from the
Classical ones and his own Native German also in English, French and Danish
and after teaching himself Russian in his sixties adding that language as well to
his reading repertoire. As a teacher he was very demanding and few students
attended his lectures, which he delivered sitting by a table, covered with books,
writing in his small and neat handwriting on a small black board put on a stand.
He did not want his students to take notes as it impaired their attention. His
penetrating gaze out of clear blue eyes was legendary and must have terrified
all but the most intrepid of his students. Eisenstein was his favorite one, but
he died very early and was not to leave the mark he might have been destined
to. Dirichlet and Riemann, both who succeeded him at Göttingen, are his most
famous ones5.

Gauss was by modern standards a bit short 5′1′′ but of stocky muscular
build. Of a hypochondrial temperament his health was nevertheless very robust,
allowing his demaning working schedule; only during the last year of his life,
did his heart start to give up.

The regular 17-gon

As a student Gauss was quite enamoured by classical languages and contem-
plated a career in philology, but just short of turning nineteen he discovered
that the regular 17-gon could be constructed by ruler and compass, meaning
that the cosine for the angle 2π

17 could be obtained by a series of quadratic equa-
tions (three in fact, leading to a formula involving nested square roots up to
three levels). So let us warm up with the regular pentagon the construction of
which was known already to the Greeks.

Using complex numbers we can express its five vertices as the solutions to
the equation z5 − 1. Those can be expressed by e

2πk
5 for k = 0, . . . 4. It has the

obvious solution z = 1 corresponding to k = 0 and factorizing it out the four
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remaining roots satisfy the equation

z4 + z3 + z2 + z + 1 = 0

Now set w = z+ 1
z and note that 1

z = z̄ and hence that w is twice the real part

of z or if z = e
2πk
5 then w = 2 cos 2πk

5 . This obviously holds for any regular
polygon, given by the solutions to zn − 1 = 0. Now divide the equation with
z2 and get z2 + z + 1 + 1

z + 1
z2 = 0, As w2 = z2 + 2 + 1

z2 we can rewrite this

as w2 + w − 1 = 0 which can be solves explicitly as w = −1±
√
5

2 . We note that

for z = e
2πk
5 k = ±1 cosine must be positive but for k = ±2 it has to be

negative. Hence 2 cos 2πk
5 = −1+

√
5

2 for k = ±1 while − 1+
√
5

2 for k = ±2. Thus
the pentagon can be constructed by ruler and compass. Note also that z can be
solved by solving the quadratic equation z2−wz+1 = 0 which will of course have
two conjugate complex roots, the real part given by the cosine and the imaginary
part by the sine of the appropriate angle, after all e

2πk
5 = cos 2πk

5 +i sin 2πk
5 . Note

also that if we double the angle we get a new solution. As cos 2θ = 2 cos2 θ − 1
this translates into w 7→ w2−2 and indeed w+(w2−2) = (w2+w−1)−1 = −1
and w(w2 − 2) = w(w2 + w − 1)− (w2 + w) = −1

Now set ω = e
2πi
17 . This is a 17th root of unity and all the others are given

by ωn for n = 0, 1 . . . 16. Throw away the trivial one n = 0 and the remaining
satisfy the equation

ω16 + · · ·+ 1 = 0

In modern language this is an equation with Galois group Z16 with a generator
T given by ζ 7→ ζ3 for ζ = ωn (n = 1, . . . , 16). In fact if we apply T and its
powers to ω we end up with

ω, ω3, ω9, ω10, ω13, ω5, ω15, ω11, ω16, ω14, ω8, ω7, ω4, ω12, ω2, ω6

Which we can summarize as

[1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6]

note that the sum is −1
Now split this ordered set into two by taking every other element

[1, 9, 13, 15, 16, 8, 4, 2] [3, 10, 5, 11, 14, 7, 12, 6]

Let z1 be the sum of the first eight and z2 the sum of the second eight. Note
that Tz1 = z2 thus z1 + z2 and z1z2 are left invariant by T and hence are
in fact integers. Obviously z1 + z2 = −1 as to z1z2 we get a new sum of ωn

where 1 never appears. As there are 64 terms in the product, and every one
of the sixteen terms ωn (n 6= 0) occurs equally often we see that the sum of
the terms will be −4. Why do the powers of ω appear equally often? This
actually comes form an important meta-principle which lies at the heart of the
whole investigation, namely that of symmetry which provides the clue to all
discussions of polynomial equations (and actually beyond). The piint is that
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this sum is independent of the sixteen possible choices of ω (of course for the
running discussion be fix ideas by sticking to a particular value of ω namely the
one given initially). Thus z1, z2 are the solutions to the quadratic equation

z2 + z − 4 = 0

with solutions −1±
√
17

2 . Which one is z1? Looking at the figure below where

the points of the first sum are dotted black, we see that z1 =
√
17−1
2 and z2 =

−
√
17+1
2 .

Now split up the first sum into two by taking every
other thus getting

[1, 13, 16, 4] [9, 15, 8, 2]

Let the first sum be w1 and the second w2. As w1+
w2 = z1 and w1w2 consists of sixteen distinct terms
we find that w1w2 = −1 hence they are solutions of
the quadratic

z2 − z1z − 1 = 0

with solutions

w =
z1 ±

√

1 +
z2
1

4

2
=

√
17− 1±

√

34− 2
√
17

4

Which one is which?

We see clearly from the picture on the left that we
have w1 > w2 hence

w1 =
√
17−1+

√
34−2

√
17

4

w2 =
√
17−1−

√
34−2

√
17

4

Now we continue the splitting up into two groups
[1, 16] and [13, 4] their sums are given by 2 cos 2π

17
and 2 cos 4·2π

17 respectively and hence totally they
add up to w1, but what about their product?

A direct multiplication yields [3, 5, 14, 12] and to get that sum we need to return
to [3, 10, 5, 11, 14, 7, 12, 6] which adds up to z2. Splitting into halves by taking
every other one we get the sums u1, u2 with u1 + u2 = z2 and as before u1u2 =
−1, hence they are roots to the quadratic equation

z2 − z2z − 1 = 0

with solutions

u =
z2 ±

√

4 + z22
2

=
−
√
17− 1±

√

34 + 2
√
17

4
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To check which one is u1 we look at its dotted points

Seeing that u1 > u2 and hence that u1 = −
√
17−1+

√
34+2

√
17

4
Now we know we have to solve the quadratic

z2 − w1z + u1 = 0

with the solutions x = w1

2 ±
√

−u1 + w2
1

4 plugging
in the values of w1, u1 we obtain

cos
2π

17
= − 1

16
+

√
17

16
+

√

34− 2
√
17

16
+

√

68 + 12
√
17− 16

√

34 + 2
√
17 + 2(

√
17− 1)

√

34− 2
√
17

16

By noting that

√

34− 2
√
17

√

34 + 2
√
17

=

√

17−
√
17

√

17 +
√
17

=
17−

√
17

(
√

17 +
√
17)(

√

17−
√
17)

=
17−

√
17

4
√
17

=

√
17− 1

4

we may rewrite

2(
√
17− 1)

√

34− 2
√
17 =

1

2
(
√
17− 1)2

√

34 + 2
√
17 = (9−

√
17)

√

34 + 2
√
17

while

(9−
√
17)

√

34 + 2
√
17 = 8

√

34 + 2
√
17+(1−

√
17)

√

34 + 2
√
17 = 8

√

34 + 2
√
17−4

√

34 + 2
√
17

from which we can, as Gauss did, derive the more elegant expression.

cos
2π

17
= − 1

16
+

√
17

16
+

√

34− 2
√
17

16
+

√

17 + 3
√
17− 2

√

34 + 2
√
17−

√

34− 2
√
17

8

In fact the whole thing works for any prime of the form Fn = 22
n

+ 1 i.e.
the Fermat primes 3, 5, 17, 257, 65537 6

More generally one may decompose the polynomial zn − 1 in irreducible
factors, the so called cyclotomic polynomials Φd(z) defined inductively by

zn − 1 =
∏

d|n
Φd(z)

. With the exception of Φ1(z) = z−1 they are all palindromic. We may further
note Φ2(z) = z+1,Φ3(z) = z2+z+1,Φ4(z) = z2+1,Φ5(z) = z4+z3+z2+z+
1,Φ6(z) = z2 − z+1. If dn denotes the degree of Φn(z) it satisfies

∑

k|n dk = n

and thus dk = φ(k) where φ(n) is the Eulerfunction of elements 1 ≤ k < n
relatively prime to n.

We may as a final comment look at the regular 7-gon and 9-gon. In the first
case using w = z+ 1

z we transform x6+x5+ · · ·+1 = 0 into w3+w2−2w−1 = 0
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which is the third degree equation we need to solve in order to find cos 2π
7 . In

the second case the cyclotomic polynomial Φ9(z). We can find it either by

dividing z9 + z8 + · · ·+ 1 by Φ3(z) = z2 + z + 1 or by setting ω = e
2π
9 (or any

other primitive 9-th root) and look at its six roots ω, ω2, ω4, ω5, ω7, ω8. Those
are invariant by multiplication by the primitive third roots ω3, ω6 hence Φ6 is
a polynomial in z3, in fact a quadratic such, which can be no other than Φ3

and thus Φ6 = z6 + z3 + 1. Proceeding as before we end up with the cubic
w3 − 3w + 1 = 0.

Disquistiones Arithmeticae

The book was published in the summer of 1801 when Gauss was twenty-four
but was written already three years earlier. It contains the results above and
is a systematic compendium of elementary number theory and its ramifications
and as such it has provided the basics for number theory ever since. More
precisely it starts out with a pedestrian exposition of congruences, introducing
standard notation, including solving linear congruences by the method of con-
tinued fractions, intimately related to the Euclidean algorithm, which goes back
to Euler and Lagrange. Then there is a discussion of powers and two proofs of
Fermat’s little theorem to the effect that ap−1 = 1 if a 6= 0(p) and the related
notion of primitive elements, which also goes back to Euler. This is incidentally
related to periods of decimal expansions of rational numbers, which he also dis-
cusses. Then there is a discussion of how to compute the Euler totient using
its restricted multiplicativity, familar to any student of an elementary text in
number theory. The presentation is leisurely and filled with worked out ex-
amples, obviously Gauss loved to play around with these and he often prefers
to illustrate a general method by a particular example than to formulating it.
Things starts to pick up when second degree equations are considered. Crucial
is the notion of quadratic reciprocity, which had been conjectured by Euler but
first proved by Gauss in this work (other attempts had been made by Legen-
dre). There are a lots of results of an elementary notion that are not usually
encountered today. As an example the following theorem: If a is a prime of the
form 8n + 1 there will be some prime number p less than 2

√
a + 1 such that a

is a non-residue mod p.
The bulk of the work is devoted to quadratic forms, especially binary. Given

a quadratic form ax2 + 2bxy + cy2 with integral coefficients what values can
it take for integers x, y? He introduced an equivalence between them by using
substitutions effected by elements of SL(2,Z) (as well as elements of determinant
−1). Such will not change the discriminant D = b2 − ac which hence is an
invariant, but it is not a complete invariant, many inequivalent forms may have
the same invariant, but he showed that there could only be a finite number of
classes, out of which he singled out a special one x2−Dy2 as the principal (thus
any square-free D can occur as a discriminant). Furthermore he introduced
an abelian group structure on the classes associated to a given discriminant
before such notions became explicit. He noted that there was a fundamental
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difference between positive and negative discriminant, in the latter case there
were only a finite number of solutions to x2+Dy2 = m, while in the positive case
x2−Dy2 = m there is an infinite number if there are any. Classical cases such as
primes which are the sum of two squares, or a sum of a square and twice a square
are simple special cases of his analysis, and can be described by congruences.
In the case of Pell’s equation x2 −Dy2 = 1 he writes down the general solution
given a minimal non-trivial one (x1, y1) in terms of xn+.yn

√
D = (x1+y1

√
D)n.

An eight chapter had been projected, but it was not printed to keep down costs.
A sequel was planned but never written, after all Gauss was severely distracted
by other time consuming work. He did, however, later write on biquadratic
reciprocity which necessitated a detour into what is now known as Gaussian
integers, namely integers of the form a+ bi where a, b are (rational) integers. A
ring which has an Euclidean algorithm and hence is a so called principal ideal
domain.

Digression on quadratic forms with negative discriminants

Although Gauss did not present his theory in geometric terms, it has been
suggested (by Felix Klein) that he nevertheless was familiar with it. But before
this let us recall some basic facts about quadratic equations and quadratic fields
over the rationals. A quadratic number θ is a number that satisfies an irreducible
quadratic polynomial with rational coefficients, i.e. satisfying an equation7

x2 − px+ q = 0

Given a root θ we can consider all elements of the form η = αθ + β. They
are closed under addition and multiplication, and each element (except 0 of
course) has an inverse. They form a field denoted by Q(θ). This can be viewed
as a vector space of dimension 2 over Q. Any element η in the field satisfies
a quadratic equation because the three elements 1, η, η2 cannot all be linear
independent. If we insist that the equation is monic (i.e. starting out with
x2) the equation is unique x2 − Px + Q = 0 where P and Q depend on η.
By the theory of quadratic equations, it will have two roots (which cannot
coincide because of the condition of irreducibility) and setting the other root
η′ we will have P = η + η′, Q = ηη′8. The coefficient P will be called the
trace of η denoted by Tr(η) and Q will be called the norm of η and be denoted
by Nm(η). The trace is additive, and the norm is multiplicative, both are
elementary symmetric functions of η, η′. Another symmetric function is the
discriminant D(η) = (η − η′)2, which measures the difference between the two
roots. Being symmetric it can be expressed in P,Q and indeed9

(η − η′)2 = (η + η′)2 − 4ηη′ = P 2 − 4Q

In terms of the discriminant we can write out explicitly the solution to a

quadratic equation x2 − Px + Q = 0 by x = P±
√
D

2 . By using the proper-
ties of the trace and the norm we can compute them for any number η knowing
it for θ. In fact

Tr(η) = Tr(αθ + β) = (αθ + β) + (αθ̄ + β) = αTr(θ) + 2β
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and

Nm(η) = Nm(αθ + β) = (αθ + β)(αθ̄ + β) = α2Nm(θ) + αβTr(θ) + β2

and maybe more interesting

D(η) = Tr(η)2−4Nm(η) = (αTr(θ)+2β)2−4(α2Nm(θ)+αβTr(θ)+β2) = α2D(θ)

Thus elements in the quadratic field have the same discriminant up to a
square, and that is also sufficient to be in the same field, as the formula for the
roots show. This is a crucial observation which tells you right away when two
quadratic elements belong to the same field (there is no immediate analogy for
fields of higher degrees).

We also have the important notion of integral elements. Those are the
ones which satisfy a monic equation with integral coefficients. An equivalent
formulation is that an element τ is integral iff the subspace that is generated
by integral combinations of 1, τ is closed also under multiplication, i.e. forming
a ring. The integral elements of a quadratic form a ring, which is the biggest
subring of the field, with rank two over the integers. An arbitrary element η of
the field satisfies an equation of form ax2 + bx+ c where (a, b, c) are relatively
prime integers. There is a unique such if we fix the sign of a . We have that a is
the smallest positive integer such that aη is integral. Note that the discriminant
of an integral element is obviously an integer. Conversely one may show that if
the discriminant is an integer, than the element is integral.

We will now restrict to the case of negative discriminant, then the field
(from now on referred to as imaginary quadratic and denoted by K or Q(θ)
when a generator θ is specified) can be embedded in C in such a way that
there is a universal conjugation that restricts to the special conjugation for each
quadratic subgroup, namely complex conjugation. Thus we find that Tr(z) =
z + z̄,Nm(z) = zz̄ (making the linear and multiplicative character of the trace
and norm respectively immediate). Furthermore we find that D(z) = (z − z̄)2.
By the universality we have that the norm zz̄ is a common quadratic form
which will play a crucial role in what follows. We also note that any subring R
of the imaginary quadratic consisting of integral elements will form a discrete
subgroup or rank two. Any additive subgroup of finite rank will be of rank one
or two, and if closed under multiplication of some ring with complex member,
of rank two. Such additive subgroups of the field will be referred to as fractional
ideals. (They are just modules of the ring contained in the field.) If they are
contained in the ring they will be ideals. The crucial thing is that fractional
ideals may be multiplied and still be fractional ideals. This follows that the
product is necessarily a subgroup of finite rank over the integers, and hence of
rank two. It follows that R plays the role of the identity in that multiplication.
Furthermore to each fractional ideal I we may form the inverse, namely

I−1 = {a ∈ K : ab ∈ R ∀b ∈ I}

This is easily seen to be a fractional ideal, and more or less by definition we
have I · I−1 = R. So let us now look at the situation a bit more closely.
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The basic concept is thus that of a lattice. A lattice Λ ⊂ C is a non-dense
rank-two additive subgroup of the complex numbers, hence it is generated by
two complex numbers ω1, ω2 such that τ = ω1

ω2
is non-real (and if necessary by

switching the ωs can be assumed to have positive imaginary part i.e.belonging
to the upper half plane H). On C we have an inner product < ∗ · ∗ > given by
< z ·w >= 1

2 (zw̄+wz̄) thus note that ‖z‖2 = |z|2 = zz̄. We are now interested
in lattices such that |ω1|2, < ω1 ·ω2 >, |ω2|2 are all integers (a, b, c)10, then more
generally

|mω1 + nω2|2 = m2|ω1|2 + 2mn < ω1 · ω2 > +n2|ω2|2 = am2 + 2bmn+ cn2

defines an integral quadratic form. The parallelogram spanned by ω1, ω2 is
called the fundamental parallelogram.

The fundamental parallelogram is not determined by the lattice, but depends
on what basis is chosen. A basis change is affected by a matrix of type M =
(

a b
c d

)

with detM = ac−bd = ±1. Thus equivalent quadratic forms belong

to the same lattice. Gauss makes a point of distinguishing between forms which
are properly and improperly equivalent depending on whether the determinant
is positive or negative, i.e. whether it preserves the orientation of the basis
or not. Such transformations preserve the area of the parallelogram (up to
sign) and this area can be interpreted as the square root of the discriminant of
the quadratic form11. We may choose a normalized basis as follows: Pick an
element ω1 with smallest norm, and then ω2 with next to smallest. As −ω2

has the same norm we may choose it such that < ω · ω2 >≥ 0. Hence that
c ≥ b ≥ 0, 0 < a ≤ c, such forms are referred to as reduced. We may also
classify the shapes of lattices, saying that two lattices Λ,Λ′ are similar iff there
is λ such that λΛ = Λ′. The shapes are classified by τ = ω2/ω1 where by choice
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of ordering we can make sure τ belongs to the upper half plane. And if we take
into account the action of SL(2,Z) we get τ 7→ aτ+b

cτ+d . There is also another
way we can associate an element of the upper half-plane to a definite quadratic
form namely by letting (a, b, c) correspond to the equation az2 + 2bz + c = 0
and pick the root τCM with positive imaginary part. This will be referred to as
the CM -point of the quadratic form. Now those turn out to be essentially the
same, in fact setting τ = ω2

ω1
we obtain

τ + τ̄ = 2
< ω1 · ω2 >

|ω1|2
and

τ τ̄ =
|ω2|2
|ω1|2

hence τ satisfies the quadratic equation az2 − 2bz + c = 0 and hence τ =
−τCM

12

Now given a lattice Λ we may consider the complex numbers z such that
zΛ ⊂ Λ. Trivial examples are z an integer, but can there be other complex
numbers? Obviously we are on the look out for lattices that can appear as
fractional ideals for some order. The condition is that

zω1 = aω1 + bω2

zω2 = cω1 + dω2

Thus we see that z has to be an eigenvalue of a matrix M =

(

a b
c d

)

with integral coefficients. This means that z satisfies a quadratic equation z2 −
Tz + N = 0 where T = Tr(M) = z + z̄ = a + d and N = Nm(M) = zz̄ =
ad − bc. Those complex numbers obviously form a ring, and in fact a lattice
generated by < 1, τ > for some τ where τ satisfies some integral quadratic
equation13. Conversely given such an element z along with its matrix M we
can find the eigenvectors. They will all be multiples of (1, z−a

b ) thus elements
of Q(τ). By multiplying it with suitable ω1 we can get a lattice generated by
ω1, ω2 corresponding to an integral form (A,B,C). In fact we would have

|ω1|2 = A
< ω1,

z−a
b >= T−2a

b |ω1|2 = B
| z−a

b |2|ω1|2 = C

From which we conclude that
B
A = d−a

b
C
A = N−aT+a2

b2

This allows us to compute the discriminants of the CM point and that of
the element τ above and conclude that they are equal as expected.

The problem is to find the ω1 given τCM . It is equivalent to finding an
element ω1 in the ring such that Nm(ω1) = A, and as not all integral values are
taken as norms, the problem is non-trivial14.
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Thus to each quadratic form Am2 + 2Bmn = Cn2 we may first associate a
quadratic element τCM which defines a field Q(τCM ) = Q(

√
D), D = B2 − AC

(the reduced discriminant). Then we can consider all lattices spanned by ω1, ω2

such that ω2

ω1
= −τCM = τ . One such example is given by < 1,−τCM >. To

that we may associate a ring R = R(τ) its ring of Endomorphisms 15, for which
it is a module. This ring will be generated by 1, z where z · 1 = a + bτ, zτ =
c + dτ . Working it out we get that bτ2 + (a − d)τ − c = 0. Hence we should
choose b = A, a − d = 2B,−c = C, thus the ring R is generated by 1, Aτ and

Aτ corresponds to the matrix

(

0 1
-C -2B

)

. The discriminant of Aτ will be

4(B2 −AC) which up to the factor 4 is the discriminant of the quadratic form.
The module < 1,−τCM > corresponds to the form m2 − 2B

A mn + C
An

2 and
by choosing ω1 ∈ R such that its norm is A we get a lattice Λ spanned by
ω1, ω2 = τω1 which recaptures the original form and is also an ideal of R. Thus
if we have two quadratic forms with the same discriminant, they will be ideals
to the same ring R and hence can be multiplied giving rise to a new ideal in R
which will correspond to a quadratic form which by definition will be the one
defined by Gauss as a product. Gauss considered as special cases, quadratic
forms of type m2 + Dn2 with discriminant −D and D square free. They are
associated to the complex numbers τ = i

√
D (i.e. solutions to τ2 = −D). They

form rings as the corresponding lattices Λ satisfy Λ2 ⊂ Λ. And they will act
as the identity for the group associated with a fixed discriminant. The inverses
of ideals will only exceptionally be ideals and hence not directly associated to
(integral) quadratic forms, but by suitable scaling they will become so.

Now after those preliminaries the situation becomes really interesting. It
turns out the group to consider is the group of fractional ideals, modulo principal
ones, i.e. ideals generated by a single element16. If the ring R has unique
factorization (such as Q[i]) all ideals are principal and the group is trivial.
Generally the order of the group will be equal to the number of inequivalent
(under the action of the group SL(2,Z) of integral matrices of determinant
1) forms with the same discriminant. The number is referred to as the class
number. It can also be calculated by considering a fundamental domain for
the action of SL(2,Z) on the upper halfplane considered above17 a classical one
given by {z : Tr(z) ≤ 1,Nm(z) ≥ 1}. In that region we can work out the number
of CM -points with discriminant D.
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The example of Q[
√
−5]

Above we present the lattice Q[
√
−5](R) with discriminant 5 (τCM =

√
5i)

and area
√
5 of a fundamental parallelogram, as well as the sub-lattice the

principal ideal I = (1 +
√
5i)R) whose discriminant will be 6 · 5 = 30. The

corresponding quadratic form will be 6m2 + 30n2 which is not primitive, the
primitive form will correspond to the original lattice R. The quotient R/(1 +√
5i) will be cyclic of order 6 and we can add the element 2 to I and get an ideal

J of discriminant −20, which is not principal18. A fundamental parallelogram
will be spanned by 2, 1 +

√
5i and the corresponding quadratic form will be

4m2 + 4mn + 6n2 with discriminant −20. The ideal J 2 will be spanned by
2, 2(1 +

√
5i) and have discriminant −80.

The presentation above is of course not, as already remarked, found in Gauss
work, but all the ideas exist there and were to provide inspiration for the alge-
braic concepts related to rings and ideals that would be developed during the
19th century, especially as it relates to algebraic number theory. Gauss came
up with estimates of class numbers and it was only in the late 60’s when the
classification of all negative discriminants with class number 1 was completed.
The short list is given by

D = −1,−2,−3,−7,−11,−19,−43,−67,−163

12



The Fundamental theorem of Algebra

A modern proof of the fundamental theorem of algebra is very simple using the
elements of elementary complex function theory. Given any polynomial P (z) it
is easy to see that lim|z|7→∞ |P (z)| = ∞ by noting that the leading term will be
dominating for large |z|. Thus in particular if P (z) never vanishes then 1/P (z)
becomes a bounded entire function which by Liouville must be constant. That
theorem comes more or less directly from the Cauchy integral formula. In fact we
can make a Fourier expansion of an analytic function f(reiθ) =

∑

n≥0 anr
neinθ

and hence anr
n = 1

2π

∫ 2π

0
e−inθf(reiθ)dθ. If the function is bounded by M

we obtain the estimate |an| ≤ M
rn . this being true for all r implies that an =

0 ∀n > 0 and we are done.
Gauss proved this theorem in his thesis (submitted to the University at

nearby Helmstedt) and would during his life produce a number of proofs, none
as slick as the one above, although complex analysis of some form is inevitable.
Gauss was also a pioneer of the fundamentals of complex analysis anticipating
Cauchy, but kept most of it to himself. In particular he was very clear about the
geometric representation of complex number (now usually referred to as Argand
diagrams) and showed great impatience at mathematicians who abhorred them
as mysterious specious.

Celestial Mechanics and Ceres

In 1781 William Herschel discovered a new planet - later called Uranus - which
was a sensation, as the number of planets had been assumed fixed. Uranus
was a transsaturnian planet. A few years later, in fact on January 1 1801, the
Italian astronomer Piazzi discovered another one which was named Ceres, a
welcome addition as there had been, according to the empirical law by Bode
a gap between Mars and Jupiter but Ceres seemed to fill it19. Only a few
observations were made before the planet disappeared behind the sun. After
that the planet was lost, but Gauss figured out a way of making the most
of the few observations to determine its path. In so doing the planet was then
rediscovered later according to Gauss’ predictions. This made Gauss famous and
started his association with astronomy and celestial mechanics and in particular
funds were sought given to him for an observatory, which would be built in
Göttingen. One may speculate as to his motivations. True, Gauss loved to
calculate, as did Euler, but one suspects, as noted in the introduction, that
while Euler did it by brute force, Gauss went about it in a clever way not being
able to help himself. Celestial Mechanics had been worked out extensively by
Laplace, but his investigations were theoretical in the sense of not being feasible
for actual numerical work, thus Gauss had to approach the subject from scratch
developing a lot of tricks and methods he used with great ingenuity, as well as
developing the theory of least squares fundamental to observational work 20 and
hitting on fast Fourier transform as a computational tool21 Celestial Mechanics
is not an exact science in the sense that in actual work you need to do a lot of
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approximations and for that purpose avail yourself of a lot of tricks, thus more
of an art or handicraft than a conceptual science. Although he did have a deep
influence on celestial work any actual presentation of it tends to be a bit ad hoc

and lack the beauty and simplicity that is the hallmark of pure mathematics
at its best. Thus the work on Ceres was just the beginning, later on he would
struggle with new asteroids as a steady stream of them were being discovered,
especially Juno and Pallas. The latter even stymied him and in his Nachlaß the
penciled remark Lieber der Tod als ein solches Leben was later found22. It was
generally felt at the time that it was a waste of Gauss’ unique talents to have
them squandered on purely observational work and computations.

Easter Formula

As an elementary example of combining simple congruence counting with astron-
omy, one can consider the date of Easter, for which Gauss provided a formula.
To come up with it you do not need the genius of a Gauss, but anyway it can
serve as a distraction23.

A crucial event of the year is the vernal equinox. It is the time when the
ecliptic (the plane of the orbit of the Earth) crosses the celestial equator (the
plane of the equator, or equivalently the plane perpendicular to the axis of ro-
tation). At the time night and day is equally long. The time difference between
two such events is 365.24 days (known as the tropical year the approximation
of which is the basis of the Gregorian calendar, while the Julian makes do with
the cruder but simpler approximation 365.25 thus there being 1461 days in a
four year cycle). Now the date of Easter Sunday was decided to be on the first
Sunday after the first full Moon after the vernal Equinix. Thus Easter Sunday
can fall at any time between March 22 (The vernal equinox occuring on March
21) and April 2524.

First we need to compare with the cycle of the phases of the Moon. The
Synodic period, i.e. the interval between two Full Moons is 29.53 days twelve
times this is 354.36 which is somewhat short of a full year. However if we take 19
years it will to high accuracy correspond to 235 Synodic periods, and everything
will start over again25. Of course there is no exact relation, over extended
times there will be a drift, and besides the Synodic periods vary slightly due
to irregularities of the Moon’s orbit (see endnote below). Thus to assume it be
exact means Easter will follow an artificial Moon but not the physical. However,
by the time a discrepancy will occur, there will be a slight readjustment or
mankind, or whatever has succeeded it, will not care about Easter.
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The Synodic period will hence be divided into 19 parts each the length of
1.55421 days of which there will be 7 in the discrepancy between twelve Synodic
periods and one year. Thus after the completion of one year there will be a 7/19
th advancement of the phase cycle of the Moon and the Full Moon will hence
have occurred at position −7/19 or equivalently 12/19 in the phase period. Thus
if the Full Moon occurred at position 0 one year later it will occur in position
12/19 and so on. Thus in the figure above the subsequent occurrences of the
Full Moon will be noted.

Assume now that at some reference year the Full Moon occurs on the day
of the Vernal equinox at a leap year. We can then compare the Synodic period
with actual dates going from March 21 to April 19 plus half a day as below.

21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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After one year the date scale is shifted back one quarter day as 365 days is
about a quarter of a day short of a full tropical year. After four years, a leap
day is added to the year to catch up. Below we list four subsequent years along
with the positions of the Full Moon. We also set March 22 a Sunday, so the
Easter Sunday will be the earliest possible, and mark all the Sundays as well

7.00032

21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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We can then read off the subsequent dates for Easter Sunday, namely April
11, April 3, April 23, April 7. One may then continue this by hand (as it
was classically done) and work out subsequent dates. As we see there will be a
number of cycles, in addition of one of length nineteen there will be one of length
seven giving the week days, which with the every four leap years combine into a
cycle of twenty-eight. Thus the whole thing will repeat itself in 19·28 = 532 years
when the Julian calendar is concerned. We note that there are only about 30
possible dates for Easter Sunday, so every date occurs many times, in particular
knowing the date for a certain Easter does not help us in determining the date
of the next, although one may of course restrict it to a certain narrower interval.
Now what Gauss did was to write down a formula in terms of congruences for
determining the date for any year. The solution will not be given but offered as
a challenge to the reader. It is hard enough for the Julian case, the Gregorian
case adds a further non-trivial complication. Gauss provided formulas for both.
The Julian Calendar is still uses in Eastern Orthodox churches. Finally the Full
Moon at its height occurs on a certain time moment, and hence one also needs
to fix the time zone in order to determine the day of the Full Moon. Whether
it appears late on a Saturday or early the next morning can make a difference
of seven days26.

Non-Euclidean Geometry

As we have seen there were many mathematicians such as Legendre, Lambert
and Saccheri who tried to prove the Fifth postulate of Euclid by trying to
get a contradiction. No real logical contradiction was achieved, however many
seemingly absurd results27. Now absurdity is not a priori a reason for rejection,
and eventually people came to the understanding that it might be possible to
create a logically consistent geometry by negating the postulate, which can be
done in two ways. Either, using the reformulation of Playfair, that there were
no parallel lines, or that through a point an infinite number of lines could be
drawn parallel, meaning non-intersecting, with a given. Janos Bolyai (1802-
1860) was the son of a Hungarian student friend of Gauss and who himself
had tried in vain to prove the axiom and gave as an advice to his son to stay
away from it. This proved only to be a further incentive and the son eventually
came to the conclusion that it would be impossible and started to work out the
consequences of such an assumption accepting the apparent absurdities as they
presented themselves. He showed his results to his father, who relayed them
to his friend. Gauss replied that he was unable to praise the work, because
doing so would mean praising himself, as he had already worked it out in his
youth, but been reluctant to publish it because of the outcry it no doubt would
cause28. Bolyai was very discouraged by this and more or less dropped out of
mathematics, and the work he had carefully prepared between 1820 and 1823
was eventually published as an appendix to a textbook by his father almost ten
years later, but by then Lobachevsky had already published his, but that was
something Bolyai only would find out almost twenty years later much to his
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chagrin. Thus to Lobachevsky (1792-56) belongs the honor of priority being out
of Gauss’ circle he was not inhibited from going public. Lobachevsky called this
new geometry, which unlike spherical geometry had no precedence, astral; and
thought of it as having definite physical implications. Was that the geometry
of the Cosmos? Recall that given a point P outside a line L we may consider
the limiting angle for lines L′ not intersecting L

P

O

L

L’

φ

The larger the distance OP the smaller the angle θ and the greater its
deviance from π

2 . In Euclidean space a line will extend π in our field of vision
(unless we are sighting it in the same direction in which case it will just be a
point) regardless of how far away we are. Not so in hyperbolic space, when it will
extend 2θ the further away the smaller (which incidentally gives an intrinsic way
of measuring lengths). We can also think of it as the angular displacement in
direction when we look at an object and move, known as parallax. In Euclidean
space objects infinitely far away will show no parallax, not so in Hyperbolic
space, where there will always be a parallax, even for objects infinitely far away.
At the time no parallax had been obtained for any stars29 which meant that
physical space, even if hyperbolic, would be very close to Euclidean space even
when astronomical distances were considered.

The most striking thing of hyperbolic space is that the circumference and
area of a a circle increases exponentially with the radius. In fact they are given
by 2π sinh r and π(cosh r − 1) respectively30. For large circles most of the area
is concentrated close to the border, and if you want to go to one border point
to another along a geodesic, i.e. a line, you will get back close to the origin.
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Surveying and Differential Geometry

Gauss was for a long time engaged to make a land survey of the principality of
Hanover (in a royal union with Great Britain) to connect with a concomitant
effort by the Danes. This fostered an interest in the geometry of curved surfaces.
But let us start from the beginning.

The notion of curvature of a curve is ancient, and can be seen as a change of
change, and thus closely related to second derivatives. First in the 17th century
did it get a more precise meaning. Just as a tangent line can be seen as the line
that best fits a curve, but also seen as a line that intersects the curve in two
coinciding points, we can ask the same thing about circles. What is the best
fitted circle, a so called osculating circle, or a circle that intersects the curve in
three points? Through three points there is a unique circle (except if they are
collinear, in which case it is a line, or a circle with an infinite radius). By letting
the points come together we may hope for a limiting circle, whose radius will
be called the radius of curvature its inverse the curvature, and whose center the
center of curvature.

P
Q

R

C

If the points are P,Q,R the approximate center C of curvature may be
thought of as the intersections of the midpoint normals of PQ and PR. We
may also think of this as the infitesimal intersections of normals. Given a curve
at each point P we can think of the line orthogonal to the tangent at P which is
the normal. Thus a curve gives rise to a family of normals. Given a normal NP

at P look at nearby normals at P ′ and their intersections with Np and the limit
when P ′ → P . Thus to each curve we can associate its involute, the locus of
points given by the centers of curvature of the given curve. This was something
studied by 18th century mathematicians among them the Bernoullis. Note that
circles by this definition have constant curvature 1

R where R is the radius of the
circle. The involute in this case degenerates to a single point, the center of the
circle.

Now consider a curve y = f(x) with horizontal tanget at the origin. It can
locally be given as y = ax2 + . . . where a = 1

2f
′′(0). If we have a circle of

radius R tangent at the same point, say x2+(y−R)2 = R2 we can write locally

y = R −
√
R2 − x2 = x2

2R + . . . . By comparison we find the best fit if we chose
R such that 1

2R = a i.e. R = 1
2a or the curvature 1

R = 2a. Thus if the change of
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the change (the second derivative) is big, the radius of curvature is small, and
hence the curvature is big.

P

P

Q

Q

R

R

S

S

We can also see the curvature by considering directly how much the direction
of a tangent (or equivalently a normal changes) as we move along the curve. The
angular change dθ along a distance ds of the curve gives rise to a rate of change
of dθ

ds . In the case of a circle this change is constant, in fact if the radius is R
under a complete revolution we have travelled 2πR and undergone a change of
angle given by 2π hence the curvature is 1

R as expected. Note also that we can
think of curvatures with signs, depending on what side of the curve the centers
lie on, or whether the change of angle is positive or negative

When it comes to a surface S in R3 we may consider the planes through the
normal at a point P . They give rise to planar sections, each with its curvature at
P . Those curvatures will in general vary by the direction, and there will be two
directions of extremal curvatures (taking into account the signs). Those direc-
tions are called the principal curvatures, and the directions are perpendicular.
This was known to Euler.
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Example: Consider the saddle-shaped surface S given by z = x2 − y2. The
normal at the origin is given by the z−axis. The planes containing the normal
have equations ax+by = 0 and there intersections with S are given by parabolas

z = b2−a2

a2+b2 u
2. The curvatures vary between 1

2 (a = 0) and − 1
2 (b = 0) this

gives two orthogonal directions. Note also that for a = ±b the curvatures are
zero, as the parabola degenerates into z = 0.

More generally given z = ax2 + 2bxy + cy2 + . . . we may look at the plane
with angle θ we then get z = (a cos2 θ+2b cos θ sin θ+c sin2 θ)u2+ . . . the terms
ax2 + cy2 can be rewritten as a+c

2 (x2 + y2) + a−c
2 (x2 − y2) hence we can write

z = (a+c
2 + a−c

2 cos 2θ+ b sin 2θ)u2 + . . . or z = (A+B cos(2θ+ θ0))u
2 + . . . for

suitable A,B, θ0 namely A = a+c
2 , B =

√

(a−c)2

4 + b2 and cos θ0 = a−c
B . From

this we see that the max (A+B) and min (A−B) are taken when 2θ+θ0 = ±π
hence at orthogonal angles. This was known by Euler.

Now it is customary to speak about the mean curvature as the sum of the
principal curvatures (due to Sophie Germain), in the above case zero, and the
total curvature, or the gaussian curvature, as their products, in this case −4.
More generally note that the total curvature will be

4(A2 −B2) = 4(ac− b2)

which fits well. The right hand side is positive when the form is definite, and
then the surface lies on one side of the tangent plane, and negative when it is
indefinite. When zero it degenerates to zero curvature. Thus we see that for a
convex body, the curvature of its boundary is non-negative.

It is one thing to make up a definition, quite another thing to hit upon
a fruitful definition, and this turns out to be that in this case. This has to
do with Gauss’ crucial idea to think of an intrinsic geometry of the surface.
To that concept belongs notions such as geodesics, locally the shortest path
between two points. Thus given a surface in three-space there are two kinds
of curvatures, one merely accidental having to do how the surface happens to
be bent (extrinsic) and one intrinsic having to do with the surface itself. An
observer constrained to the surface would have no idea of the former only of the
latter. A cylinder is curved but it can be folded out flat, using no stretching
(nor any tearing except at a meridan along which it is cut ), with the geodesics
remaining geodesics, while a sphere cannot be flattend, if no stretching allowed
then it will invariable burst, and a saddle surface when flattened out will crumple
(the opposite problem will appear when trying to wrap them both in paper).
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Another definition of of the gaussian curvature is given by the Gauss map.
Consider the unit normals to a small neighborhood U of a point P . They will
map U to an area U ′ on the unit sphere. The larger the quotient A(U ′)/A(U) is
the more the surface bends. The gaussian curvature at a point P is simply the
limit of this when U shrinks to P (note the analogy with the second definition of
the curvature of a curve). The remarkable thing is not so much that those two
definitions are equivalent, but that it is invariant under isometric imbeddings
of a surface (i.e. one which does not change distances). Thus there should
be an intrinsic definition of curvature, which does not depend on a particular
embedding. One way is to look at how the circumferences and areas of circles
depend on their radii. On a sphere of radius 1 a circle of radius r will be the same
as a Euclidean circle of radius sin r i.e. 2π sin r, while its area (by Archimedes)

will be given by 2π(1 − cos r). For small r we can write 2π(r − r3

6 + . . . ) and

π(r2 − r4

12 + . . . ) From this we are motivated to make the definition

K = 12 lim
r→0

A0(r)−A(r)

A0(r)

where A0(r) = πr2 is the area of the Euclidean circle of radius r and A(r) the
circle on the surface.
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Given the surface parametrically (x(u, v), y(u, v), z(u, v)) form and a curve
γ(t) = (u(t), v(t)) on it. This forms a space curve given by

Γ(t) = (x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t)))

to compute its length we need to integrate |Γ′(t)| which will be given by the
chain rule as

√

(
∂x

∂u
u′(t) +

∂x

∂v
v′(t))2 + (

∂y

∂u
u′(t) +

∂y

∂v
v′(t))2 + (

∂z

∂u
u′(t) +

∂z

∂v
v′(t))2

This motivates us to make the following definition by setting

a = ∂x
∂u a′ = ∂x

∂v

b = ∂y
∂u b′ = ∂y

∂v

c = ∂z
∂u c′ = ∂z

∂v

And then form

E(u, v) = a2 + b2 + c2, F (u, v) = aa′ + bb′ + cc′, G(u, v) = a′
2
+ b′

2
+ c′

2

to which we can associate the innerproduct

E(u, v)dudu′ + F (u, v)(dudv′ + du′dv) +G(u, v)dvdv′

This depends only on the ’interior’ coordinates of the surface, and its length
can thus be given by integrating |γ′(t)| but now with respect to the above inner
product on the surface.

Example: If we consider spherical coordinates, i.e. x = cosu cos v, y =
sinu cos v, z = sin v we get the form E = cos2 v, F = 0, G = 1 which illustrates
the fact that the length of a latitudinal circle at v will be scaled by cos v.
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Digression on Gauss-Bonnet

Gauss noted that for a geodesic triangle ∆ with angles α, β, γ we have

∫∫

∆

K = α+ β + γ − π

which is a generalization of the fact that on a unit sphere, the area of a spherical
triangle is equal to its angular excess (by noting that areas scale as R2 and
cirvature as R−2 this will hold for any sphere).

Now the angular excess is additive, which is easy to see thus there will be a
function K ′ such that

∫∫

∆

K ′ = α+ β + γ − π

and it will simply be the limit of angular excess divided by area. If we can prove
that this is equal to gaussian curvature we are done. It is true for spheres and
the hyperbolic plane, and we would be done if we can well approximate surfaces
with those locally.

Now given this we may make a formal calculation. Given a surface X we
can triangulate it into geodesic triangles, and if n0, n1, n2 denotes the number of
vertices, edges and triangles respectively the euler characteristics e(X) is given
by

e(X) = n0 − n1 + n2

Now add all the integrals
∫∫

∆
K and we get on the lefthand side

∫∫

X
K while on

the right hand side we get
∑

α α− πn2. The sum of all angles we can rearrange
as to collect them vertice by vertice and than the right hand side becomes
2πn0−πn2. Now given n2 triangles the number of edges will become 3

2n2 (each
triangle give rise to three edges, but then every edge will be counted twice),
thus e(X) = n0 − 1

2n2 putting everything together we get Gauss-Bonnet

∫∫

X

K = 2πe(X)

.
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βγ

γβ

γβ

Given a polyheder we may look at a vertex. It will be associated to a
number of angles α if

∑

α α = 2π the polygons meeting at the corner will
actually lie in a plane. If

∑

α α < 2π we will have an ordinary convex corner,
while if

∑

α α > 2π we will have a saddle. It is convenient to introduce the

factor k =
∑

α α

2π Now given a circle of radius r centered at the vertex, its
area will be kπr2 and if we look at a polygon surrounding the vertix with n
sides it will split up into n triangels with angles α, β, γ with α + β + γ = π.
The angular sum will be the sum of all the β′s and γ′s which will amount to
nπ − ∑

α α = nπ − 2kπ = (n − 2)π + 2(1 − k)π. We may think of all the
curvature as concentrated at the corners given by 2(1 − k)π. Now if we add
all the curvatures and rearrange the terms, we collect the α′s to corresponding
polygons with n sides. The sum for each polygon will hence be −(n− 2)π and
the total sum −(2n1−2n0)π and hence the total (2n2−2n1+2n0) = 4π, which
is a discrete form of Gauss-Bonnet known to Descartes.
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We may now relate excess angular sum with the Gauss curvature defined
by the Gauss map. Consider the unit normals ni to the faces fi meeting at a
fixed vertex. They will correspond to points pi on the unit sphere, which can be
seen as the dual of the configurations of the faces meeting at the vertix. Two
adjacent points pi, pj are joined by a gedosic arc cij (meaning part of a great
circle), the length of that arc corresponds to the angle the faces fi, fj meet
along their edge eij , which incidentally is the angle at which the normals ni, nj
meet. One may think of all the vectors v perpendicular to eij between ni, nj as
normals along the edge. In this way we get a polygon on the unit sphere which
will enclose a region P , corresponding so to speak to all the ’normals’ at the
vertex. In order to compute the area of P we need to compute all the angles
formed by two adjacent arcs cij , cjk. Now the edge eij is perpendicular to both
ni and nj , thus we see that the sought after angle is related to the angle αj

between eij and ejk (which is the angle of the face fj at the vertex) or more
precisely to their normals (in the plane spanned by the two edges) thus it will
be given by π − αj . Adding everything up and computing the excess it will
turn out to be exactly that of the angular excess of the polygon that encircles
the vertex. Thus by approximating a surface with a polygon we can prove the
theorem of Gauss above.
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Hypergeometric Series, the Arithmetic-geometric

mean and Elliptic Functions

Hypergeometric series

Gauss work on the hypergeometric function may not be the most exciting, yet it
shows both his concern with rigor as well as his delight in formal manipulation
of functions, where we once again may compare him to Euler.

There are various hypergeometric functions according to the number of pa-
rameters defined as follows

0F1(a; z) = 1 +

∞
∑

n=1

1

a(a+ 1) . . . (a+ n− 1)

zn

n!

1F1(a, b; c; z) = 1 +

∞
∑

n=1

a(a+ 1) . . . (a+ n− 1)

b(b+ 1) . . . (b+ n− 1)

zn

n!

2F1(a, b; c; z) = 1 +

∞
∑

n=1

a(a+ 1) . . . (a+ n− 1)b(b+ 1) . . . (b+ n− 1)

c(c+ 1) . . . (c+ n− 1)

zn

n!

Many well-known functions are special cases of them, e.g.

log(1 + z) = z2F1(1, 1; 2;−z)
(1− z)−a = 2F1(a, 1 : 1 : z)
arcsin(z) = z2F1(

1
2 ,

1
2 ;

3
2 ; z

2)

cosh(z) = 0F1(
1
2 ;

z2

4 )

sinh(z) = z0F1(
3
2 ;

z2

4 )
arctan(z) = z2F1(

1
2 , 1;

3
2 ;−z2)

We can easily spot some formal properties such as

1 + a
d0F1(a; z)

dz
= −0F1(a+ 1; z)

or

1 +
c

ab

d2F1(a, b; c; z)

dz
= −2F1(a+ 1, b+ 1; c+ 1; z)

They lend themselves naturally to continued fraction expansions. More
specifically let f0, f1 . . . be a sequence of analytic functions such that fi−1−fi =
kizfi+1 then fi−1

fi
= 1 + kiz

fi+1

fi
i.e. fi

fi−1
= 1

1+kiz
fi+1
fi

. Now setting gi =
fi−1

fi

we can thus set gi =
1

1+kizgi+1
we get

g1 =
f1
f0

=
1

1 + k1zg2
=

1

1 + k1z
1+k2zg3

=
1

1 + k1z

1+
k2z

1+k3zg4

= . . .
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leading to the continued fraction

f1
f0

=
1

1 + k1z

1+
k2z

1+
k3z

1+...

For the simplest hypergeometric series we may start with the identity

0F1(a− 1; z)−0 F1(a; z) =
z

a(a− 1) 0
F1(a+ 1; z)

and hence take fi =0 F1(a+ i; z), ki =
1

(a+i)(a+i−1) leading to

0F1(a+ 1; z)

a0F1(a; z)
=

1

a+ z
(a+1)+ z

(a+2)+ z
(a+3)+...

With more elaborate identities on may establish

2F1(a+ 1, b; c+ 1; z)

c2F1(a, b; c, z)
=

1

c+ (a−c)bz

(c+1)+
(b−c−1)(a+1)z

(c+2)+
(a−c−1)(b+1)z

(c+3)+
(b−c−2)(a+2)z

(c+4)+...

Using 2F1(0, b; c; z) = 1 setting a = 0 and replacing c with c + 1 we obtain
the simpler version

2F1(1, b; c; z) =
1

1 + −bz

c+
(b−c)z

(c+1)+
−c(b+1)z

(c+2)+
2(b−c−1)z

(c+3)+
−(c+1)(b+2)z

(c+4)+...

As results we get31

tanh(z) =
z

1 + z2

3+ z2

5+ z2
7+...

tan(z) =
z

1− z2

3− z2

5− z2
7−...
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The Arithmetic-Geometric Mean

Another thing Gauss played with was the arithmetic-geometric mean (agM)
from now on denoted by M(a, b) of two numbers a, b. Assume that 0 < a < b
and form the geometric mean a1 =

√
ab and the arithmetic mean b1 = a+b

2
getting two numbers a1, b1 nestled in the former i.e. a < a1 < b1 < b. Proceed
inductively producing an, bn. Those number will converge to the agM M(a, b),
in fact in view of

b1 − a1 =
b21 − a21
a1 + b1

=
(a− b)2

2(a1 + b1)

and thus inductively

bn+1 − an+1 =
b2n+1 − a2n+1

an+1 + bn+1
=

(an − bn)
2

2(an+1 + bn+1)

we see that the convergence is very fast. More precisely an error of ǫ at one

stage is reduced to an error of ǫ2

4M(a,b) at the next. As an example one may try

to expand M(1 + x, 1− x) in a power series. As the function is symmetric with
respect to its two variables it must be even (x 7→ −x makes no difference) and
thus only involving even powers, i.e. being a power series in x2. We also note
that the initial error is bounded by 2x at the second stage it will be bounded
by x2 then by 1

4x
4 and then by 1

64x
8 etc. If we with obvious notation look at

the power series (1 + x)n, (1− x)n we see that they will coincide with the limit
one at terms up to 2n (or some such number)32. We can work out by hand the
first approximations using the formula 33

√
1− a = 1−1

2
a−1

8
a2− 1

16
a3− 5

128
a4− 7

512
a5− 21

1024
a6− 33

2048
a7− 429

32768
a8+. . .

in which various power series will will substituted for a

n (1 + x)n (1− x)n
0 1 + x 1− x

1 1 1− 1
2x

2 − 1
8x

4 − 1
16x

6 − 5
128x

8 + . . .

2 1− 1
4x

2 − 1
16x

4 − 1
32x

6 − 5
256x

8 + . . . 1− 1
4x

2 − 3
32x

4 − 7
128x

6 − 77
2048x

8 + . . .

3 1− 1
4x

2 − 5
64x

4 − 11
256x

6 − 117
4096x

8 + . . . 1− 1
4x

2 − 5
64x

4 − 3
64x

6 − 243
8192x

8

A rather tedious procedure from which we see that M(1 + x, 1 − x) = 1 −
1
4x

2 − 5
64x

4 + . . . . One may easily mechanize the procedure and write some
simple C-code and end up with

1− 1
4
x2

−

1
16
x4

−

1
32
x6

−

5
256

x8
−

7
512

x10
−

21
2048

x12
−

33
4096

x14
−

429
65536

x16

1− 1
4
x2

−

3
32
x4

−

7
128

x6
−

77
2048

x8
−

231
8192

x10
−

1463
65536

x12
−

4807
262144

x14
−

129789
8388608

x16
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1− 1
4
x2

−

5
64
x4

−

11
256

x6
−

117
4096

x8
−

343
16384

x10
−

2135
131072

x12
−

6919
524288

x14
−

184701
16777216

x16

1− 1
4
x2

−

5
64
x4

−

11
256

x6
−

235
8192

x8
−

693
32768

x10
−

8683
524288

x12
−

28325
2097152

x14
−

1522109
134217728

x16

1− 1
4
x2

−

5
64
x4

−

11
256

x6
−

469
16384

x8
−

1379
65536

x10
−

17223
1048576

x12
−

56001
4194304

x14
−

2999717
268435456

x16

1− 1
4
x2

−

5
64
x4

−

11
256

x6
−

469
16384

x8
−

1379
65536

x10
−

17223
1048576

x12
−

56001
4194304

x14
−

5999435
536870912

x16

From this we note some computational mistakes from the hand calculation
(Gauss of course did all his calculation by hand, many of them in his head, and
only rarely making mistakes, even when they were very extensive and involved)
but more interestingly we note (as expected) that the error of the first pair is
x4 of the second pair x8 and the last pair x16 and we can write down

1− 1

4
x2− 5

64
x4− 11

256
x6− 469

16384
x8− 1379

65536
x10− 17223

1048576
x12− 56001

4194304
x14+ . . .

The point is not to compute the power series as a computational tool, as this
is not what power series are intended to be used as34, that is in this case effected
much more rapidly in the direct way, but to see some pattern and hence to get
an independent characterization of it. For that purpose Gauss used another
approach. Namely we can write

M(1+
2t

1 + t2
, 1− 2t

1 + t2
=

1

1 + t2
M((1+ t)2, (1− t)2) = 1

1 + t2
M(1+ t2, 1− t2)

From this Gauss considers the expansion of

1

M(1 + x, 1− x)
= 1 +Ax2 +Bx4 + Cx6 + . . .

Setting x = 2t
1+t2 we get from the above the identity

1+A(
2t

1 + t2
)2+B(

2t

1 + t2
)4+C(

2t

1 + t2
)2+· · · = (1+t2)(1+At4+Bt8+Ct12+. . .

Now we need to identify coefficients and solve for the A,B,C . . . . We can readily
work out A = 1

4 and B = 9
64 . Through a tour de force Gauss is able to simplify

those equations to 4A = 1, 16B = 9A, 36C = 25B . . . thus finding a closed form
for the expansion of the inverted function

1

M(1 + x, 1− x)
=

∞
∑

n=0

(

1 · 3 · 5 · 7 · · · · (2n− 1)

2nn!

)2

x2n
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The Lemniscate and Elliptic integrals and functions

Let us now turn to the lemniscate which was introduced by the Bernoulli broth-
ers in the 18th century.

The lemniscate is the locus of points whose product (not the sum) of dis-
tances to two given points is constant.

In fact by varying the value of the product we get a whole family of
curves, known as Cassini’s ovals. They are actually the level curves
of a quartic polynomial, and the leminiscate proper is the one which
passes through the saddle located half-way between the two reference
points, where it will have a node. If those are given by (±a, 0) the
quartic will be given by

(x2 + y2 + a2)2 − (4a2x2 + a4) = 0

and in the sequel we will find it convenient to set 2a2 = 1 and the
lemniscate will cross the x-axis at ±1, 0 given by x2(x2−1) = 0 with
a double zero at the origin due to the singularity.

Now it is natural to use the radius vector r =
√

x2 + y2 to parametrize the
lemniscate. Let us write the equation on the form

(x2 + y2)2 + (x2 + y2)− 2x2 = 0

or x2 = 1
2 (r

2 + r4) and hence y2 = 1
2 (r

2 − r4). We get 2xẋ = (r + 2r3), 2yẏ =
(r − 2r3) thus

ẋ2 + ẏ2 =
(r + 2r3)2

r2 + r4
+

(r − 2r3)2

r2 − r4
=

(1 + 2r2)2

1 + r2
+

(1− 2r2)2

1− r2
=

1

1− r4
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Hence the arc length of the lemniscate is given by the integral
∫

1√
1−r4

in par-

ticular a quarter of the length of the lemniscate is given by the integral

∫ 1

0

dr√
1− r4

This integral was well-known during the 18th century (in fact it appeared
in a paper by Jacob Bernoulli already in 1691) and had been studied by Euler
and Lagrange among others. Gauss even had a special notation ω̃ for its value
setting

ω̃ = 2

∫ 1

0

dr√
1− r4

computing the value π
w̃ numerically to eleven digits he noticed that it coincided

with M(1,
√
2) = 1.1981402347355922074... He then set out to prove it. One

method was to show that

M(a, b) ·
∫ π

2

0

(a2 cos2 φ+ b2 sin2 φ)−
1
2 =

π

2

the key step being that I(a, b) = I(a1, b1) where I is the above integral and
a1, b1 occur after the first step in the agM process, noting that (a2n cos

2 φ +

b2n sin
2 φ)−

1
2 converges uniformly to 1

M(a,b)
1
2
. He does that by introducing the

variable substitution

sinφ =
2a sinφ′

a+ b+ (a− b) sin2 φ′

which will lead to

(a2 cos2 φ+ b2 sin2 φ)−
1
2 dφ = (a21 cos

2 φ′ + b21 sin
2 φ′)−

1
2 dφ′

and he leaves out the details35.
Now at the time well-known elliptic integral

F (k,
π

2
) =

∫ π
2

0

(1− k2 sin2 φ)−
1
2 dφ

is related to I(a, b) as follows. Set k = a−b
a+b then we have

I(a, b) =
1

a
F (

2
√
k

1 + k
,
π

2
)

Furthermore by setting r = cosφ we get

∫ 1

0

dr√
1− r4

=

∫ π
2

0

(2 cos2 φ = sin2 φ)−
1
2 dφ = I(

√
2, 1)

Now impressive as those calculations and manipulations may be, the most
significant thing he did was to invert elliptic integrals, in fact the lemniscate
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integral above, and getting double periodic functions which he denoted by sin-
lemn (]sln) and coslem (cl) in analogy with the trigonometric functions. In so
doing he anticipated Abel and Jacobi. More precisely

sl(

∫ x

0

(1− z4)−
1
2 dz) = x

and

cl(
ω̃

2
−

∫ x

0

(1− z4)−
1
2 dz) = x

from which will follow identities such as

sl2φ+ cl2φ = sl2φcl2φ = 1

and

sl(φ+ φ′) =
slφclφ′ + slφ′clφ

1− slφslφ′clφclφ′

which are actually identities that go back to Euler but in different garb. Further-
more he anticipated Jacobi by designing theta functions, in which they could be
expressed as quotients. The periods he computed as 2πG, 2πiG (Note that the
lattice generated is up to scale the same as the one of Gaussian integers) where

G =
2

π

∫ 1

0

dt√
1− t4

=
ω̃

π

Magnetism, Gauss Theorem

Gauss hade already met Wilhelm Weber (184-91) at a meeting in Berlin in 1828
(Gauss attended few meetings) and been impressed by him. In 1831 Weber
became a professor of physics at Göttingen and a co-operation started. Gauss
had always been interested in physics, not only astronomy, but until then his
work had been theoretical, Most importantly in a short paper he had built
on the ideas of Maupertuis and d’Alembert on least actions and developed a
principle of least constrain in which he sought to unify mechanics. With Weber
experimental work began, mostly concerned with magnetism, including (on the
suggestion of the explorer Alexander Humboldt, who in vain tried to entice
Gauss to come to Berlin) the mapping of the magnetic field of the Earth, for
which purpose they even founded a journal. The significance of his work in
physics has been recognized as the unit G of the strength of magnetic fields
in the now superseeded cgs system36. Mathematically Gauss was a pioneer
introducing potentials and in this context the divergence theorem or Gauss
theorem, concerns the integral of the flux of a vector field F across a surface S
plays a central role, as all students of mathematics are aware of. Explicitly

∫∫∫

V

(∇ · F)dV =

∫∫

S

(F · n)dS
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where ∇ ·F = divF = ∂F
∂x + ∂F

∂y + ∂F
∂z of particular interest being the case when

the divergence vanishes outside the singularities of the field F. In other words
when it is the gradient field of a harmonic function, which occurs naturally when
gravity or electrical attraction is concerned, because of the inverse square law.

Gaussian distributions and Least Squares

Gauss was very interested in observational astronomy and hence concerned with
error of observations. At every observation there will be mistakes, some random
some principal. It is the business of theory to rule out the latter, but as to the
random fluctations there is nothing to be done except to expect that they will
somehow cancel out in the long run. Thus we need to make many observations
to determine a quantity, say a1, . . . an what is the ’true’ value x of the observed
entity, or better still an x which differ from the values an as little as possible?
There is no canonical answer to this question but a natural norm in this case
is the one given by the sum of squares. In other words we want to find x as to
make

∑

n(x − an)
2 as small as possible. Differentiating we find the condition

0 =
∑

n(x− an) = nx−∑

n an i.e. x = 1
n ∼n an. In terms of linear algebra we

can consider the vectors A = (a1, . . . an), I = (1, . . . 1) and seeking to minimize
< A − xI · A − xI > under the standard inner product. Geometrically this
amounts to finding the projection of A onto the subspace spanned by I. This
can be generalized. Say that we are given a number of dots (an, bn) in the plane
and want to find the equation of a line that ’best fits’. Setting the equation
of the line as Xx + Y y + Z = 0 where X,Y, Z to be determined we naturally
want to minimize the sum of squares

∑

n(Xan + Y bn + Z)2 or setting A =
(an), B = (bn) the squared norm < AX + BY + ZI · AX + BY + ZI >. An
obvious and uninteresting solution is X = 0, Y = 0, Z = 0, uninteresting as it
does not correspond to a line. It is then natural to normalize (X,Y, Z) such
that X2 + Y 2 + Z2 = 1. Using the technique of Lagrange multipliers we need
to find out when the two gradients are parallel. This leads to the system of
equations

< A ·A > X+ < A ·B > Y+ < A · I > Z = λX
< A ·B > X+ < B ·B > Y+ < B · I > Z = λY
< A · I > X+ < I ·B > Y+ < I · I > Z = λZ

This can be reformulated as finding the eigenvectors to the linear transfor-
mation T whose symmetric matrix is given by





< A ·A > < A ·B > < A · I >
< A ·B > < B ·B > < B · I >
< A · I > < I ·B > < I · I >





It corresponds to the linear map v 7→< A·v > A+ < B ·v > B+ < C ·v > C.
A more natural clarification will appear below in the digression on quadratic
forms.

Another normalization may be done by setting y = −1 corresponding to
finding the best linear relation y = Xx + Z giving the values bn when the an
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are plugged in. In this case we look at the two partials with respect to X and
Z setting them zero

< A ·A > X+ < A · I > Z = < A ·B >
< A · I > X+ < I · I > Z = < I ·B >

Let us look at the case (1, 1), (3, 4), (2, 5) withA = (1, 3, 2), B = (1, 4, 5), I =
(1, 1, 1) We get the matrix





14 23 6
23 42 10
6 10 3





and a corresponding cubic characteristic equation

λ
3
− 59λ2 + 91λ− 25 = 0

You expect three real roots corresponding to the axi of an ellipsoid (in
case we have a rotational one you expect one eigenvalue to be double and
a corresponding 2-dimensional vector space). In our case we get two small
roots 0.357, 1.22 and a big root 57.423
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We find the normalized eigenvectors in the three cases and the correspond-
ing sum of squares

eigenvalue eigenvector sum of squares

0.357 (0.452,−0.036,−0.891) 0.357
1.22 (0.752,−0.523, 0.402) 1.22
57.423 (−0.48,−0.852,−0.209) 57.423

Note the curious fact that the sum of the squares equals the corresponding
eigenvalues. It could hardly be a coincidence?

As to the second method we only need to solve the system of equations

14X + 6Z = 23
6X + 3Z = 10

with the solution X = 3
2
, Z = 1

3
.

We could also have done it expressing Y as a function of X then the
relevant system would have been

42Y + 10Z = 23
10Y + 3Z = 6

with the solution Y = 9
26
, Z = 11

13
. Those two are plotted below in fat,

along with the three stationary lines from the first method.

We note that the line that has the best fit in the latter case is not the one

close to the fat one.

The first method is mathematically more satisfying or at least elegant, but
as we have noted computationally much more complicated. The method can
be vastly generalized, a circle can be given by three linear parameters by x2 +
y2+Xx+Y y+Z = 0 while for a general quadric we need six linear parameters
that need to be normalized. More precisely: If the points are given by (an, bn)
there will be three quadric monomials a2n, anbn, b

2
n two linear ones an, bn and one

contant one 1. Thus we will consider
∑

(x1A1+x2A2+x3A3+x4B1+x5B2+x6)
2

where Ai, Bi etc are vectors determined by observational data. In general we
will consider

∑

i(
∑

k xkAk)
2 where the vectors Ak are concocted in various ways

from the data.
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Digression on Quadrics

To consider a sum of squares

Σ =
∑

k

(x1Ak + x2Bk + . . . xnΩn)
2

as above is to consider a homogenous quadric in the variables x1, x2 . . . xn. Given
any homogeneous polynomial F (x1, x2 . . . xn) of degree d (i.e. F (tx1, tx2 . . . txn) =
tdF (x1, x2 . . . xn)) we can form F0 =

∑

i xi
∂F
∂xi

and it turns out that F0 = dF a
relation named after Euler. It is easy to verify as the relation is obviously linear
and it is enough to look at monomials. In our case we have a matrix M whose
rows are half of the partials. If we have an eigenvector Ξ = (ξ1, ξ2 . . . xin) on
the unit sphere with eigenvalue λ for the matrix we have

Σ(Xi) =
∑

i

ξi(λxi) = λ
∑

i

x2i = λ

and we have verified the statement we came across numerically.

To understand it properly we note that any quadric Q gives rise to a gradient
vector field on the vector space V (of dimension n)37. As the tangents have
canonical identifications by the underlying linear space itself this gives rise to a
map T from V to V . Furthermore the potential being quadratic means that T
is linear (and its matrix is 2M as above). The level surfaces of Q are ellipsoids
and as we put a ballon at the origin and blow it up it will touch the ellipsoid
n-times corresponding to its axi. The first it encounter will be the minimal
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one, and the last the maximal one, which will correspond to the minimum and
maximum respectively of the distance to the origin, for the remaining ones we
have saddles.

Finally we can clarify everything with some more abstract notation. What
we have been doing is to create from a given inner product < ∗ · ∗ > a quadratic
form < Lv ·Lv > on V where L is a linear map. Now every quadratic form can
be given as < Av, v > where A is a linear map on V (corresponding to the one
we represented by T above and a symmetric matrix M). We can represent A as
A = L∗L which becomes symmetric. Now if v with < v ·v >= 1 is a eigenvector
with respect to A with eigenvalue λ we get

< Lv · Lv >=< Av · v >= λ < v, ·v >= λ

We also note that eigenvectors v, w corresponding to different eigenvalues λ, µ
will be orthogonal as

λ < v · w >=< Av · w >=< v ·Aw >= µ < v · w >

Hence the distinct axi of the ellipsoid are orthogonal.

Gaussian distributions

The normal distribution is given by

1√
2σ2π

e−
(x−µ)2

2σ2

where µ is the expected average and σ2 is the variance (σ is referred to as the

standard deviation). The crucial function is 1√
2π
e−

1
2x

2

where the coefficient is
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chosen to make the integral
∫∞
−∞

1√
2π
e−

1
2x

2

dx = 138. By scaling with 1√
2σ

and

translating with µ we get the general case.
Say that we want to measure a certain quantity µ then there will be some

observational error. Those errors are the compound of several small errors,
sometimes reinforcing each other, sometime canceling each other out. If we
make many observations and take their average we expect that the result will
converge to the true value. We will make this more precise below.

As an example assume that we are tossing a fair coin, meaning that we expect
each face to turn up equally often. Thus if we make n tosses and observe the
frequency of each face we expect that the actual observation will differ slightly
from the true value because of error. If we consider all the 2n possible sequences
of head and tails and keep track of how many of those will result in k heads say
we get the binomial distribution with

(

n
k

)

such sequences. Now normalize it by

considering k ranging between −n/2 and n/2 by defining φn(k) =
(

n
k+n/2

)

/2n.

The integral of this step function will be 1 but as n→ ∞ we get that φn(x) → 0
spread along an interval of length n. If we scale this interval by a factor 2√

n

thus going from −√
n to

√
n then we have to scale the function by

√
n/2 to

keep the area equal to one. Thus we are looking at ψn(x) = λnφn(λnx) with
λn =

√
n/2. Using Stirling’s formula

n! ∼
√
2πnnne−n

we can write down
(

2n

n

)

=
(2n)!

(n!)2
∼

√
4πn · 22nn2ne−2n

(2πn)n2ne−2n
= 22n

2
√
π

2π
√
n

Thus ψ2n(0) =
1√
2π

and ψn will converge to ψ = 1√
2π
e−

1
2x

2 39

In the picture below we see an approximation to the normal distribution by
the binomial.
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We can now perform an experiment tossing a coin one hundred times and
noting the frequencies of heads. Redoing it some three hundred times we end
up with the following distribution of observations.
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41

2
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39

1

383736353433323130

number of trials 327 average frequency = 51.0765

If we instead had tossed it five hundred times and noting the frequencies of
heads, we would instead have got the following distribution
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12

48

2

47

1

46

2

45

1

444342414039383736353433323130

number of trials = 65

We see that it is more concentrated. This shows that taking the average
value of a number of observation increases the accuracy. We can be even more
precise.

The value of the integral 1√
2π

∫ y

x
e−

1
2 t

2

dt gives the probability that an obser-

vation will land in the interval [x, y]. If we are tossing N coins the interval [x, y]
corresponds that the number of heads lies in the interval [N2 + x

√
N/2, N2 +

y
√
N/2]

We can look at the cumulative function 1√
2π

∫ x

∞ e−
1
2 t

2

dt
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-3 -2 -1 0 1 2 3 4 5

If we look at the interval given by the inverse of [ 14 ,
3
4 ] in which half the values

occur, we see that this is given by [−0.67 . . . , 0.67 . . . ]. Thus with N = 100
throws, we expect about half of the throws to occur in the interval [50− 0.67 ·
5, 50 + 0.67 · 5] and indeed between 46 and 54 we have about 180

More generally if we make two attempts of N trials they can be thought
of as one attempt of 2N trials which can be thought of as the sum of the two
trials. Both, however, give rise to Gaussian distributions. Thus if we have an
error corresponding to x from the average40 it means in the first case a deviation
of x =

√
N/2 in the second case x =

√
2N2 thus a spread

√
2 as wide in as

in the first case. If we think in terms of random walks, the maximal deviation
from the equilibrium grows with time, as is intuitively clear, and in fact by
the square root of the time (or number of trials). However, if we think of the
relative deviation dividing with N/2 and N respectively we get errors of 1√

N
and

1√
2

1√
N

respectively and the relative error is decreased by a factor 1√
2
instead.

More generally the relative errors decrease like 1√
N

when you make N trials,

which can be thought of as taking the average of N trials. An accuracy of ǫ
for one observation (say meaning 50 % chance of an error less than ǫ) will now
be reduced to an error of 1√

N
ǫ. We may think of it as scaling the variable x

with σ = 1√
N

giving a more pointed distribution less spread out. Its variance,

as defined above, will be σ2.
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Notes

1Why not King of Mathematics? There is no separate English word for the German
Furst or the Swedish furste which denotes the monarch of a small kingdom, or principality
(furstendöme), of which Germany was a mosaic.

2The series is usually presented as the sum of the first hundred numbers, most likely it was
more complicated and that its arithmetic nature was not immediate.

3Both Euler and Gauss made no distinction between pure and applieed mathematics, ev-
erything was food for thought, and in the case of Gauss he is said to have quoted King Lear
to the effect of Thou, nature, art my goddess; to thy laws my services are bound.

4He also left descendants, of whom Eugene and Albert Fawcett lived until the early 1950’s,
but neither seem to have left any issue. The longest living grandchild of Gauss was Jospeh
Henry (1855-1956) son of Charles Gauss (1813-79) and born in the Missouri. His daughter
Janet Lee (1912-2012) must be the longest surviving great grandchild of Gauss. There are
still great great grandchildren about, all Americans.

5Less spectacular students were Moebius, who nevertheless is a name that pops up repeat-
edly and may to most mathematicians be more well-known than Dirichlet. Even more than
that of Riemann among the general population.

6The case p = 257 was worked out in a dissertation in 1831 involving a sequence of seven
quadratic extensions by Friedrich Julius Richelot (1808-75) a student of Jacobi, whom he later
succeeded at Königsberg. The construction involved 194 printed pages. Incidentally Richelot
was the father-in-law of the well-known 19th century physicist Kirchoff. Attempts at the case
of p = 65537 involving fifteen quadratic extensions were undertaken by Johann Gustav Hermes
(1846-1912) who devoted ten years to the task. The results of his efforts, completed in 1889,
remain in some large chest specially designed and made for that purpose at the Göttingen
math department. A shorter report on it was published in 1894, sponsored by Felix Klein.

7 If the polynomial is reducible, it splits up into two linear factors and have two rational
(unrelated) roots. To talk about numbers may be a trifle misleading as it is not strictly
necessary, one may look at the ring Q[x]/(x2−px+q) where we will have the rule x2 = px−q,
thus in practice (see below) any element can be written as ax+ b with the above rule.

8It turns out that η 7→ η′ is both linear and multiplicative, in fact the one non-trivial
automorphism of a quadratic extension.

9There is some confusion what is a discriminant. If the linear term is even one can factor
out the factor 4 in the discriminant, thus 4b2 − 4ac is reduced to b2 − ac as Gauss does in his
definition. The confusion is irritating, but not serious, as a discriminant is mostly interesting
mod squares anyway.

10Gauss considers integral forms of type ax2 + 2bxy+ cy2 which corresponds to lattices for
which the restriction of the inner product is integral, which is a strong condition. A weaker,
and perhaps more natural condition is that the restriction of the quadratic form is integral.

11Given two vectors ω1, ω2 the area ∆ of the parallelogram spanned by them is given by
sin θ|ω1||ω2| from which follows that

∆2 = sin2 θ|ω1|2|ω2|2 = |ω1|2|ω2|2− < ω1 · ω2 >
2

as

< ω1 · ω2 >=
1

2
(ω1ω̄2 + ω2ω̄1)

we get

< ω1 · ω2 >
2=

1

4
(ω2

1ω̄
2
2 + ω2

2ω̄
2
1 + 2|ω1|2|ω2|2)
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hence

∆2 = −1

4
(ω1ω̄2 − ω2ω̄1)

2 = −D

We also note that given the quadratic form An2+2Bmn+Cm2 its discriminant being B2−AC
translates into < ω1 · ω2 >2 −|ω1|2|ω2|2 = −D

12To be pedantic, τ = −τCM if we want to insist that τ belongs to the upper half-plane.
But in the ensuing discussion we can afford to be a bit sloppy.

13An example of such z is given by z = ω2
ω1

as

ω2
ω1
ω1 = ω2

ω2
ω1
ω2 = cω1 + dω2

where
(
ω2

ω1
)2 = d

ω2

ω1
+ c

is assumed to satisfy an integral quadratic equation. This will of course not be true in general,
but whenever we note that c = −Nm(τ), d = Tr(τ)

14What we need to do is given D find t such that the discriminant of the equation x2+tx+a
is a square multiple of D i.e. t2 − 4A = k2D. If D = −1 it means that A needs to be the
sum of two squares which is not always possible. Note that the norms of elements in Q[i] are

obviously sums of two squares. However we have that D = B2−4AC
A2 if B2 − 4AC = −1 we

see that A|B2 + 1 and hence A is a sum of two squares.

15To each quadratic field we may associate the ring of integral elements, namely those which
satisfy a quadratic equation with integral coefficients and monic. To each quadratic field we
get a discriminant by computing the discriminant of different elements, which will all differ
by a square. This ring will have the property that all its elements leave the lattice Λ invariant
under multiplication. The ring itself will be a rank two lattice spanned by 1, τ whose trace is
not necessarily even, hence it does not necessarily correspond to a quadratic form with even
middle term, the kind favored by Gauss. More specifically. The full ring of integral elements
will be elements of the type ατ + β such that their traces and norms are integral. It is easy
to compute

Tr(ατ + β) = αTr(τ) + 2β Nm(ατ + β) = α2Nm(τ) + αβTr(τ) + β2

From which we conclude that if D 6= 3(4) then α, β need to be integers, so the ring coincides
with the original. However if D = 3(4) we can also have α = β = 1

2
(Z) and hence the ring

is generated by 1, 1
2
(1 + τ) this will be an element with odd trace (and thus not contained in

Gauss study). In general the endomorphism ring will just be a subring of the integral ring,
and will be referred to as an order.

16For an ideal generated by α ∈ R we can take ω1 = α, ω2 = ατ and thus the associated
quadratic form will not be primitive, but we can factor out |α|2.

17To be more precise, elements ±M give the same action, as Moebius tranformations, and
we are really looking at PSL(2,Z) known as the modular group Γ

18The ring is not a unique factorization domain, we have (1 +
√
5i)(1 −

√
5i) = 6 = 2 · 3

where all the elements are irreducible. It is this fact that serves as an inspiration for the
construction of the ideal generated by 2, 1 +

√
5i.

19If the unit is 1 A.U. the distances from the sun for the planet p is given by 0.4 + 0.3 · 2m
where m = ∞ corresponds to Mercury, m = 0 Venus m = 1 the Earth, m = 2 Mars, m = 4
Jupiter, m = 5 Saturn and m = 6 Uranus, thus Ceres (and a host of others) would correspond
to m = 3, the law breaks down for Neptune.
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20He anticipated Legendre who resented that Gauss claimed priority, could nothing be left
for him?

21This was later introduced in 1965 unawares that Gauss had used it a century and a half
earlier.

22’Rather death than such a life’ actually discovered by Felix Klein

23In fact the ancients did it step by step, and as to be seen below this did not require much
mathematical maturity, the Babylonians could have done it had they had occasion to do so.
Apparently Gauss became interested in it, as his mother did not know the date of his birth,
only the year and that it had been on Ascension Day.

24For some reason the theoretical possibility of April 26 is excluded on an ad hoc basis.

25In the culture of India, having lived through one thousand Full Moons is a significant
event, which we see occurs around the time you turn 75.

26The standard time used nowadays is UTC which has replaced GMT. There was a Full
Moon on November on November 14 at 13:52 and one on December 14 at 00:06 this corresponds
to 29 days 10 hrs 14 min, the next one will be on January 12 at 11:34 UTC giving 29 days 11
hrs 28 min, subsequent periods will be 29 days 11 hrs 59 min, 29 days 14 hrs 21 min 29 days
15 hrs 14 min, thus we see that the Synodic period varies rater substantially. The average for
those makes up 29 days 12 hrs 39 min to be compared with the long term average of 29 days
12 h 44 min (there is an advantage of having a virtual moon with some regularity compared
to a real one). The first Full Moon after the vernal equinox on 2017 will be on Tuesday April
11 at 6:08 UTC making Sunday April 16, the next Easter Sunday. As to a Full Moon in the
period in 2018 we have to subtract 365.24− 354.36 = 10.88 days from April 11 + 0.25 ending
up on March 31 + 0.37 (give or take a few hours because of the irregularity) this will be a
Saturday so Easter Sunday on 2018 will be on April 1. Below is shown the sybodic periods
counted from full moon to full moon as well as new moon to new moon for about a years
worth of phase cycles

7
 h

8
 h

9
 h

10
 h

11
 h

12
 h

13
 h

14
 h

15
 h

16
 h

17
 h

18
 h

29 days + 
27One such result was that in a non-euclidean geometry there would be an absolute unit of

length, thus it would not be scale invariant, furthermore there would be a uniform bound on
the areas of triangles, no matter how large.
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28To another correspondent he wrote that he found Bolyai to be a genius of the first order

29the first one such measured was by Bessel in 1838 of 61 Cygni. Actually a binary star of
high magnitude (5.2+6) just discernible to the naked eye. Rather unremarkable until Piazzi
(the discoverer of Ceres) noted in 1804 that it had a large proper motion, i.e. that its position
on the celestial square changed rapidly, indicating that it might be a close star. Bessel’s
estimate was 10.3 light years, rather close to the modern estimate of 11.4 . Of all stars
visible to the naked eye it has the largest motion amounting to 4′′/year in Right Ascension
and 3′′/year in Declination. At a declination of 40o this amounts to about 4.5′′/year to be
compared with that of Barnard’s arrow star of 10”/year.

30Those are analogous to the case of spherical geometry. They were formally produced
already in the 18th century by Lambert.

31Those were known already to Lambert in 1768 and were used by him and Legendre to
prove the irrationality of π.

32We can see this in two different ways. Heuristically truncating an expansion starting with
the term xn gives for small values ǫ an error of at least the order of ǫn. If two power series
start to differ at that term they will differ by that amount, but if the order of error is of
a higher power, we get a contradiction. Another mathematically more satisfying way is to
observe that the formula above shows that if xn divides the power series an(x)− bn(x) then
x2n divides an+1(x)− bn+1(x).

33Using factorials or (integral) binomial coefficients we can of course put this into closed

form. As Newton pointed out the power series expansion of (1 + a)
1
2 is given as

∑

k

( 1
2
k

)

ak

where the coefficients (k = n+ 1) can be expanded out as

( 1
2
)( 1

2
− 1)( 1

2
− 2)( 1

2
− 3) . . . ( 1

2
− n)

(n+ 1)!
= (−1)n

1

2n+1

1 · 3 · 5 · · · · (2n− 1)

1 · 2 · 3 . . . (n+ 1)

where in the right hand side the even factors are missing. Filling them in (n− 1) of them we
get

1

22n
(2n− 1)!

(n+ 1)!(n− 1)!
=

1

22n
1

n− 1

(2n− 1

n+ 1

)

. We would like to observe that up to the initial negative power of two we have an integer.
To show that it is more convenient to use the left hand side. Note that the order of the factor
p in (n+ 1)! is given by

⌊n+ 1

p
⌋+ ⌊n+ 1

p2
⌋+ ⌊n+ 1

p3
⌋ . . .

while for the numerator we are only interested in the odd multiples of p and its powers (which
we can assume to be odd) let us denote their numbers by [n/p] etc. If we can show that
[n/q] ≥ ⌊n+1

q
⌋ for each odd number q we will be done. Now set n+1 = kq+ r with 0 ≤ r < q

and k = ⌊n+1
q

⌋. From this we find 2n − 1 = 2kq + 2r − 3 if 2r − 3 < 0 we will lose an even

multiple of q but this does not matter as we will still have k odd multiples of q left, namely
q, 3q, 5q, . . . (2k − 1)q. We will get an excess when 2r − 3 ≥ q (note that this always happens
when q > (n+ 1) ) which means that p divides the numerator (q = pn). Recall the list of the
first few coefficients (note that n correspond to n+ 1 above)

n 1 2 3 4 5 6 7 8
num 1 1 1 5 7 21 33 429
exp of 2 1 3 4 7 9 10 11 15

We will get a factor of 3 in the denominator when n = 6, 7, 8(9) (or if that is failing when
n = 18, 19, . . . (27) etc) a factor of 5 if n = 4(5), a factor of 7 if n = 5, 6(7) a factor of 11
if n = 7, 8, . . . 10(11) and a factor of 13 if n = 8, 9 . . . 12(13) all of which are ratified by the
examples above. As an example we may compute the coefficient for n = 30. Looking at the
primes 5, 7 . . . 53 and the prime powers 9, 27, 25, 49 up to 57 = 2 · 30 − 3 we conclude that
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the only factors will be 11, 17, 19 as well as the automatic factors 31, 37, 41, 43, 47, 53 and for
49 we will get the factor 7. Taking the product we see that the numerator will be (up to
sign) 125280277081421. As to the denominator, we first observe that there will always be
a power of n as to the additional we need to look at the power of two dividing n! which is
⌊n
2
⌋+ ⌊n

4
⌋+ ⌊n

8
⌋+ · · · ≤ n− 1 with equality iff n is a power of two. In general we get n− k

where k is the number of ones in the binary expansion of 2. In the case of n = 30 this is given
by k = 4 hence the denominator is 230+30−4 = 256. In conclusion we can claim that power
series whose coefficients belong to dyadic numbers, i.e. denominators only divisible by two,
are not only closed under addition and multiplication but also under taking square roots.

34A case in point is the computation of square roots by successive approximations, something
known to the ancients, and a special case of Newton’s general method. Let us say that we
have an approximation xn to

√
A and we want to find a better one xn+1 by adding to xn a

slight disturbance ǫ. We get (xn + ǫ)2 = x2n +2xnǫ+ ǫ2 = A ignoring ǫ2 we solve for ǫ getting

ǫ =
A−x2

n
2xn

and adding to xn that

xn+1 =
A+ x2n
2xn

. This gives a rapid convergence as

A− x2n+1 = − (A− x2n)
2

4x2n
∼ − 1

4A
(A− x2n)

2

(We may not that if (A− x2n) > 4A we may not get any improvement but we eventually are
rewarded). We may put A = 2 and x0 = 1 and getting successively 3

2
, 17
12
, 577
408

. . . fractions
pn
qn

satisfying the Pell’s equation p2n − 2q2n = 1 readily verified. Likewise for A = 3, x0 = 1 we

get the series 2, 7
4

97
56
. . . where the fractions now satisfies p2n − 3q2n = 1. We may write down

a table of successive approximations

A x1 x2 x3 x4 x5 x6
2 1.500000 1.416667 1.414216 1.414214 1.414214 1.414214
3 2.000000 1.750000 1.732143 1.732051 1.732051 1.732051
4 2.500000 2.050000 2.000610 2.000000 2.000000 2.000000
5 3.000000 2.333333 2.238095 2.236069 2.236068 2.236068
6 3.500000 2.607143 2.454256 2.449494 2.449490 2.449490
7 4.000000 2.875000 2.654891 2.645767 2.645751 2.645751
8 4.500000 3.138889 2.843781 2.828469 2.828427 2.828427
9 5.000000 3.400000 3.023529 3.000092 3.000000 3.000000
10 5.500000 3.659091 3.196005 3.162456 3.162278 3.162278

which shows the rapid convergence.
We can also apply the same procedure to A = 1+x starting with x0 = 1 so that A−x20 = x,

thus x1 should be correct up to the quadratic terms and we get

x1 =
(1 + x) + 1

2
= 1 +

x

2

as to x2 it should be correct to terms up to x4 and we obtain

x2 =
(1 + x) + (1 + x

2
)2

2(1 + x
2
)

=
1 + x+ x2

8

1 + x
2

where we expand the right hand side as

(1 + x+
x2

8
)(1− x

2
+
x2

4
− x3

8
+
x4

16
. . . )

multiplying out we obtain

1 +
x

2
− x2

8
+
x3

16
− x4

32
+ . . .
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where terms up to x4 are indeed correct but the x4 term is not. The next step will be a true
mess but the patient reader may convince herself that terms will be correct up to x8 a truly

painful way of obtaining the binomial theorem for (1 + x)
1
2

35Jacobi supplies some of the details. An excellent exposition can be found in The Arithmetic-

Geometric Mean of Gauss by David Cox in L’enseignement Matheématique IIe Série , Tome
XXX -Fascicule 3-4, 1984 from which much of the discussion is lifted.

36cgs standing for centimeter, gram and second. In the more modern SI system one speaks
abous Tesla (T) with the conversion 1T = 104G.

37If the quadric is given by x2 + k2y2 we see that for any value of the parameter λ the

curves (x(t), y(t)) = λ(et, ek
2t) are integral curves, as the derivatives λ(et, k2ek

2t) have the
same directions as the gradient at any point. The curves are in general transcendental, i.e.
not satisfying any algebraic equation, but nevertheless they can be given a simple equation of

type y = µxk
2
with µ = λk

2−1.

38recall that

(

∫ ∞

−∞
e−

1
2
x2
dx)(

∫ ∞

−∞
e−

1
2
y2
dy) =

∫∫

R2
e−

1
2
(x2+y2)dxdy =

∫ 2π

0

∫ ∞

0
e−

1
2
R2
Rdθdr = 2π[−e− 1

2
R2

]∞0 = 2π

39We note that setting k = x
√
2n/2 we have

ψ2n(x) =

√
2n

2

1

22n

( 2n

n+ k

)

∼
√
4πn

√
2n · n2n

2 ·
√

4π2(n− k)(n+ k) · (n+ k)n+k(n− k)n−k

Now taking the log of (n+k
n

)n+k(n−k
n

)n−k we get

(n+ k)(
k

n
− 1

2

k2

n2
+ . . . )− (n− k)(

k

n
+

1

2

k2

n2
+ . . . ) =

2k2

n
− 2

1

2

k2

n
=
k2

n

as k2 = x2 2n
4

we get k2

n
= 1

2
x2 and hence the limit 1√

2π
e−

1
2
x2

40If x = 1 in the standard distribution, we talk about one standard deviation. This cor-

responds to the area 1√
2π

∫ 1
−1 e

− 1
2
x2
dx = 0.682689 . . . . More generally this will be true for

any Gaussian distribution, when 1 is replaced by σ one standard deviation. Thus the smaller
standard deviation, the more concentrated around the average is the distribution.
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