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Abstract. We prove that certain linear operators preserve the
Pólya frequency property and real-rootedness, and apply our re-
sults to settle some conjectures and open problems in combinatorics
proposed by Bóna, Brenti and Reiner-Welker.

1. Introduction

Many sequences encountered in various areas of mathematics, sta-
tistics and computer science are known or conjectured to be unimodal
or log-concave, see [8, 32, 34]. A sufficient condition for a sequence to
enjoy these properties is that it is a Pólya frequency (PF for short) se-
quence, or equivalently for finite sequences, that its generating function
has only real and non-positive zeros. It is often the case that the gener-
ating function of a finite PF -sequence has more transparent properties
when expanded in a basis other than the standard basis {xi}i≥0 of R[x].
Therefore it is natural to investigate how PF -sequences translate when
expressed in various basis. This amounts to studying properties of the
linear operator that maps one basis to another. A systematic study of
this was first pursued by Brenti in [7]. This is also the theme of this
paper.

In Section 3 we will study linear operators of the type

φF =
n∑

k=0

Qk(x)
dk

dxk
,

where F (x, z) =
∑n

k=0 Qk(x)zk ∈ R[x, z]. Here we will give sufficient
conditions on F for φF to preserve the PF -property. The results at-
tained generalizes and unifies theorems of Hermite, Poulain, Pólya and
Schur. We will also in this section give a sufficient condition for a fam-
ily of natural R-bilinear forms to preserve the PF -property in both
arguments. This generalizes results of Wagner [11, 37, 38].
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An important linear operator in combinatorics is the operator defined
by E(

(
x
i

)
) = xi, for all i ∈ N. In Section 4 we will prove that whenever

a polynomial f of degree d has nonnegative coefficients when expanded
in the basis {xi(x + 1)d−i}d

i=0 the polynomial E(f) will have only real,
non-positive and simple zeros.

In the remainder of the paper we use the theory developed to settle
some conjectures and open problems raised in combinatorics. High-
lights are; we prove that the q-Eulerian polynomials, An(x; q), defined
by Foata and Schützenberger [17] and further studied by Brenti in [10]
have only real zeros for all integers q. This settles a conjecture raised by
Brenti. We will also continue the study of the W -Eulerian polynomi-
als, defined for any finite Coxeter group W and the q-analog Bn(x; q),
initiated by Brenti in [9].

In Section 7 we prove that the h-vectors of a family simplicial com-
plexes associated to finite Weyl groups defined by Fomin and Zelevinski
[18] are PF , thus settling an open problem raised by Reiner and Welker
[30]. In Section 5 we prove that the numbers {Wt(n, k)}n−1

k=0 of t-stack
sortable permutations in Sn with k descents form PF -sequences when
t = 2, n − 2, and thereby settling two new cases of an open problem
proposed by Bóna [2, 3].

2. Notation and preliminaries

In this section we collect definitions, notation and results that will
be used frequently in the rest of the paper. Let {ai}∞i=0 be a sequence
of real numbers. It is unimodal if there is a number p such that a0 ≤
a1 ≤ · · · ≤ ap ≥ ap+1 ≥ · · · , and log-concave if a2

i ≥ ai−1ai+1 for all
i > 0.

An infinite matrix A = (aij)i,j≥0 of real numbers is totally positive,
TP , if all minors of A are nonnegative. An infinite sequence {ai}∞i=0 of
real numbers is a Pólya frequency sequence, PF -sequence, if the matrix
(ai−j)i,j≥0 is TP . Thus a PF -sequence is by definition log-concave
and therefore also unimodal. A finite sequence a0, a1, a2, . . . , an is said
to be PF if the infinite sequence a0, a1, a2, . . . , an, 0, 0, . . . is PF . A
sequence {ai}∞i=0 is said to be PFr if all minors of size r of (ai−j)i,j≥0

are nonnegative. If the polynomials {bi(x)}d
i=0 are linearly independent

over R and r ∈ N we define the set PFr[{bi(x)}d
i=0] to be

PFr[{bi(x)}d
i=1] = {

d∑
i=0

λibi(x) : {λi}∞i=0 is PFr},

and PF [{bi(x)}d
i=1] =

⋂∞
r=0 PFr[{bi(x)}d

i=1].
The following theorem characterizes PF -sequences. It was conjec-

tured by Schoenberg and proved by Edrei [16], see also [24].

Theorem 2.1. Let {ai}∞i=0 be a sequence of real numbers with a0 = 1.
Then it is a PF -sequence if and only if the generating function can be
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expanded, in a neighborhood of the origin, as∑
i≥0

aiz
i = eγz

∏
i≥0(1 + αiz)∏
i≥0(1− βiz)

,

where γ ≥ 0, αi, βi > 0 and
∑

i≥0(αi + βi) < ∞.

A consequence of this theorem is that a finite sequence is PF if
and only if its generating function is a polynomial with only real non
positive zeros.

Let f, g ∈ R[x] be real-rooted with zeros: α1 ≤ · · · ≤ αi and β1 ≤
· · · ≤ βj, respectively. We say that f interlaces g, denoted f � g, if
j = i + 1 and

β1 ≤ α1 ≤ β2 ≤ · · · ≤ βj−1 ≤ αj−1 ≤ βj.

We say that f alternates left of g, denoted f � g, if i = j and

α1 ≤ β1 ≤ · · · ≤ βi−1 ≤ αi ≤ βi.

If in addition f and g have no common zero then we say that f strictly
interlaces g and f strictly alternates left of g, respectively. We also say
that two polynomials f and g alternate if one of the polynomials alter-
nates left of or interlaces the other. We will need two simple lemmata
concerning these concepts. A polynomial is said to be standard if its
leading coefficient is positive.

Lemma 2.2. Let g and {fi}n
i=1 be real-rooted standard polynomials.

(i) If for each 1 ≤ i ≤ n we have either g � fi or g � fi. Then the
sum F = f1 + f2 + · · ·+ fn is real-rooted with g � F or g � F ,
depending on the degree of F .

(ii) If for each 1 ≤ i ≤ n we have either fi � g or fi � g. Then the
sum F = f1 + f2 + · · ·+ fn is real-rooted with F � g or F � g,
depending on the degree of F .

Proof. The lemma follows easily by counting the sign-changes of F at
the zeros of g, see e.g., [39, Prop. 3.5]. �

The next lemma is obvious:

Lemma 2.3. If f0, f1, . . . , fn are real-rooted polynomials with f0 � fn

and fi−1 � fi for all 1 ≤ i ≤ n, then fi � fj for all 0 ≤ i ≤ j ≤ n.

The following theorem is a characterization of alternating polynomi-
als due to Obreschkoff [26] and Dedieu [14]:

Theorem 2.4. Let f, g ∈ R[x]. Then f and g alternate (strictly alter-
nate) if and only if all polynomials in the space

{αf + βg : α, β ∈ R},
have only real (real and simple) zeros.

An immediate but non-trivial consequence of this theorem is:
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Corollary 2.5. Let φ : R[x] → R[x] be a linear operator. Then φ pre-
serves the real-rootedness property (real- and simple-rootedness prop-
erty) if and only if φ preserves the alternating property (strictly alter-
nating property).

We denote by N the set of natural numbers {0, 1, 2, . . .}. The sym-
metric group of bijections π : {1, 2, . . . , n} → {1, 2, . . . , n} is denoted by
Sn. A descent in a permutation π ∈ Sn is an index 1 ≤ i ≤ n, such that
π(i) > π(i + 1). Let des(π) denote the number of descents in π. The
Eulerian polynomials, An(x), are defined by An(x) =

∑
π∈Sn

xdes(π)+1

and satisfies, see e.g. [12]∑
k≥0

knxn =
An(x)

(1− x)n+1
.

The binomial polynomials are defined by
(

x
0

)
= 1 and

(
x
k

)
= x(x−1)···(x−k+1)

k!
for k ≥ 1.

In several proofs we will implicitly use the fact that the zeros of a
polynomial are continuous functions of the coefficients of the polyno-
mial. In particular the limit of a sequence of real-rooted polynomials is
again real-rooted. For a treatment of these matters we refer the reader
to [25].

3. A class of linear operators preserving the
PF -property

For any polynomial F (x, z) =
∑n

k=0 Qk(x)zk ∈ R[x, z] we define a
linear operator φF : R[x] → R[x] by,

φF (f) :=
n∑

k=0

Qk(x)
dk

dxk
f(x).

In this section we will investigate for which F ∈ R[x, z] the linear
operator φF preserves real-rootedness- and the PF -property .

We will need some terminology and a theorem from [5]. For ξ ∈ R
let Tξ : R[x] → R[x] be the translation operator defined by Tξ(f(x)) =
f(x + ξ). For any linear operator φ : R[x] → R[x] we define a linear
transform Lφ : R[x] → R[x, z] by

Lφ(f) := φ(Tz(f))

=
∑

n

φ(f (n))(x)
zn

n!
(3.1)

=
∑

n

φ(xn)

n!
f (n)(z).

Definition 3.1. Let φ : R[x] → R[x] be a linear operator. Define a
function dφ : R[x] → N∪ {−∞} by: If φ(f (n)) = 0 for all n ∈ N, we let
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dφ(f) = −∞. Otherwise let dφ(f) be the smallest integer d such that
φ(f (n)) = 0 for all n > d. Hence dφ(f) ≤ deg f for all f ∈ R[x].

The set A (φ) is defined as follows: If dφ(f) ∈ {−∞, 0} and φ(f) is
standard real- and simple-rooted, then f ∈ A (φ). Moreover, f ∈ A (φ)
if d = dφ(f) ≥ 1 and all of the following conditions are satisfied:

(i) φ(f (i)) all have leading coefficients of the same sign and deg(φ(f (i−1))) =
deg(φ(f (i))) + 1 for 1 ≤ i ≤ d,

(ii) φ(f) and φ(f ′) have no common real zero,
(iii) φ(f (d)) strictly interlaces φ(f (d−1)),
(iv) for all ξ ∈ R the polynomial Lφ(f)(ξ, z) is real-rooted.

The following theorem is proved in [5]:

Theorem 3.2. Let φ : R[x] → R[x] be a linear operator. If f ∈ A (φ)
then φ(f) is real- and simple-rooted.

We will also need the following classical theorem of Hermite and
Poulain. For a proof see [26].

Theorem 3.3. Let f = a0 + a1x + · · · + anx
n and g be real-rooted

polynomials. Then the polynomial

f(
d

dx
)g := a0g(x) + a1g

′(x) + · · ·+ ang
(n)(x)

is real-rooted. Moreover, if f( d
dx

)g 6= 0 then any multiple zero of f( d
dx

)g
is a multiple zero of g.

The following theorem gives a sufficient condition for a polynomial
to be mapped onto a real-rooted polynomial.

Theorem 3.4. Let F =
∑n

k=0 Qk(x)zk be such that Q0 6= 0 and

(I) For all ξ ∈ R, F (ξ, z) is real-rooted,
(II) Q0 strictly interlaces or strictly alternates left of Q1, and deg Q0 =

0 or Q0 and Q1 have leading coefficients of the same sign.

Suppose that

(III) f is real- and simple-rooted and that for 0 ≤ k ≤ deg f the
polynomials φF (f (k)) have their leading term of the same sign
with

deg φF (f (k)) = deg Q0 + deg f − k.

Then φF (f) is real- and simple-rooted.

Proof. We will show that the set of real- and simple-rooted polynomials
satisfying (III) is a subset of A (φF ) by verifying conditions (i)-(iv)
of Definition 3.1. Condition (i) follows immediately from (III). For
condition (iv) note that

Lφ(f)(ξ, z) =
n∑

k=0

Qk(ξ)f
(k)(ξ + z),
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so by the Theorem 3.3 condition (iv) is satisfied. Suppose that η is a
common zero of φF (f) and φF (f ′). By (3.1) we have that 0 is a multiple
zero of Lφ(f)(η, z). Moreover, since Lφ(f)(η, z) is not identically equal
to zero, by (II), Theorem 3.3 tells us that 0 is a multiple zero of f(η+z).
This means that η is multiple zero of f contrary to the assumption that
f is simple-rooted, and verifies condition (ii).

For condition (iii) we have to show that for all α ∈ R such that x+α
satisfies (III) the polynomial φF (1) = Q0 strictly interlaces f(x) :=
φF (x+α) = (x+α)Q0 +Q1. This follows from (II) when analyzing the
sign of f(x) := φF (x+α) at the zeros of Q0: Let αk < αk−1 < · · · < α1

be the zeros of Q0 ordered by size. Suppose that Q0 and Q1 are standard
and that Q0 strictly interlaces or strictly alternates left of Q1. Then
sgn f(αi) = sgn Q1(αi) = (−1)i for 1 ≤ i ≤ k. By Rolle’s theorem we
know that f has a zero in each interval (αi, αi+1). This accounts for
k−1 real zeros of f . Since Q0 has positive sign, so does f by condition
(III). Now, because f(α1) < 0 and f is standard, f must have a zero
to the right of α1. We now know that f has k zeros real. The signs at
αi forces the remaining zero to be in the interval (−∞, αk). Thus Q0

strictly interlaces Q1 as was to be shown.
Now, if Q0 = A ∈ R then deg Q1 ≤ 1. Suppose that Q1 = B ∈ R.

Then clearly A strictly interlaces (x + α)A + B. If Q0 = A and Q1 =
Cx + D where A, B, C ∈ R, then f = (A + C)x + Aα + D, so by (III)
we have that Q0 strictly interlaces f . This concludes the proof. �

In some cases it may be convenient to have sharper hypothesis.
Therefore we state the following form of the theorem.

Corollary 3.5. Let d ∈ N be given and let F =
∑n

k=0 Qk(x)zk be such
that Q0 6= 0 and

(i) For all ξ ∈ R, F (ξ, z) is real-rooted,
(ii) Q0 strictly interlaces or strictly alternates left of Q1, and deg Q0 =

0 or Q0 and Q1 have leading coefficients of the same sign.
(iii) The polynomials φF (xk), 0 ≤ k ≤ d have the same sign and

deg φF (xk) = deg Q0 + k.

Then φF (f) is real-rooted (real- and simple-rooted) if f is real-rooted
(real and simple-rooted) and deg(f) ≤ d.

Proof. The case of real- and simple-rooted f follows immediately from
Theorem 3.4 since (iii) implies (III). If f is a real-rooted polynomial of
degree at most d, then f is the limit of a sequence {fk}∞k=0 of real- and
simple-rooted polynomials of degree at most d. It follows that φF (f)
is the limit of φF (fk), and the thesis follows by continuity. �

In the language of PF -sequences we have:

Theorem 3.6. Let d ∈ N be given and let F =
∑n

k=0 Qk(x)zk ∈ R[x, z]
be such that Q0 6= 0 and
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(i) For all ξ ∈ R, F (ξ, z) is real-rooted,
(ii) φF (1) strictly interlaces φF (x).
(iii) For all 0 ≤ k ≤ d

deg φF (xk) = deg Q0 + k,

and φF (xk) ∈ PF1.

Then PF [{φF (xi)}d
i=0] ⊆ PF [xi].

Several old results can be derived from these last few theorems. In
[27, p. 163] Pólya gave a theorem which he states probably was the
most general theorem on real-rootedness known at the time. ”Dieser
Satz gehört wohl zu den allgemeinsten bekannten Sätzen über Wurzel-
realität.”:

Theorem 3.7. Let f(x) be a real-rooted polynomial of degree n, and
let

b0 + b1x + · · ·+ bn+mxn+m, (m ≥ 0)

be a real-rooted polynomial such that bi > 0 for 0 ≤ i ≤ n. Then the
equation

G(x, y) := b0f(y) + b1xf ′(y) + b2x
2f

′′
(y) + · · ·+ bnf

(n)(y) = 0,

has n real intersection points, (counted with multiplicity), with the line

sx− ty + u = 0,

provided that s, t ≥ 0, s + t > 0 and u ∈ R.

Proof. We may assume that s, t > 0 since the other cases follows by
continuity when s and/or t tends to zero. Thus we may write the
equation as

a0g(x) + a1xg′(x) + a2x
2g′′(x) + · · ·+ ang

(n)(x) = 0,

where g(x) = f(st−1x + ut−1) and ai = sit−ibi. Now, we see that all
hypothesis of Corollary 3.5 are satisfied for

F (x, z) = a0 + a1xz + a2x
2z2 + · · ·+ an+mxn+mzn+m,

when d = n. �

We will later need one famous consequence of this theorem, t = 1, s =
u = 0, due to Schur [31].

Theorem 3.8. Let f =
∑n

k=0 akx
k and g =

∑m
k=0 bkx

k be two real-
rooted polynomials such that g has all zeros of the same sign. Then the
polynomial

(fSg)(x) =
M∑

k≥0

k!akbkx
k,

where M = min(m, n) has only real zeros.
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3.1. Multiplier-sequences. A multiplier-sequence is a sequence T =
{γi}∞i=0 of real numbers such that if a polynomial f(x) = a0 + a1x +
· · ·+ anx

n has only real zeros, then the polynomial

T [p(x)] := a0γ0 + a1γ1x + · · ·+ anγnx
n,

also has only real zeros. There is a characterization of multiplier-
sequences due to Pólya and Schur [27, p. 100-124]:

Theorem 3.9. Let T = {γi}∞i=0 be a sequence of real numbers and

let φ(x) = T [ex] =
∑∞

k=0 γk
xk

k!
be its exponential generating function.

Then T is a multiplier-sequence if and only if φ is a real entire function
which can be written as

φ(x) = cxne−αx2+βx

∞∏
k=1

(1 + δkx)e−δkx,

where c, β, δk ∈ R, c 6= 0, α ≥ 0, n ∈ N and
∑∞

k=1 δ2
k < ∞.

The following lemma is well-known but elementary, so we give a proof
here.

Lemma 3.10. A multiplier-sequence is strictly log-concave. In partic-
ular, a nonnegative multiplier-sequence has no internal zeros.

Proof. If f(x) = amxm + am+1x
m+1 + · · · + anx

n is real-rooted with
aman 6= 0, then the coefficients satisfy (see [21, p. 52]):

a2
i(

n
i

)2 >
ai−1(

n
i−1

) ai+1(
n

i+1

) (m < i < n).

Now, if Γ = {γi}∞i=0 is a multiplier-sequence, then Γ[(x + 1)n] is real-
rooted for all n ∈ N, which implies

γi > γi−1γi+1,

for all i such that there are integers m < i < n with γmγn 6= 0.
�

Theorem 3.11. Let {λk}∞k=0 be a non-negative multiplier-sequence,
and let α < β ∈ R be given. Define two R-bilinear forms R[x]×R[x] →
R[x] by

f · g :=
∑
k≥0

λk

k!
f (k)(x)g(k)(x)(x− α)k(x− β)k,

f ◦ g :=
∑
k≥0

λk

k!
f (k)(x)g(k)(x)(x− α)k,

If f is real-rooted and g is [α, β]-rooted, then f · g is real-rooted. If f
is real-rooted and g is [−∞, α]-rooted, then f ◦ g is real-rooted.
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Proof. We prove the statement for · since the case of ◦ is similar. We
may assume that λ0 > 0. Clearly the theorem is true if λi = 0 for all
i > 0, so by Lemma 3.10 we may assume that λ1 > 0. Let g have all
zeros simple and in the interval (α, β), and let φ be the linear operator
defined by φ(f) = f · g. Then φ = φF , where

F (x, z) =
∑
k≥0

λk
g(k)(x)

k!
(x− α)k(x− β)kzk.

Since {λk}k≥0 is a multiplier sequence F (ξ, z) is real-rooted for all real
choices of ξ. Now, Q0 = λ0g(x) and Q1 = λ1(x−α)(x− β)g′(x), so Q0

strictly interlaces Q1. Moreover, deg φ(xk) = deg Q0 + k for all k, so
all the hypothesis of Corollary 3.5 are fulfilled. Since any [α, β]-rooted
polynomial is the limit of polynomial which are (α, β)- and simple-
rooted the thesis follows by continuity. �

A sequence of real numbers Γ = {γk}∞k=0 is called an multiplier n-
sequence if for any real-rooted polynomial f = a0 +a1x+ · · ·+anx

n of
degree at most n the polynomial Γ[f ] := a0γ0 + a1γ1x+ · · ·+ anγnx

n is
real-rooted. There is a simple algebraic characterization of multiplier
n-sequences [13]:

Theorem 3.12. Let Γ = {γk}∞k=0 be a sequence of real numbers. Then
Γ is a multiplier n-sequence if and only if Γ[(x+1)n] is real-rooted with
all its zeros of the same sign.

Recall the definition of the hypergeometric function 2F1:

2F1 (a, b; c; z) =
∞∑

m=0

(a)m(b)mzm

(c)mm!
,

where (α)0 = 1 and (α)m = α(α + 1) · · · (α + m− 1) when m ≥ 1. The

Jacobi polynomial P
(α,β)
n (x) can be expressed as follows [28, p. 254]:

P (α,β)
n (x) =

(1 + α)n

n!
2F1

(
−n, 1 + α + β + n; 1 + α;

1− x

2

)
, (3.2)

We need the following lemma:

Lemma 3.13. Let n be a positive integer and r a non-negative real
number. Then Γ = {

(−n−r
k

)
}∞k=0 is a multiplier n-sequence.

Proof. Let r > 0. Then

Γ[(x + 1)n] =
n∑

k=0

(
−n− r

k

)(
n

k

)
xk

= 2F1 (−n, n + r; 1; x)

= P (0,r−1)
n (1− 2x),

where the last equality follows from (3.2). Since the Jacobi polynomials
are known, see [28], to have all their zeros in [−1, 1] when α, β > −1,



10 LINEAR TRANSFORMATIONS PRESERVING THE PF -PROPERTY

we have that Γ[(x+1)n] has all its zeros in [0, 1]. The case r = 0 follows
by continuity when we let r tend to zero from above. �

For any real number q let Γq := {q + k}∞k=0.

Corollary 3.14. Let n > 1 be a positive integer. Then Γq is an n-
sequence if and only if q /∈ (−n, 0).

Proof. Let q ∈ R be given. We have to determine for which n > 1 the
zeros of Γq[(x + 1)n] are all real and of the same sign. Now,

Γq[(x + 1)n] = (x + 1)n−1{(n + q)x + q}.

If q ≥ 0 or n = −q then all zeros are negative so we may assume that
q < 0 and n 6= −q. If n > −q then q/(n + q) is negative so Γq[(x + 1)n]
has zeros of different signs. If on the other hand n < −q then q/(n+ q)
is positive which gives that all zeros of Γq[(x + 1)n] are negative, and
the lemma follows. �

4. The E-transformation

The E-transformation is the invertible linear operator, E : R[x] →
R[x], defined by

E(

(
x

i

)
) = xi,

for all i ∈ N. The PF -preserving properties of this linear operator
was first studied in [7] and later in [38, 39] and [5]. It is important in
the theory of (P, ω)-partitions since it maps the order-polynomial of a
labeled poset to the E-polynomial of the same labeled poset, see [7, 38].
In, [7] Brenti proved the following theorem. Let λ(f) and Λ(f) denote
the smallest and the largest real zero of the polynomial f , respectively.

Theorem 4.1. Suppose that f ∈ R[x] has only real zeros and that
f(n) = 0 for all n ∈ ([λ(f),−1] ∪ [0, Λ(f)]) ∩ Z. Then E(f) has all
zeros real and non-positive.

In this section we will prove the following theorem:

Theorem 4.2. For all n ∈ N we have

PF1[{xi(x + 1)n−i}n
i=0] ⊆ PF [

(
x

i

)
]

Moreover if f ∈ PF1[{xi(x+1)n−i}n
i=0] then E(f) has simple zeros and

E((x + 1)d) � E(f) � E(xd).

The diamond product of two polynomials in R[x] is the R-bilinear
form defined by

(f � g)(x) := E(E−1(f)E−1(g)). (4.1)
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This product was first studied by Wagner in [38, 39] and further studied
in [5]. See also Section 8 of this paper. Using the Vandermonde identity(

x

i

)(
x

j

)
=

∑
k≥0

(
k

k − i, i + j − k, k − j

)(
x

k

)
,

it follows, see [39], that

(f � g)(x) =
∑
k≥0

f (k)(x)

k!

g(k)(x)

k!
xk(x + 1)k. (4.2)

We will later need a symmetry property of E . Let R : R[x] → R[x] be
the algebra automorphism defined by R(x) = −1− x.

Lemma 4.3.
RE = ER

Proof. From (4.2) it follows that

R(f � g) = R(f) � R(g) (4.3)

Note that RE(f) = ER(f) whenever f is linear. Now, suppose that
f, g are polynomials such that RE(f) = ER(f) and RE(g) = ER(g).
Then

RE(fg) = R
(
E(f) � E(g)

)
by (4.1)

=
(
RE(f)

)
�

(
RE(g)

)
by (4.3)

=
(
ER(f)

)
�

(
ER(g)

)
= E

(
R(f)R(g)

)
= ER(fg).

Since we may view E and R as C-linear operators on C[x], and �
as a C-bilinear form on C[x], the lemma follows from the fundamental
theorem of algebra. �

Lemma 4.4. Let α ∈ [−1, 0] and let f be a polynomial such that E(f)
is [−1, 0]-rooted. Then E((x−α)f) is [−1, 0]-rooted and E(f) interlaces
E((x − α)f). If E(f) in addition only has simple zeros, then so does
E((x− α)f).

Proof. Let g = E(f) and let α ∈ [−1, 0]. By (4.2) we have that

E((x− α)f) = (x− α)g + x(x + 1)g′. (4.4)

Since g interlaces (x − α)g and x(x + 1)g′ it also interlaces the sum,
by Lemma 2.2. Also, if x /∈ [−1, 0] then the summands have the same
sign so E((x − α)f) cannot have any zeros outside [−1, 0]. Suppose
that g has only simple zeros. Then by (4.4) the only possible common
zeros of g and E((x− α)f) are 0 and −1. If deg(f) ≥ 1 it also follows
from (4.4) that the multiplicities of 0 and −1 of E((x − α)f) are the
same as those of g. Hence the (simple) zeros of g separates the zeros of



12 LINEAR TRANSFORMATIONS PRESERVING THE PF -PROPERTY

E((x−α)f) except possibly at 0,−1, and we conclude that E((x−α)f)
has only simple zeros. �

Lemma 4.5. For all integers n ≥ 1 we have

(x + 1)E(xn) = xE((x + 1)n).

Proof. We may write

xn =
n∑

k=1

ak

(
x

k

)
,

where ak ∈ R. Thus

E((x + 1)n) =
n∑

k=1

akE [

(
x

k

)
+

(
x

k − 1

)
]

=
n∑

k=1

ak(x
k + xk−1)

= (x + 1)x−1E(xn).

�

For i ∈ N and let RRn denote the set of real-rooted monic polyno-
mials of degree n. We define a partial order ≤ on RRn as follows: If
f, g ∈ RRn have zeros α1 ≤ α2 ≤ · · · ≤ αn and β1 ≤ β2 ≤ · · · ≤ βn

respectively then f ≤ g, if αi ≤ βi for 1 ≤ i ≤ n.

Theorem 4.6. Suppose that f and g are [−1, 0]-rooted with f ≤ g.
Then E(f) and E(g) are [−1, 0]- and simple-rooted, with E(f) � E(g).

Proof. By Lemma 4.4 and induction we only have to show that E(f) �
E(g). If f and g have the same zeros except for one, i.e., f = (x− α)h
and g = (x− β)h, where α < β, then

E(g) = E(f)− (β − α)E(h),

and since E(h) interlaces E(f) we have E(f) � E(g) by Lemma 2.2.
Now, suppose that f and g are [−1, 0]-rooted polynomials of degree

n such that f ≤ g. Then there are [−1, 0]-rooted polynomials {hi}M
i=0

with

(x + 1)n = h0 ≤ h1 ≤ · · · ≤ hM = xn,

such that f, g ∈ {hi}M
i=0 and hi−1 and hi only differ in one zero for

1 ≤ i ≤ n. We therefore have

E(h0) � E(h1) � · · · � E(hM),

and since E(h0) � E(hM), by Lemma 4.5, the theorem follows from
Lemma 2.3. �

A consequence of Theorem 4.6 is that if {fi}m
i=1 is a sequence of stan-

dard [−1, 0]-rooted polynomials of the same degree d, then by Lemma
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2.2 and Theorem 4.6, the image under E of any non-negative sum
F =

∑m
i=1 µifi will be [−1, 0]-rooted with

E((x + 1)d) � E(F ) � E(xd).

It is easy to see that a standard polynomial f of degree d is [−1, 0]-
rooted if and only if f can be written as

f(x) = (x + 1)dg(
x

x + 1
),

where g is a standard and (−∞, 0)-rooted. On the other hand, since
xi(x + 1)d−i is [−1, 0]-rooted we have that F can be written as a non-
negative sum of standard [−1, 0]-rooted polynomial of degree d if and
only if

F (x) =
d∑

i=0

aix
i(x + 1)d−i,

where ai ≥ 0. This proves Theorem 4.2.

5. t-stack sortable permutations

For relevant definitions regarding t-stack sortable permutations we
refer the reader to [2]. Let Wt(n, k) be the number of t-stack sortable
permutations in the symmetric group, Sn, with k descents. Recently,
Bóna [1, 3] showed that for fixed n and t the numbers {Wt(n, k)}n−1

k=0

form a unimodal sequence. When t = n − 1 and t = 1 we get the
Eulerian and the Narayana numbers (see [36] and [33, Exercise 6.36]),
respectively. These are known to be PF -sequences and Bóna [2, 3] has
raised the question if this is true for general t. Here we will settle the
problem to the affirmative for t = 2 and t = n− 2.

The numbers W2(n, k) are surprisingly hard to determine despite
their compact and simple form. It was recently shown that

W2(n, k) =
(n + k)!(2n− k − 1)!

(k + 1)!(n− k)!(2k + 1)!(2n− 2k − 1)!
.

See [4, 15, 20, 23] for proofs and more information on 2-stack sortable
permutations.

From the case r = 0 in Lemma 3.13 and the identity
n∑

k=0

(
2n− k − 1

n− 1

)(
n

k

)
xk = (−1)n

n∑
k=0

(
−n

k

)(
n

k

)
(−x)n−k,

it follows that
(
2n−k−1

n−1

)
is an n-sequence.

Theorem 5.1. For all n ≥ 0 the sequence {W2(n, k)}n−1
k=0, which records

2-stack sortable permutations by descents, is PF .
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Proof. We may write W2(n, k) as

W2(n, k) =

(
2n−k−1

n−1

)(
n+k
n−1

)(
2n

2k+1

)
n2

(
2n
n

) .

An simple consequence of the notion of PF -sequences reads as follows:
If {ai}i≥0 is PF then so is {aki}i≥0, where k is any positive integer.
Applying this to the polynomial x(1 + x)2n we see that

∑
k

(
2n

2k+1

)
xk is

real-rooted. Therefore the polynomial,

n−1∑
k=0

(
n + k

n− 1

)(
2n

2k + 1

)
xk =

n−1∑
k=0

(
2n− k − 1

n− 1

)(
2n

2k + 1

)
xn−1−k,

is real-rooted. Another application of Lemma 3.13 gives that Wn,2(x)
is real-rooted. �

It is easy to see that a permutation π ∈ Sn is (n− 2)-stack sortable
if and only if it is not of the form σn1. Thus the generating function
satisfies

xWn,n−2(x) = An(x)− xAn−2(x),

where An(x) is the nth Eulerian polynomial.

Theorem 5.2. For all real numbers t > −2 and integers n > 2, the
polynomial

An(t, x) = An(x) + txAn−2(x),

is real- and simple-rooted. Moreover, An(t, x)/x strictly interlaces An+1(t, x)/x
for −2 < t ≤ 3.

Corollary 5.3. For all n ≥ 2 we have that {Wn−2(n, k)}n−1
k=0 is PF .

Moreover, Wn,n−2(x) strictly interlaces Wn+1,n−1(x).

Proof of Theorem 5.2. It is well known that An−1(x) � xAn−2(x) and
An−1(x) � An(x). So by Lemma 2.2 we have that An(t, x) is real- and
simple-rooted for t ≥ 0. However, when t < 0 a similar argument does
not apply.

Let En(t, x) = An(t, x
1+x

). Then

En(t, x) = En(x) + tx(1 + x)En−2(x),

where the coefficient to xk in En(x) counts the number of surjections
σ : [n] → [k], see [7, 38]. These polynomials satisfy the recursion:

En(x) = x
d

dx
((1 + x)En−1(x)),

with initial condition E1(x) = x. Thus, if we let Gn(x) = En+1(x)/x
we have the following recursion:

Gn(x) =
d

dx
(x(1 + x)Gn−1(x)), (5.1)
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with G0(x) = 1. Obviously Gn(x) is real- and simple-rooted. If we
apply (5.1) two times we get the equation:

Gn(x) = (1 + 6x + 6x2)Gn−2(x) + 3x(1 + 2x)(1 + x)G′
n−2(x)+

x2(1 + x)2G′′
n−2(x),

and

Gn(t, x) = (1+(6+t)x+(6+t)x2)Gn−2(x)+3x(1+2x)(1+x)G′
n−2(x)+

x2(1 + x)2G′′
n−2(x).

To apply Theorem 3.4 we need show that for all ξ ∈ R and −2 < t < 0
the polynomial

F (ξ, z) := (1 + (6 + t)ξ + (6 + t)ξ2) + 3ξ(1 + 2ξ)(1 + ξ)z + ξ2(1 + ξ)2z2

is real-rooted. The discriminant of F (ξ, z),

∆(F (ξ, z)) = ξ2(1 + ξ)2(2 + t + (3− t)(1 + 2ξ)2),

is non-negative when −2 ≤ t ≤ 3, so F (ξ, z) real-rooted for these t.
Since all the Qks are standard it is easy to see that condition (III) in the
statement of Theorem 3.4 is satisfied. Moreover, 1+(6+ t)x+(6+ t)x2

strictly interlaces 3x(1 + 2x)(1 + x) when t > −2 so Theorem 3.4
applies. Since Gn strictly interlaces Gn+1 we have by Theorem 3.4 and
Corollary 2.5 that φF (Gn) strictly interlaces φF (Gn+1). Thus An(t, x)
strictly interlaces An+1(t, x). �

6. q-Eulerian and W -Eulerian polynomials

A q-analog of the Eulerian polynomials was introduced and studied
in [17] and further studied in [10]. It is defined by

An(x; q) :=
∑
π∈Sn

xexc(π)qc(π),

where c(π) and exc(π) denotes the number of cycles and excedances in
π respectively. These polynomials satisfy the recursion

An+1(x; q) = (nx + q)An(x; q)− x(x− 1)
∂

∂x
An(x; q),

with initial condition A0(x; q) := 1. See [10] for a proof. The following
theorem appears in [10].

Theorem 6.1. Let q ∈ R, q > 0. Then the polynomials An(x, q) have
only real non-positive simple zeros.

Brenti also makes the following conjecture:

Conjecture 6.2. Let n, m ∈ N. Then An(x;−m) has only real zeros.
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In what follows we will prove this conjecture using multiplier n-
sequences. For n ∈ N define the polynomials En(x; q) by:

En(x; q) := (1 + x)nAn(
x

1 + x
; q).

It is clear that En(x; q) is real-rooted if and only if An(x; q) is real-
rooted. These polynomials satisfy a somewhat easier recursion. Namely,

En+1(x; q) = (1 + x){qEn(x; q) + x
∂

∂x
En(x; q)}, (6.1)

with initial condition E0(x; q) = 1. Now, for q ∈ R let Γq : R[x] → R[x]
be the linear operator defined by Γq(f(x)) = qf(x) + xf ′(x). Since
Γq(x

n) = (q + n)xn we may apply Lemma 3.14.

Theorem 6.3. Let q ∈ R and n ∈ N. If q ≥ 0, n ≤ −q or q ∈ Z then
En(x; q) has only real zeros.

Proof. We may write (6.1) as

En+1(x; q) = (x + 1)Γq[En(x; q)].

The cases q ≥ 0 and n ≤ −q follow from Lemma 3.14 by induction. We
may therefore assume that q = −m is a negative integer. We claim that
deg En(x; q) = n if n ≤ m and deg En(x; q) = m if n ≥ m. From this
the real-rootedness follows by Lemma 3.14 and induction. The case
n ≤ m is clear since Γq[x

n−1] = −(m−n+1) < 0. The case n > m also
follows by induction. Suppose that n ≥ m and that deg En(x; q) = m.
Then by the recursion we have that deg En+1(x; q) ≤ m+1. Moreover,
since Γq[x

m] = 0 we have that deg En+1(x; q) ≤ m. Let a 6= 0 be the
coefficient to xm of En(x; q). Then the coefficient to xm of En+1(x; q)
is aΓq[x

m−1] = −a, so deg En+1(x; q) = m, and the thesis follows. �

The Eulerian polynomial, P (W, x), of a finite Coxeter group W is
the polynomial,

P (W, x) =
∑
σ∈W

xdW (σ),

where dW (σ) is the number of W -descents of σ, see [9]. This poly-
nomial is also the generating function for the h-vector of the Coxeter
complex associated to (W, S). For Coxeter groups of type An we have
that P (An, x) = An(x)/x, the shifted Eulerian polynomial. Also, for
Coxeter groups of type Bn it is known, see [9], that P (Bn, x), has only
real zeros. It is easy to see that P (W1 × W2, x) = P (W1, x)P (W2, x)
for finite Coxeter groups W1 and W2. Also, the real-rootedness can be
checked ad hoc for the exceptional groups. Thus, by the classification
of finite irreducible Coxeter groups, to prove that P (W, x) has only
real zeros for all finite Coxeter groups it suffices to prove that P (Dn, x)
is real-rooted for Coxeter groups of type Dn. The real-rootedness of



LINEAR TRANSFORMATIONS PRESERVING THE PF -PROPERTY 17

P (Dn, x) is conjectured by Brenti in [9]. It is known that the Eulerian
polynomials of type An, Bn and Dn are related by, see [9, 29, 35]:

P (Dn, x) = P (Bn, x)− n2n−1xP (An−1, x).

This relationship was first noticed by Stembridge [35]. One step to-
wards proving the real-rootedness of P (Dn, x) is to learn more about
the relationships between the zeros of P (Bn, x) and P (An, x).

Brenti [9] introduced a q-analog of P (Bn, x)

Bn(x; q) =
∑
σ∈Bn

qN(σ)xdB(σ), (6.2)

where dB(σ) is the number of Bn-descents of σ and N(σ) is the number
of negative entries of σ, see [9]. He proved that∑

i≥0

((1 + q)i + 1)nxi =
Bn(x; q)

(1− x)n+1
, (6.3)

and that Bn(x; q) is real- and simple-rooted for all q ≥ 0. Suppose
that f(i) is a polynomial in i of degree d, then the polynomial W (f) is
defined by ∑

i≥0

f(i)xi =
W (f)(x)

(1− x)d+1
,

One can show, see [7], that E(f) and W (f) are related by:

E(f)(x) = (1 + x)deg(f)W (f)(
x

1 + x
). (6.4)

It follows that W (f) has only real non-positive roots if and only if E(f)
is [−1, 0]-rooted. Since ((1 + q)i + 1)n is a [−1, 0]-rooted polynomial
in i for any q ≥ 0 it follows from e.g. Theorem 4.2 that Bn(x; q) is
real-rooted in x for any fixed q ≥ 0. It is natural to generalize Bn(x; q)
to have n+1 parameters as Bn(x;q) := W

( ∏n
i=0

(
(1+qi)x+1

))
. This

polynomial has a nice combinatorial interpretation:

Theorem 6.4. For all n ∈ N we have:

Bn(x,q) =
∑
σ∈Bn

q
χ1(σ)
1 q

χ2(σ)
2 · · · qχn(σ)

n tdB(σ),

where

χi(σ) =

{
1 if σi < 0,

0 if σi > 0.

Proof. The proof is an obvious generalization of the proof of Theorem
3.4 of [9]. �

Note that this theorem gives a semi-combinatorial interpretation of
the W -transform of any [−1, 0)-rooted polynomial.

Corollary 6.5. Let n ∈ N and let q1, q2, . . . , qn be non-negative real
numbers. Then Bn(x;q) has only real and simple zeros.
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We need the following lemma on the degree of W (f).

Lemma 6.6. Let f ∈ R[x]. Then

deg W (f) = deg f −mult(−1, E(f)).

Moreover, mult(−1, E(f)) is equal to the maximal integer k such that
(x + 1)(x + 2) · · · (x + k) divides f .

Proof. Since deg E(f) = deg f for all f we have by (6.4) that deg W (f) =
deg f −mult(−1, E(f)). If we expand f in the basis {

(−x−1
i

)
} as:

f(x) =
∑
i≥0

(−1)iai

(
−x− 1

i

)
,

=
∑
i≥0

ai

i!
(x + 1) · · · (x + i),

we have by Lemma 4.3 that

E(f)(x) =
∑
i≥0

ai(x + 1)i,

and the lemma follows. �

We now have more precise knowledge of the location of the zeros of
Bn(x; q) for any given q ≥ 0.

Theorem 6.7. Let 0 < q < t ∈ R and n > 0 be an integer. Then

Bn(x; 0) � Bn(x; t) � Bn(x; q) � xBn(x; 0),

where the three first polynomials have no common zeros.

Proof. Let 0 < r < s < 1. Then by the proof of Lemma 4.4 we have

E(xn) � E(x(x+r)n−1) �strict E((x+r)n) �strict E((x+r)n−1(x+s)) �
E((x + s)n) �strict E((x + s)n−1(x + 1)) � E((x + 1)n),

where �strict means strictly alternating left of. Since (x + 1)E(xn) =
xE((x + 1)n) this implies

E(xn) �strict E((x + r)n) �strict E((x + s)n) �strict E((x + 1)n).

Now since

Bn(x; q) = (q+1)nW ((x+
1

1 + q
)n) = (q+1)n(1−x)nE((x+

1

1 + q
)n)(

x

1− x
),

we see by Lemma 6.6 that deg Bn(x; 0) = n − 1 and deg Bn(x; q) = n
if q 6= 0. Moreover, the alternating property is preserved under the
operation (6.4) and the theorem follows. �

It follows from (6.2) that P (Bn, x) = Bn(x; 1) and P (An, x) =
Bn(x; 0).

Corollary 6.8. For all integers n ≥ 1 we have that P (An, x) strictly
interlaces P (Bn, x).
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Since P (An, x) � xP (An−1, x) and P (An, x) � P (Bn, x), we have by
Lemma 2.2 that for all t ≥ 0 the polynomial P (Bn, x) + txP (An−1, x)
is real-rooted. Unfortunately a similar argument does not apply when
t < 0.

One can extract more from (6.3). Brenti [9] proved that the polyno-
mial ∑

σ∈Bn,N(σ)∈{k,n−k}

xdB(σ),

is real-rooted for all choices of 0 ≤ k ≤ n. Using Theorem 4.6 we can
extend this result to:

Corollary 6.9. Let S be any subset of [0, n]. Then the polynomial

P (Bn, S; x) :=
∑

σ∈Bn,N(σ)∈S

xdB(σ),

has only real and simple zeros.

Proof. Comparing the coefficient of qi in both sides of (6.3) we see that
P (Bn, S; x) = W (fn(S; x)) where

fn(S; x) =
∑
s∈S

(
n

s

)
xs(x + 1)n−s.

So the theorem follows from Theorem 4.2. �

One instance of Theorem 6.9 is particularly interesting. Recall that
a Coxeter group of type Dn is isomorphic to the subgroup

Dn = {σ ∈ Bn : 2 | N(σ)}

Hence, we have the following corollary

Corollary 6.10. For all n ∈ N the polynomial∑
σ∈Dn

xdB(σ)

has only real and simple zeros.

Note that the above polynomial is not P (Dn, x), since Bn-descents
and Dn-descents are not the same.

7. The h-vector of a family of simplicial complexes
defined by Fomin and Zelevinsky

Fomin and Zelevinsky [18] recently associated to any finite Weyl
group W a simplicial complex ∆FZ(W ). For the classical Weyl groups
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these polynomials are given by

h(∆FZ(An−1), x) =
1

n

n−1∑
k=0

(
n

k

)(
n

k + 1

)
xk,

h(∆FZ(Bn), x) =
n∑

k=0

(
n

k

)(
n

k

)
xk,

h(∆FZ(Dn), x) = h(∆FZ(Bn), x)− nxh(∆FZ(An−2), x).

It is known that the h-polynomials corresponding to An and Bn have
only real zeros. We will here show that so has h(∆FZ(Dn), x).

Theorem 7.1. Let α, β ∈ R be such that α ≥ 0, 2α + β > 0 and let
n ≥ 2 be an integer. Then the polynomial

Fn(α, β) := αh(∆FZ(Bn), x) + βnxh(∆FZ(An−2), x),

is real- and simple-rooted. Moreover, h(∆FZ(Bn−1), x) strictly inter-
laces Fn(α, β) if α > 0 and strictly alternates left of Fn(α, β) if α = 0.

Corollary 7.2. Let W be a finite Weyl group. Then h(∆FZ(W ), x)
has only real and simple zeros. For the classical Weyl groups we have
the following relationships:

h(∆FZ(An−1), x) � h(∆FZ(An), x),

h(∆FZ(Bn−1), x) � h(∆FZ(Bn), x),

h(∆FZ(Bn−1), x) � h(∆FZ(Dn), x),

h(∆FZ(An−1), x) � h(∆FZ(Bn), x),

where the interlacing is strict.

Proof. For the exceptional Weyl group one can check the real-rootedness
ad hoc, see [30]. That {h(∆FZ(An), x)}n≥0 form a Sturm sequence is
proved in [6]. The other cases follows from Theorem 7.1. �

The Hadamard product of two polynomials

p(x) = a0 + a1x + · · ·+ amxm

q(x) = b0 + b1x + · · ·+ bnx
n

is the polynomial

(p ? q)(x) = a0b0 + a1b1x + · · ·+ aNbNxN ,

where N = min(m, n). Málo proved that if the zeros of p are real and
the zeros of q are real and of the same sign then the zeros of p ? q are
real as well. This also follows from Theorem 3.8 since p ? q = Γ[pSq]
where Γ is the multiplier sequence { 1

k!
}∞k=0. It is known, see e.g. [19],

that if f has only real zeros then all zeros of Γ[f ] are real and simple
except for possibly at the origin.
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Proof of Theorem 7.1. Let Fn(α, β) = αh(∆FZ(Bn), x)+βnxh(∆FZ(An−2), x).
We may write Fn(α, β) as

Fn(α, β) = α(x + 1)n ? (x + 1)n + β
(
x(x + 1)n−1

)
? (x + 1)n−1,

where the first summand can be written as

(x + 1)
(
(x + 1)n−1 ? (x + 1)n−1

)
+ 2

(
x(x + 1)n−1

)
? (x + 1)n−1.

Thus Fn(α, β) = α(x+1)f +(2α+β)g where f = (x+1)n−1?(x+1)n−1

and g =
(
x(x + 1)n−1

)
? (x + 1)n−1. By the discussion before this proof

we have that for all real choices of γ, δ ∈ R the polynomial

γf + δg =
(
(γ + δx)(x + 1)n−1

)
? (x + 1)n−1,

is real- and simple-rooted. By the Obreschkoff theorem we infer that
f strictly alternates left of g. Now, since f � (x + 1)f and f � g
we know by Lemma 2.2 that f either interlaces or alternates left of
Fn(α, β) for all α, β ∈ R such that sgn(α) = sgn(2α + β). Moreover,
since g and f have no common zeros nor does Fn(α, β) and f (provided
that 2α + β 6= 0). �

8. Two bilinear forms

There are a few bilinear forms on polynomials that occur frequently
in combinatorics. Let # : R[x]× R[x] → R[x] be defined by

(f#g)(x) :=
∑
k≥0

f (k)(x)g(k)(x)
xk

k!
.

This product is important when analyzing how the the zeros of σ-
polynomials behave under disjoint union of graphs, see [11].

Theorem 8.1. Let f be real-rooted and let g have only real zeros of
the same sign. Then f#g is real-rooted.

Proof. The theorem follows from Theorem 3.11, since {1}∞k=0 is trivially
a multiplier-sequence. �

This generalizes a result of Wagner, who proved that f#g is real-
rooted whenever f and g have only non-negative zeros, see [11, 37].

Recall the definition, (4.2), of the diamond product. This product
is important in the theory of (P, ω)-partitions and the Neggers-Stanley
conjecture, see [38]. Applying Theorem 3.11 with the multiplier-sequence
{ 1

k!
}k≥0 we get:

Theorem 8.2. Let f be real-rooted and let g have all zeros in the
interval [−1, 0]. Then f � g is real-rooted.

This was first proved by Wagner [39] under the additional hypothesis
that f has all zeros in [−1, 0], and generalized by the present author in
[5].
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S-412 96 Göteborg, Sweden

E-mail address: branden@math.chalmers.se


