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1 Introduction

Different notions of pattern can be encountered in several domains of combinatorics.

In algebraic combinatorics, an occurrence of a pattern p in a permutation 7 is a subse-
quence of 7 (of the same length as the length of p) whose elements are in the same relative
order as those in p. For example, the permutation = = 536241 contains an occurrence of
the pattern p = 2431 : indeed the elements of the subsequence 3641 of 7 are in the same
relative order as those in p. Examples of results concern permutations avoiding a pattern
of length 3 in S5 (see [12, 20]).

Motivated by the study of Mahonian statistics, Babson and Steingrimsson introduced
a generalisation where two adjacent elements of the pattern must also be adjacent in the
permutation [1]. In Claeson, 2001 [7] this generalisation provides interesting results related
to set partitions, Dyck paths, Motzkin paths, or involutions.

In combinatorics on words, an occurrence of a pattern p in a word u is a factor of u
having the same shape as p, i.e., for which there exists a nonerasing morphism transforming
p in this factor. For example the word u = abaabaaabab contains an occurrence of the
pattern p = aafaaf : indeed the morphism f(a) = a, f(8) = ba transforms the pattern
p in aabaaaba which is a factor of u. The main question is to determine whether or not a
given pattern is unavoidable, that is if it is possible to construct an infinite word containing
no occurrence of the pattern. The interested reader should refer to Chapter 3 of Lothaire,
2002 [14].

In Burstein, 1998 [3], Burstein and Mansour, 2002, 2003 [4, 5, 6], and Kitaev and
Mansour, 2003 [11] the authors realised a “mixing” of these two notions. They consider
ordered alphabets. Here, an occurrence of a pattern in a word is a factor or a subsequence
having the same shape, and in which the relative order of the letters is the same as in the
pattern. For example, on the alphabet {a,b} with a < b, the word u = abaaabab contains
an occurrence of the pattern 2111 (the factor baaa) but not of the pattern 1222 (abbb is
not a factor of u). To avoid confusion we will call these patterns ordered patterns.

Using this definition, Kitaev and Mansour [11] were interested in counting the number
of occurrences of some ordered patterns in words generated by certain morphisms. A
motivation for this choice was the interest in studying classes of sequences and words that
are defined by iterative schemes [14, 18].

In the present paper we also study the number of occurrences of certain ordered pat-
terns in words defined by an iterative scheme, the Peano words. After some preliminaries
(Section 2), we introduce in Section 3 the notion of Peano words. Then we find the num-
ber of occurrences of a lot of ordered patterns in these words (Section 4) and we end
by showing in Section 5 that they are almost cube-free, and that they are obtained by
using a tag-system but not by iterating a single morphism. This is a new example of a
phenomenon first observed by Berstel [2] about the Arshon sequence.



2 Preliminaries

2.1 Definitions and notations

The terminology and notations are mainly those of Lothaire, 2002 [14].

Let A be a finite set called alphabet and A* the free monoid generated by A.

The elements of A are called letters and those of A* are called words. The empty word
¢ is the neutral element of A* for the concatenation of words (the concatenation of two
words u and v is the word uv), and we denote by A* the semigroup A* \ {e}.

The length of a word u, denoted by |u/, is the number of occurrences of letters in u. In
particular || = 0. If n is a nonnegative integer, u™ is the word obtained by concatenating
n occurrences of the word u. Of course, |u™| = n x |u|. The cases n =2, n =3, and n =4
deserve a particular attention in what follows. A word u? (resp. u?, u?), with u # ¢, is
called a square (resp. a cube, a 4-power).

A word w is called a factor (resp. a prefiz, resp. a suffiz) of u if there exist words z,y
such that u = zwy (resp. u = wy, resp. u = zw). The factor (resp. the prefix, resp.
the suffix) is proper if zy # € (resp. y # ¢, resp. = # €). A word u is a subsequence
of the word v if there exist words uy,...,uUn, V1, ..,Vn,Unt1 such that u = u; ---u, and
V = V1U102UQ * * * UnUnUn+1-

An infinite word (or sequence) over A is an application a : IN — A. It is written
a=agai--+a;--+,1 € IN,a; € A.

The notion of factor is extended to infinite words as follows: a (finite) word u is a
factor (resp. prefiz) of an infinite word a over A if there exist n € IN (resp. n = 0) and
m € IN (m = |u|) such that u = ay, - - - @ 4m—1 (by convention a,, ---a,—1 = €).

In what follows, we will consider morphisms on A. Let B be an alphabet (often, B = A).

A morphism on A (in short morphism) is an application f : A* — B* such that
fluv) = f(u)f(v) for all u,v € A*. It is uniquely determined by its value on the alphabet
A. A morphism f on A is a literal morphism if |f(a)| =1 for all a € A.

Now, A = B. A morphism is nonerasing if f(a) # € for all a € A. It is prolongable on
T, To € AT, if there exists u € AT such that f(z¢) = zou. In this case, for all n € IN
the word f™(zq) is a proper prefix of the word f"*!(xg) and this defines a unique infinite
word

x = wouf (u) f>(u) -+ f™(u) -+

which is the limit of the sequence (f"(z¢))n>0. We write x = f“(z¢) and say that x is
generated by f.

A (finite or infinite) word u over A is square-free (resp. cube-free, 4-power-free) if none
of its factors is a square (resp. a cube, a 4-power). A morphism f on A is square-free if
the word f(u) is square-free whenever u is a square-free word. The morphism f is weakly
square-free if f generates a square-free infinite word.

A DOL-system is a triple G = (A, f,u) where A is an alphabet, f a morphism on A
and u € A*. An infinite word x is generated by G if x = (f¥)*(u) for some k € IN.



A tag-system is a quintuple T = (A, u, f,g, B) where A and B are alphabets, u € A™,
f is a nonerasing morphism on A, prolongable on u, and ¢ is a morphism from A onto B.
An infinite word y is generated by G if y = g((f¥)*“(u)) for some k € IN.

Remark that what we call here a tag-system is sometimes called a HDOL-system. The
terminology of tag-system comes from the fundamental study of Cobham [8]. Chapter 5
of [17] is dedicated to a deep study of DOL-systems.

2.2 Ordered patterns

Let A be a totally ordered alphabet and let X be the ordered alphabet whose letters are
the first n positive integers in the usual order (thus X = {1,2,...,n}).

An ordered pattern is any word over R U {#} where # ¢ N.

A word v over A contains an occurrence of the ordered pattern u (or, equivalently the
ordered pattern u occurs in v) if, for some integer n € IN, u = uyHuo# - - - #uyp, (u; € R*),
VU = WoULWL VW3 * * * Wy—1Vp Wy and there exists a literal morphism f : N* — A* such that
flw) =v;, 1 <i<m,and if z,y € X, z < y = f(z) < f(y). This means that the word
v contains an occurrence of the ordered pattern u if v contains a subsequence v' which is
equal to f(u') where u' is obtained from u by deleting all the occurrences of #, with the
additional condition that two adjacent letters in u must be adjacent in v.

A special case is when the ordered pattern u occurs at the beginning or at the end of
the word v.

e If wy = ¢ then we write v contains an occurrence of the ordered pattern [u.
o If w, = ¢ then we write v contains an occurrence of the ordered pattern u).

o If wy = wy, = € then we write v contains an occurrence of the ordered pattern [u].

Ezample. Let A= {a,b,c,d,e,f} witha<b<c<d<e<f.

The word v = eafdbc contains one occurrence of the ordered pattern 2#31, namely
the subsequence efd. In v, the ordered pattern 2#3#1 occurs in three occurrences: efd,
efb, and efc; the ordered pattern 231 does not occur in v.

To end, the ordered pattern [3#1#2 occurs in v as ead, eab, eac, or ebc, the ordered
pattern 3#1#2] occurs in v as eac, ebc, fbe, or dbe, and the ordered pattern [3#14#2]
occurs in v as eac or ebc.

Of course, since # can correspond to anything, the ordered patterns u, #u, u#, and
#u# are equal. In particular, if z is a word over R, we will write (z#)¢ or (#z)¢ to
represent the ordered pattern z#x+# - - - #x containing [ occurrences of the word z.

3 The Peano curve and the Peano words

Peano was the first in 1890 to realize the construction of a fractal curve that fills a square
without hole. This construction is obtained by drawing, without pen-up, an infinite suc-
cession of unit lines left, right, up, or down. Thus this succession can be represented by an
infinite word over the alphabet ¥ = {u,u,r,7} where u stands for up, u stands for down,
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r stands for right, and 7 stands for left (about description of pictures by words see the
basic study of Maurer, Rozenberg and Welzl, 1982 [16]). The word so obtained, called the
Peano infinite word, is denoted by P.

Let us describe the algorithm of Peano. The general idea is to divide, at step n, the
unit square in 4" equal subsquares each of them containing an equal length part of the
curve (except the first and the last ones which contain a part of length 1/2). The curve
so obtained is then depicted by a word of length 4™ — 1 which we will call the n-th Peano
word P,. When n tends to infinity the curve fills the unit square without hole and the
sequence of words P, tends to the Peano infinite word P (see Section 5).

Step by step, the algorithm is the following (let us recall that the drawing of the
curves is realized without pen-up; in the following figures o and o respectively represent
the starting and the ending points of the drawing).

e At step 1 the unit square is divided in 4 equal subsquares and it contains the staple-
like curve depicted by the word P, = ura.

e From step n to step n + 1 the curve and grid sizes are decreased by a factor two and
four copies are put together to form a new square.

— The first copy is the left lower one, and it is obtained as follows: first realize a
vertical flip, then rotate a quarter turn left.

— The second and the third copies are the upper two ones: they are placed as
they are.

— The fourth copy is the right lower one: first realize a vertical flip, then rotate
a quarter turn right.



This gives the following.

Then, the curve is made continuous by connecting the ending point of the first (resp.
the second, the third) copy to the starting point of the second (resp. the third, the
fourth) one with three unit segments respectively corresponding to a move up (u),
a move right (), and a move down (%) — the dashes lines in the following diagram.

To end, all the starting and ending points are removed, except the starting point of
the first copy and the ending point of the fourth copy.



For more about the construction of Peano see, for example, Gardner, 1989 [9], Gelbaum
and Olmsted, 1964 [10], Mandelbrot, 1977 [15], Schwartz, 1967 [19].

Now, let us define on ¥ three literal morphisms f, ry, and rq by

Il
<
=3I

f(u):ﬂ,f(ﬂ):u,f(r) 7f():F7
rg(u) = 7,1g(t) = 1r,rg(r) = u,14(7) = 4,
ra(u) = r,rq(a) = 7,rqe(r) = a,rq(7) = u.

These three morphisms respectively represent a vertical flip, a quarter turn left rota-
tion, and a quarter turn right rotation.

JFrom the construction we have that the Peano word P,;; (which represents the
drawing without pen-up of the Peano curve at step n + 1) is obtained from P, as

Pyy1=p(P,) u Py r Py u A(Pp), (1)
where p=rgofand A=rqgof (pru—r=u,u—=7T—= U A:u—7T— w671 — ).
One has P, = rur uwurururuurur

and P3 = wurarrufurufruru
U
rUrUUTrUrUTUUTUT
r
TUTUUTUTUTUUTUT
U
UTUTTUTUTUTTUTU
Now let w be a word over Y. The word w is obtained from w by replacing each
occurrence of u, r, @, 7 respectively by 4, 7, u, r (€ = ¢€). It is clear that p and A are the
literal morphisms defined on ¥ by



Let g be the literal morphism defined on ¥ by g(u) = g(u) = u, g(r) = g(r) = r, and
let us recall that if w is a word over ¥ with w = wy -+ - wy, w; € %, then @ = wy, ---wy
(€ =¢).

Together with the literal morphisms p, A, f, and g, the Peano words P, have the
following straightforward properties.

Property 1 1. poA=Aop.

2. For any w € ¥*, Aw) = p(w).
3. gop=go.
4. Foranyn >1,

o [(P) =Pn,

o g(Pn) = g(ﬁ;) = g(Pn),
o p(Pr) = f(A(Pn))-
5. For any n > 1, the peano word P, is irreducible, that is, it does not contain any

factor uu, uu, rr, nor rr.

4 Counting occurrences of ordered patterns in the Peano
words

In this section, the alphabet 3 is ordered by u < r < 4 < 7.
(From the construction it is easy to see that, for any positive integer n, |P,| = 4" — 1.

Moreover, we have the following more precise counting of each letter in P,.

Lemma 2 For any n € IN\ {0}, one has
|Prlu = |Pola = 4",
|Pyly =4 1421 -1,
Py = 4n—1 — 2n-1,

Proof. The result is obvious for n = 1.
iFrom (1) we get, for x € X,

1, ifz=wu,ru

|Prtile = 2[Palz + [p(Pa)lz + [AM(FPn)|z + { 0, ifz=r

Then, by the definition of p and A, we obtain
|Pn+1|u = 2|Pn|u+|Pn|r+|Pn|F+1
|Pn+1|ﬁ = 2|Pn|ﬁ+|Pn|F+|Pn|r+1
|P7L+1|7" = 2|Pn|r+‘Pn‘u+|Pn|a+1
|Pn+1|F = 2|PH|F+‘PH‘TL+|PH|U

and the result follows by induction. m

As an immediate corollary one has the following.



Corollary 3 For any n > 1,

o [g(Po)lu = [g(Pn)lr +1;

* [9(p(P))lu = l9(A(Pu))lu = l9(p(Pn))lr — 1 = |g(A(FPn))]r — 1.

In the rest of this section, our purpose is to find the number of occurrences of some
ordered patterns in P,. We start with another direct corollary of Lemma 2.

Corollary 4 For any n,l € IN\ {0}, the number of occurrences of the ordered pattern
(1#)¢ in P, is equal to

4n—1 _ 2n—1 I 4n—1 N 4n—1 + 2n—1 -1
12 12 12 )

Proof. Let z € ¥. The number of occurrences of a subsequence z¢ in P, is obviously given
by (‘P2‘|w). The rest then follows from Lemma 2. m

Before continuing, we establish a fundamental general result.

Let R(v) (resp. D(v)) denote the number of occurrences of the ordered pattern 12
(resp. 21), that is the number of rises (resp. descents), in a word v over X. Of course
these notions depend on the order between the letters, not on geometrical considerations.
Here, for example, ru is a rise when ru is a descent!

Proposition 5 Let zo,...,z; be non-empty words over {u,r}, y1,...,Yx_1 non-empty
words over {u,T}, 1 a word over {u,r}, and yx a word over {u,7} (maybe z1 = €, or
Yk = €, or both).

Let w = ¢1y1T2Y2 - - - Tk Y, then

D(’ll])—l, ll.fwl:ykze
R(p(w)) =< D(w)+1, ifz #¢candyy #¢

D(w), otherwise

R(’LU)+1, Zf.’l?l =Y =¢€
D(p(w)) = R(w) -1, ifz1#ecandy, #¢

R(w), otherwise

R(AMw)) = D(w) and D(A(w)) = R(w).

Proof. Let z1,...,2Tg, Y1,--.,Yr and w be as in the statement.
Clearly D(w) = [¥f_; D(2;) + D(yi)] + & — 1
k=2, ife;=y,=c¢
and R(w) = [y R(@:) + R(yi)| +{ k=1, ifor=e,yp #eorifai #£eyp=¢
k, if 1 # ¢ and yi # e.



Since p is the literal morphism which exchanges u and r on the one hand, u and 7 on
the other hand, one has p(w) = zjyjzhyh - - - z}y;, where z},..., z) are words over {u,r}
with |z = |zi|, yi,-..,y) are words over {u,7} with |yi| = |y;| and, for 1 < i < k,
R(z;) = D(zi), D(x;) = R(z:), R(y;) = D(yi), and D(y;) = R(y;). Thus

k—2, ifeh =y, =¢
Rlp(w)) = [T B(e)) + R +{ k=1, izl =ey, #corifs) ey, =e
k, if z§ # e and y, # e.
k—2, ife;=y,=¢
= [C1D(@) + D)+ k—1, ifai=e,yp£eorifa £e,yp=¢

k, if 1 # ¢ and yi # e.
D(w)—-1, fzy =y, =¢
This implies R(p(w)) =< D(w)+1, ifz; #cand y, #¢€
D(w), otherwise

Since A is the literal morphism which inverts the order of the letters, it is obvious that
A transforms each rise in a descent and vice-versa. Thus R(A(w)) = D(w).

The computation of D(p(w)) and D(A(w)) is immediate from what precedes because
popand Ao X are both the identity morphism. m

An important corollary of this proposition is the following theorem which gives the
number of rises and descents in the Peano words.

Theorem 6 For any k € IN,

R(Papy1) = 2(4-16% + 1),
R(Pog12) = (16" — 1),
D(Pay1) = 8(16F — 1),

D(Pogy2) = 316541 —1).

(One can remark here that if n is an even integer then the Peano word P, contains the
same number of rises and descents.)

Proof. The word P, = uru contains two rises and no descent.
The word P, = ruruuraruraurar contains six rises and six descents.

Thus the relations are verified when k£ = 0.

Now, from (1), (2), (3), we have that
P, starts and ends with r,
p(Poy) starts and ends with u,
A(Py) starts and ends with a,
Por11 starts with v and ends with u,
p(Pog11) starts with r and ends with 7,
A(Pyky1) starts with 7 and ends with r.

Thus
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R(Pog+1) = R(p(Por)1Pok2Pok3N(Por))

= R(p(Por)) + 1+ R(Pay) + R(P2x) + 1+ R(A(Pox))
R(Pog12) = R(p(Pok+1)1Pok+12Pog+13A(Pok+1))

= R(p(Pak+1)) + R(Pok11) + R(Pot1) + 1+ R(A(Pok41))
D(Po+1) = D(p(Por)1Por2Po 3N (Por))

= D(p(Pyr)) + D(Por) + D(Par) + D(A(Poy))
D(Pak12) = D(p(Pok+1)1Pok+12Pog+13A(Pok+1))

= D(p(P2k+1)) + 1+ D(Pogy1) + 14+ 1+ D(Pog+1) + D(A(Pog41))
and, using Proposition 5, the result follows by induction. m

Another consequence of Proposition 5 is that we can count the number of occurrences
of a lot of ordered pattern in P,.

Let N, (W) denote the number of occurrences of the pattern 7 in the word W'.

Using the previous results, we can count, for P,, the number of occurrences of the
patterns 7 (z,y) = [z(#v)% m(z,y) = (z#)%] and 13(z,y,2) = [z(#y)*#2], where
z,y,z € {1,2,3}.

If we consider, for instance, the pattern 71(1,2) = [1(#2)¢ then the letter 1 in this
pattern must correspond to the leftmost letter of the word P,. Now if n = 2k + 1 then
from the proof of Theorem 6 P, = uW for some word W, which means that to the sequence
(#2)¢ there can correspond any subsequence (#i)¢ in P,, where i = r,@,7. Thus, using
Lemma 2 and the way we prove Corollary 4, there are (4%;2%) + (4Zk) + (42k+%2k_1)
occurrences of the pattern 71(1,2) in Pog11. If n = 2k+2 then P, = rW for some word W

and for the sequence (#2)¢ there corresponds any subsequence (#4)¢ in P,, where i = @, 7.
Thus, N, (1,9 (Pas2) = (V57 + (4).

In the example above, as well as in the following considerations, we assume £ to
be greater than 0. If £ = 0 then obviously N (5 ,)(Pn) = Npyz4)(Pn) = 1, whereas
Nry(z,y,2)(Pn) is equal to 1 if z < zandn =2k + 1, or x = z and n = 2k + 2, and it is
equal to 0 otherwise.

When we consider 73(z,y, z)(FP,), we observe that since Py 9 = rWr for some W,
Nry(zy,2)(Pak+2) = 0, whenever z # 2. Also, since Pyr11 = uWwu for some W,
Noy(2,y,2) (Pok+1) = 0, whenever z > 2.

Let us consider the pattern 73(2,1,3) = [2(#1)‘#3]. As it was mentioned before,
Nry2,1,3)(Pogy2) = 0. But, if we consider Pypy1 = uWa, then it is easy to see that
Niy2,1,3) (Pogy+1) = 0, since the leftmost letter of Py is the least letter, which means
that it cannot correspond to the letter 2 in the pattern. As one more example, we can
consider the pattern 73(1,1,2) = [1(#1)¢#2]. We are only interested in case P, = P41,
since Ny,(1,1,2)(P2k+2) = 0. The number of occurrences of the pattern is obviously given
by the number of ways to choose £ letters among 4% — 1 letters u (totally, there are 42
letters u according to Lemma 2, but we cannot consider the leftmost u since it corresponds
to the leftmost 1 in the pattern). Thus, Ny, (1 1,9)(Pokt1) = (4%[1).

All the other cases of z, y, z in the patterns 71(z,y), 2(z,y) and 73(z,y,z) can be
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considered in the same way. Let S; and S2 denote the following:

42k o 22k 42k 42k + 22k -1 42k+1 42k+1 o 22k+1

The tables below give all the results concerning the patterns under consideration, except
those triples (z,v, 2), for which N,y ,)(Py) = 0 for all n.

Y| Nry) (Pok+1) | Nrey)(Pok+1) | Nryo) (Pok+2) | Noy(o,y) (Pok+2)
1 1 (4212_1) (421;_1) (42k+1+%2k+1_1) (42k+1+§2k+1_1)
2k 2k 2k _ 2k+1
1] 2 S () + (7 Ss )
7% _ o2k L ESY
2|1 0 ) () S
|y |z NTs(z,y,z)(P2k+1) NTg(m,y,z)(P2k+2)
111 0 ()2
2k
112 7 0
1121 0 Sy
2k _
122 ", 0
212 0 5
2k 2k _
1123 (2 0
2k _ 92k
1/3]2 7,2 0

5 Generating the Peano infinite word

Preliminary remark. The sequence (P,),>1 has two limits according n is even or odd. An
equivalent construction (equivalent in the sense that it provides a curve drawn without
pen-up and filling the unit square without hole) can be obtained with no distinction
between the even case and the odd one: it is enough at each even step, before computing
the corresponding Peano word, to apply to the whole picture a vertical flip followed by a
quarter turn left rotation and then each P, is a prefix of P, ;. But the limit for the odd
indices is the same in the two cases so, because the properties of the Peano words P,, are
more interesting with our first construction, we keep the definition of the Peano words P,
given in Section 3 and define the Peano infinite word P as the limit of odd rank Peano
words, that is, P = limy_yo0 Pon+1-

In this section, we will prove that the Peano infinite word P is generated by a tag-
system, it contains no cube except those of only one letter, and it cannot be generated by
a single morphism (it is even not generated by a DOL-system).

Let Q be the eight-letter alphabet Q = {A,B,C, D, a,b,c,d}, and let v and h be the
following morphisms.
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y: Q0 - QF h:Q* — X*

A — BaAbAcD A — wuru
B +— AbBaBdC B — rur
C — DcCdCaB C — aru
D +— C(CdDcDbA D — fur
a — a a — u

b — b b — r

c = cC cC = U

d — d d — T

Theorem 7 P is the infinite word generated by the tag-system (Q, A,v%, h, %), i.e., P =
h((v*)“(A))-

The proof of this result will use the following lemma.

Lemma 8 For any n € IN,

e h(v"(4)) = p(h(Y*(B))) = A(h(y"(D))),
e h(y"(B)) = p(h(v"(4))) = A(h(»"(C))),
e h(7"(C)) = p(h(y"(D))) = A(h(y"(B))),
o h(y"(D)) = p(h(y"(C))) = A(h(v"(A)))-

Proof. The eight equalities are obviously true if n = 0.
Now, let us prove for any integer n > 0 that if the eight equalities are true for n then
they are also true for n + 1. One has

h(y"t1(A)) = h(y"(BaAbAcD))
= h(y"(B))h(a)h(y" (A)) h(B)h(y" (A))h(c)h(y" (D))
— p(h(7"(A))uh(y" (4))rh(y"(A))aA(h(" (4))) (by induction)
= p(R(7"(4)))p(r)h(y" (A))p(w)h(" (A) p(P)A(R(y"(A))
— p(h(7"(4)))p((5))p(h(y" (B)))p(h(a))p(h(" (B)))p(h(d)p(h(v" (C)))
= p(h(y"(4bBaBdC)))
— p(h(y"1(B))).

This proves the first equality. The seven others are verified in the same way. ®
Proof of Theorem 7. We will prove by induction that, for any n € IN, P, 1 = h(7"(4)).
The result follows because P = limy, ;00 Pont1 = limy, 00 (727 (A)).
The equality is of course true if n = 0 since P, = ura = h(A). Now,
Poy2 = p(Pri1)uPpi1m Py 10N (Poy)

= p(h(7" (A))h(a)h(r" (AN AR (ADA(AR(" (4))) (by induction)

= (" (B)A( @)k (ADR(" B)A(G" (A)h(" (@) h(y" (D)) (Lemma 8
= h(y"(BaAbAcD))

= h(y"*1(4)). m
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Now, to prove that the Peano infinite word P contains no cube except =3, z € 3, we
need an intermediate lemma. First remark that the morphism 7 is clearly not a square-free
morphism (for example, v(C A) contains BB as a factor). It is even not weakly square-free
(it does not generate a square-free word because, for example, y*(A) contains bAbAb as a
factor). But we have the following.

Lemma 9 For any n € IN, y"(A) does not contain any factor YwYwY with Y €
{A,B,C,D} and w € Q*.

Proof. The property is straightforward if n =0 or n = 1.

Let us suppose by way of contradiction that, for some integer n > 2, y"(A) contains
a factor YwYwY,Y € {A,B,C,D}, w € Q* when 4" !(A) does not contain any such
factor. Moreover, let us suppose that Y = A (the three other cases are symmetrical by
definition of 7).

Let u,v € Q* be such that v"(A) = uAwAwAv.

By definition of +, four cases are possible for u: u = y(wi1), u = y(w1)Ba, u =
y(w1)BaAb, or u = y(w,)CdDcDb, for some prefix wy of 7" 1(A).

Before continuing, we remark that y"(A) is an alternation of lower-case letters and
upper-case letters.

1. u="y(w)

In this case, the first occurrence of A following u is necessarily the first letter of
v(B). This implies that Aw starts with v(B) = AbBaBdC and, since this last factor
can only appear, in y"(A), as an occurrence of y(B), it follows that the second
occurrence of Aw also starts with (B), that is, there exists W’ € Q* such that
AwAw = y(BW'BW') and 4" 1(A) starts with w;BW'BW'. But since AwAw is
followed, in v*(A), by the letter A, the next letter in y*~1(A) is a B, which implies
that 4" 1(A) contains BW'BW'B as a factor, a contradiction.

2. u=+y(w)Ba

In this case, the first occurrence of A after u is followed by bAcD. This implies
that Aw starts with AbAcD and, since this last factor can only appear, in 7" (A),
in an occurrence of y(A), it follows that Aw = AbAcD~(W')Ba for some W' € Q*
where AbAcD and Ba are respectively the suffix and the prefix of y(A). This means
y"~1(A) starts with wi AW'AW'A, a contradiction.

3. u=ry(wy)BaAb

In this case, the first occurrence of A after u is followed by ¢D. This implies that
Aw starts with AcD. Here two cases are possible.

Either w ends with BaAb and, as in the previous case, y""1(A) contains a factor
AW'AW'A, a contradiction.

Or this factor AcD is the central part of some vy(DcC). But in this case AcD is
followed, in Aw, by ¢cCdCaB and, since v"(A) starts with uAw, this factor cCdCaB
should be the beginning of some y(W') in 4™(A). This is impossible.
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4. u=y(w1)CdDcDb

In this case, the first occurrence of A after u is the last letter of v(D) and w starts
in the same manner as some (W').

Let us consider the letter A at the beginning of the second occurrence of Aw.

e It is impossible that this A is the first letter of y(B) because y(W') (and thus
w) cannot start with bBaBdC.

e It is impossible that this A is the first A in y(A) because y(W') (and thus w)
cannot start with bAcD.

e It is impossible that this A is the second A in y(A). Indeed otherwise w starts
with ¢D and since w starts in the same manner as some v(W'), w starts with
cDcCdCaB. But this would imply that CdCaB is the beginning of some y(Z)
which is impossible.

e Thus this A is again the last letter of (D). This is also the case for the last A
of AwAwA, which implies that y"~1(A) starts with wiDW'DW'D, a contra-
diction. m

Now, we are ready to prove the main result of this section.

Theorem 10 The infinite word P does not contain any factor zyWxyWzy with x,y
letters and W a word. In particular, the only cubes in P are 3 with = a letter. Moreover,
P is 4-power-free.

Proof. We first suppose that P does not contain any factor xyW zyW zy with x,y letters
and W a word. Then if P contains a cube X, one has necessarily X = z® where z is a
letter. That P effectively contains all the cubes z® for z € X, and also that it contains
no factor z*, comes from the following. A factor u?® (resp. r3, @3, 73) can only be found
in h(CaA) (resp. h(DbB), h(AcC), h(BdD)); a factor CaA (resp. DbB, AcC, BdD) can
only be found as the central part of v(BaB) (resp. y(AbA), v(DcD), v(CdC)); finally
BaB (resp. AbA, DcD, CdC) is the central factor of y(B) (resp. v(4), v(D), v(C)).
Since y2(A) contains A, B, C, and D, v3(A) contains BaB, AbA, DcD, and CdC,
thus v*(A) contains CaA, DbB, AcC, and BdD, that is, Ps contains u?, 3, @3, and 7.
It is interesting to remark here that, starting from the index 0, we find in the infinite
word P the first occurrence of 73 (resp. u3, 73, @) at the index 30 (resp. 94, 222, 478).

Now, we prove the first part of the theorem.

Suppose that P contains a factor zyWzyW zy with z,y letters and W a word, and let
T be such that TzyW zyWzy is a prefix of P, i.e., TzyWzyW zy is a prefix of h(y>"(A))
for some n € IN.

There are four possible cases depending on the value of |T'| mod 4.

e If |T| mod 4 = 0 then z is the first letter of A(X) for some X € {4,B,C,D}. We
suppose X = A (the other cases are symmetrical).
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Then z = u, y = r and W starts with u: W = aW’. By definition of A and +, the
factor ura can only appear, in P, as h(A). This implies that there exists a word
w' € QF such that TeyWzyWzy = Th(Aw' Aw')ur. But, by construction, w’ ends
with a lower-case letter thus, in y2"(A), Aw' Aw' is followed by an upper-case letter.
Since the image of this letter by h starts with ur, this letter is necessarily A. Thus
2" (A) contains Aw'Aw'A, a contradiction with Lemma 9.

e If |T'| mod 4 = 1 then z is the second letter of h(X), X € {4, B,C, D}, y is the third
letter of h(X), and W ends with the first letter of h(X). As in the previous case, we
obtain a contradiction with Lemma 9.

e If |T'| mod 4 = 2 then z is the third letter of h(X), X € {A, B,C, D}. We suppose

X = A which implies z = 4. Since, in y?"(4), A is necessarily followed by b or ¢, we
have y =7 or y = 4.
First suppose |Wz| mod 4 # 3. Then if y = r the only possibility is |IW| mod 4 = 1
(that is, after T the second occurrence of zy = ar is at the end of h(D)) and if y = @
the only possibility is |[W| mod 4 = 3 (that is, after 7" the second occurrence of
zy = wu is such that z is the image by h of a lower-case letter and y is the beginning
of the image of an upper-case letter.) In the two cases |TzyWzyW|mod4 = 0
which implies that the third occurrence of zy is the beginning of some h(Y) with
Y € {A, B,C, D} : this is impossible because zy = ar or zy = ua.

Thus |Wz| mod 4 = 3 which implies that Wz ends with the image by h of an upper-
case letter. Since z = @ this letter is A and, as previously, we obtain that vy?"(A)
contains Aw’ Aw'A for some word w’ € Q*, a contradiction with Lemma 9.

e If |T| mod4 = 3 then z is the image by h of a lower-case letter. Then y is the
first letter of h(X) for some X € {A, B,C, D}. This implies that TzyWzyWzy is a
prefix of Txh(X)W'zh(X)W'zh(X) where W' is the word such that yW = h(X)W'.
Again, this means that %" (A) contains Xw'Xw'X, a contradiction with Lemma 9.
|

A direct corollary is the following.
Corollary 11 The infinite word P cannot be generated by a DOL-system.

Proof. If P was generated by a DOL-system (f, %, v) then P = f"(P) for some n € IN\{0}.
Consequently f(u3), f(r?), f(@?), and f(73) are factors of P. Since P does not contain any
cube except u?, 73, @3, and 73, this implies that |f(z)| < 1 for any z € %. A contradiction
because, to generate an infinite word, f must be prolongable on at least one letter. m

6 Aknowledgment
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inary version of this paper.
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