COMBINATORICS FALL 02 HOMEWORK 3

33. Let P be an n-clement poset. For x € P, let I, = #{y € P |y < z}. Let e¢(P) be the iiecar extension:

. . order preserving
number of linear extensions of P. Show that map from P to a

chain of size |P)|

n!
e(P) > .
1%
zeP
34. Let P, be the poset with elements x1,..., 2, y1,...,Yn, defined by x; < x;41 and x; < y; 10 point
for all 4. For example, P53 is shown in the margin. problem

a) Give a simple formula for the rank-generating function R(J(P,),q).
J(P) is the lattice of order ideals in P (ordered by inclusion).
R(G,q) is the number of elements of rank ¢ in a graded poset G.

b) Let P = lim P,. Determine R(J(P),q).

n—oo

c¢) Give a simple formula for e(P,,), the number of linear extensions of P,.

d) Let Q(P,, k) be the order polynomial for P,,. Express Q(FP,, k), for k € P, in terms
of the Stirling numbers of the second kind.

e) Express Q(P,, —k) in terms of the Stirling numbers of the first kind.

35. How many maximal chains are there in II,,, the lattice of all partitions of [n]?

36. Let P be a finite poset and let p be the Mobius function of P= PU{O, i} Suppose P
has a fixed- point-free automorphism ¢ : P — P of prime order p (that is, ¢(x) # z and  automorphism:

order-preserving

¢P(z) = z for all z € P). Show that (0,1) = —1 (mod p). What is this result called in bijection
the case when P = II,, the partition lattice?

37. Let E, be the poset (ordered by inclusion) of all subsets of [n] whose elements have even 0,2, 13, 123
sum.
a) Compute #E,,.
b) Compute (S, T) for all S and T in FE,,. Hint: “Rank-Selection”. But think first.

c) (Hopeless?) Do b) for all subsets whose elements have sum divisible by k.

38. Do there exist any infinite antichains in the lattice N2 ordered by Zorn’s Lemma?

(,y) < (z,w) <= z<zand y < w?

39. (a) Let P be a finite poset with a least element. If f : P — P is an order preserving
map, show that f has a fixed point.

(b) Define an element x € P to be central if x is comparable to every element in P.
Generalize (a) to show that if P has a central element then every o.p. self-map of
P has a fixed point.



40.

41.

42.

(¢) Give an example of a poset P with no central element such that every o.p. self-map
of P has a fixed point.

Note: A thereom by Baclawski and Bjorner (Adv. in Math. 31 (1979)), says that every
self-map of P has a fixed point if the order complex of P is acyclic, i.e. if the (reduced)
homology groups of the complex are trivial. If P has a central element ¢ then the order
complex A(P) of P is a cone complex with apexr c—i.e. every maximal simplex contains
c¢—so the topological space realizing A(P) is contractible (it can be contracted onto ¢)
and hence A(P) is acyclic.

A theorem of Stanley’s (Discrete Math, 1973) gives a combinatorial interpretation of the
values of the chromatic polynomial of a graph at negative integers. A particular case is
Xa(—1) which, up to a sign, equals the number of acyclic orientations of G. Can you
find a simple combinatorial proof of this?

Hint(?): How many acyclic orientations are there of the complete graph on n vertices?

Compute the chromatic polynomial X (n) of the k-cycle C. Can you find a direct proof
(assuming you give a simple answer)?

Define the W-polynomial of C}, by

Zxk(n)xn — M

EPRYES
= (1—2x)

Can you find a simple formula for the coefficients of the W-polynomial? In particular,
can you show that it is symmetric if &k is odd?

The numbers in the following triangle are defined recursively. The numbers on the edges
are the Euler numbers. The numbers in between also count alternating permutations,
but on a finer scale, that is, subject to some restrictions. Interpret these numbers com-
binatorially and show that they satisfy the recurrence defining the triangle. Hint: Look
at the last letter of each permutation.

1
1 0
0 1 1
2 2 1 0
0 2 4 ) 5

This triangle appears in V.I. Arnold: Bernoulli-Euler updown numbers associated with
function singularities, their combinatorics and arithmetics, Duke Math. J. 63 No. 2
(1991), 537-555. Arnold states that each line in the triangle defines finite mass distri-
butions and he shows, among other things, that the Euler number F,; is the number of
mazimal morsifications of the function z%+1.



