
Combinatorics Fall 02 Homework 3

33. Let P be an n-element poset. For x ∈ P , let Ix = #{y ∈ P | y ≤ x}. Let e(P ) be the linear extension:

order preserving

map from P to a

chain of size |P |
number of linear extensions of P . Show that

e(P ) ≥
n!∏

x∈P

Ix

.

34. Let Pn be the poset with elements x1, . . . , xn, y1, . . . , yn, defined by xi < xi+1 and xi < yi 10 point

problemfor all i. For example, P3 is shown in the margin.

a) Give a simple formula for the rank-generating function R(J(Pn), q).

J(P ) is the lattice of order ideals in P (ordered by inclusion).

R(G, q) is the number of elements of rank q in a graded poset G.

b) Let P = lim
n→∞

Pn. Determine R(J(P ), q).

c) Give a simple formula for e(Pn), the number of linear extensions of Pn.

d) Let Ω(Pn, k) be the order polynomial for Pn. Express Ω(Pn, k), for k ∈ P, in terms
of the Stirling numbers of the second kind.

e) Express Ω(Pn,−k) in terms of the Stirling numbers of the first kind.

35. How many maximal chains are there in Πn, the lattice of all partitions of [n]?

36. Let P be a finite poset and let µ be the Möbius function of P̂ = P ∪· {0̂, 1̂}. Suppose P

has a fixed- point-free automorphism φ : P → P of prime order p (that is, φ(x) 6= x and automorphism:

order-preserving

bijectionφp(x) = x for all x ∈ P ). Show that µ(0̂, 1̂) ≡ −1 (mod p). What is this result called in
the case when P = Πp, the partition lattice?

37. Let En be the poset (ordered by inclusion) of all subsets of [n] whose elements have even ∅, 2, 13, 123

sum.

a) Compute #En.

b) Compute µ(S, T ) for all S and T in En. Hint: “Rank-Selection”. But think first.

c) (Hopeless?) Do b) for all subsets whose elements have sum divisible by k.

38. Do there exist any infinite antichains in the lattice N
2 ordered by Zorn’s Lemma?

(x, y) ≤ (z, w) ⇐⇒ x ≤ z and y ≤ w?

39. (a) Let P be a finite poset with a least element. If f : P −→ P is an order preserving
map, show that f has a fixed point.

(b) Define an element x ∈ P to be central if x is comparable to every element in P .
Generalize (a) to show that if P has a central element then every o.p. self-map of
P has a fixed point.



(c) Give an example of a poset P with no central element such that every o.p. self-map
of P has a fixed point.

Note: A thereom by Baclawski and Björner (Adv. in Math. 31 (1979)), says that every
self-map of P has a fixed point if the order complex of P is acyclic, i.e. if the (reduced)
homology groups of the complex are trivial. If P has a central element c then the order
complex ∆(P ) of P is a cone complex with apex c—i.e. every maximal simplex contains
c—so the topological space realizing ∆(P ) is contractible (it can be contracted onto c)
and hence ∆(P ) is acyclic.

40. A theorem of Stanley’s (Discrete Math, 1973) gives a combinatorial interpretation of the
values of the chromatic polynomial of a graph at negative integers. A particular case is
χ

G(−1) which, up to a sign, equals the number of acyclic orientations of G. Can you
find a simple combinatorial proof of this?

Hint(?): How many acyclic orientations are there of the complete graph on n vertices?

41. Compute the chromatic polynomial χ
k(n) of the k-cycle Ck. Can you find a direct proof

(assuming you give a simple answer)?

Define the W -polynomial of Ck by

8-cycle

∑

n≥0

χ
k(n)xn =

Wk(x)

(1 − x)k+1
.

Can you find a simple formula for the coefficients of the W -polynomial? In particular,
can you show that it is symmetric if k is odd?

42. The numbers in the following triangle are defined recursively. The numbers on the edges
are the Euler numbers. The numbers in between also count alternating permutations,
but on a finer scale, that is, subject to some restrictions. Interpret these numbers com-
binatorially and show that they satisfy the recurrence defining the triangle. Hint: Look
at the last letter of each permutation.

1
1 0

0 1 1
2 2 1 0

0 2 4 5 5
16 16 14 10 5 0

...

This triangle appears in V.I. Arnold: Bernoulli-Euler updown numbers associated with

function singularities, their combinatorics and arithmetics, Duke Math. J. 63 No. 2
(1991), 537-555. Arnold states that each line in the triangle defines finite mass distri-

butions and he shows, among other things, that the Euler number Ed is the number of
maximal morsifications of the function xd+1.


