Combinatorics Fall 2002

Homework 1

- 1. (a) Find the number of permutations $a_1 a_2 \dots a_n$ in S_n such that $|a_i i| \leq 1$ for each i.
 - (b) According to one or more other exercises here, the answer in (a) can be written as a certain nice sum of approximately n/2 binomial coefficients. Is there a refinement of the problem in (a) that reflects this?
- 2. Place *n* points on a circle and draw the chords between each pair of points. Assume that the points are in general position, that is, no three chords intersect in a point. Determine the number of regions inside the circle (Give a simple formula and prove it combinatorially).
- 3. Give combinatorial proofs of the following identities:

(a)
$$\sum_{i} {k \choose i} {n-k \choose d-i} = {n \choose d}$$
.

(b)
$$\sum_{k} (-1)^{n-k} \binom{n}{k} \binom{k}{m} = \binom{0}{n-m}.$$

- (c) $\sum_{k} {n \choose k}^2 = {2n \choose n}$. Look at your proof here. Do you see any generalizations that require only trivial modifications of the proof?
- 4. Let c(n,k) be the number of compositions of n whose greatest part is at most k. Show that $\sum_{n\geq 0} c(n,k) x^n = \frac{1-x}{1-2x+x^{k+1}}$.

You should set c(0, k) = 1 for all k

5. Prove the following identity via generating functions. Can you find a combinatorial proof (of a suitably modified version of this identity)?

$$\sum_{k>0} \binom{2n-k}{n} \left(\frac{1}{2}\right)^{2n-k} = 1.$$

6. (a) Find the bivariate generating function for the binomial coefficients, that is,

$$\sum_{n,k} \binom{n}{k} x^n y^k$$

(it should be of the form 1/(1 - P(x, y))).

- (b) Set y = x in (a) to get a well-known generating function.
- 7. (a) A multi-set is a set with repeated elements allowed. How many n-element multi-sets are there with elements from [2k] such that the numbers $1, 2, \ldots, k$ appear at most once each and the numbers $k+1, k+2, \ldots, 2k$ appear an even number of times each?

(b) Show, combinatorially, that the answer equals the number of monomials of degree n in k variables.

8. How many permutations $a_1a_2\cdots a_n$ satisfy the following?: If $2\leq j\leq n$ then $|a_i-a_j|=1$ for some i with $1\leq i< j$. Give a combinatorial proof.

- 9. (a) Let f(n) be the number of ways of placing n identical balls in n numbered boxes so that no box gets more than two balls. Find the generating function $\sum_{n} f(n)x^{n}$.
 - (b) What do the coefficients of $(1 + x + x^2)^n$ count?
 - (c) Write out a triangle with the coefficients of $(1 + x + x^2)^n$ for n = 1, 2, The diagonals seem to grow polynomially. Do they? What are the polynomials?
- 10. Let P_n be the *n*-element fence poset:

- (a) In how many different ways can P_n be partitioned into k disjoint chains?
- (b) Determine the total number of ways of partitioning P_n into disjoint chains.
- 11. Let B_1, B_2, \ldots, B_m be the blocks of a partitioning of [n]. We say that B_i and B_j overlap if $\min(B_i) < \max(B_j)$ and $\min(B_j) < \max(B_i)$. Find the number of partitionings of [n] have exactly one pair of overlapping blocks. The formula should be simple and (of course!) proved combinatorially.

0, 0, 1, 6, 24, 80, 240, 672, 1792...

12. A *Dyck path* from (0,0) to (2n,0) is a lattice path with steps (1,1) and (1,-1) that never goes below the x-axis. Show combinatorially that the number of such paths is the n-th *Catalan number* $C_n = \frac{1}{n+1} {2n \choose n}$.

You may rewrite C_n if necessary

13. A random walk in one dimension is a (countably) infinite sequence of 1's and -1's (each having probability 1/2), indicating unit steps on the real line in the positive and negative directions, respectively.

The probability that a random walk W, starting at 0, returns to 0 clearly equals $\sum_{n\geq 1} p_n$ where p_n is the probability that W returns to 0 for the first time after exactly 2n steps. By counting the number of walks that return after exactly 2n steps, and using the appropriate generating function, show that a random walk returns to 0 with probability 1.

14. Let $R(x) = \frac{P(x)}{Q(x)}$ be a rational function (P and Q polynomials) such that $Q(0) \neq 0$. Show that R(x) = S(x) + T(x), where T is a polynomial and

$$S(x) = \frac{a_1}{(1 - b_1 x)^{e_1}} + \frac{a_2}{(1 - b_2 x)^{e_2}} + \dots + \frac{a_n}{(1 - b_n x)^{e_n}},$$

and where a_i , b_i and e_i are constants. (The point is that the generating function $\frac{a}{(1-bx)^e}$ has nice coefficients). Hint: Let $Q(x)=q_0+q_1x+\cdots+q_nx^n$ and $Q_R(x)=q_n+q_{n-1}x+\cdots+q_0x^n$. What is the relation between the roots of Q and Q_R ? Use this to write $Q(x)=q(1-r_1x)(1-r_2x)\cdots(1-r_nx)$.

15. There are d! paths of length d along edges from the origin to the vertex $(1, 1, \ldots, 1)$ in the unit d—cube. How many non-self-intersecting paths are there of length k? Non-intersecting means that the path doesn't visit the same vertex twice. (Hard. Probably unsolved. Maybe hopeless.)

A path is self-intersecting if it visits the same vertex

NEW PROBLEMS

16. Determine the number of $2 \times n$ matrices of 0's and 1's with no adjacent 0's (in rows or columns).

 $1 \times n$: Fibonacci

17. Consider the set T of integer points (a, b) in the plane with non-negative coordinates such that a + b < n.

Let S be an arbitrary subset of T. Color the points in S red, and also all points (x, y) such that $x \leq a$ and $y \leq b$ for some point (a, b) in S. Color the remaining points of T blue.

A subset of T is said to be horizontal if it has n blue elements, no two of which have the same x-coordinate. A subset of T is said to be vertical if it has n blue elements, no two of which have the same y-coordinate.

Prove, preferably combinatorially, that there are as many vertical as horizontal subsets in T.

Future problem: The red set above is an *order ideal* in the poset \mathbb{N}^2 with the "usual" order. What sort of generalization can you think of?

18. Let K_n be the set of weakly increasing sequences, of length n, consisting of natural numbers not exceeding n, whose sum is a multiple of (n+1). Prove that K_n contains C_n elements, where C_n is the n-th Catalan number. For n=3 the sequences are:

Can you give a nice bijection to Dyck paths?

(I don't think this problem is on Stanley's list (see link to Enumerative Combinatorics), but if you find the solution there, that's cheating!).

