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Abstract
Following [M2], let Sg) be the set of all coloured permutations on the symbols 1,2, ..., n with colours
1,2,...,r, which is the analogous of the symmetric group when r = 1, and the hyperoctahedral group

when 7 = 2. Let I C {1,2,...,7} be subset of d colours; we define T".(I) be the set of all coloured
permutations ¢ € S,(cr) such that ¢; = m(¢) where ¢ € I. We prove that, the number T,:?T(I )-avoiding
coloured permutations in S equals (k — 1)lrk—1 [Tj—s s for n > k where h; = (r —d)j + (k — 1)d.
We then prove that for any ¢ € Tkl’r(I ) (or any ¢ € T,f’T(I )), the number of coloured permutations

in S which avoid all patterns in Tli,r(‘[ ) (or in T,fyr(I )) except for ¢ and contain ¢ exactly once
equals [T7_; ;- 25, % for n > k. Finally, for any ¢ € T;" (I), 2 <m < k — 1, this number equals
H;”:k 41 hj for n >k + 1. These results generalize recent results due to Mansour [M1], Mansour and
West [MW], and due to Simion [S].
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1. Introduction

The main goal of this note is to give analogies of enumerative results on certain classes of permutations
characterized by pattern-avoidance in the symmetric group (see [M1]), and in the hyperoctahedral
group (see [S, MW]). In St (see [M2]), the natural analogue of the symmetric group and of the hyper-
octahedral group, we identify classes of restricted coloured permutations with enumerative properties
analogous to results in the symmetric group and hyperoctahedral group. In the remainder of this
section we present a brief account of earlier work which motivated out investigation, summarize the
main results, and present the basic definitions used throughout the note.

Pattern avoidance in the symmetric group proved to be a useful language in a variety of seemingly
unrelated problems, from stack sorting [K, T, W] to the theory of Kazhdan-Lusztig polynomials [Br],
singularities of Schubert varieties [LS, Bi], Chebyshev polynomials [CW, MV1, Kr, MV2, MV3],
and rook polynomials [MV4]. Signed pattern avoidance in the hyperoctahedral group proved to be
a useful language in combinatorial statistics defined in type-B noncrossing partitions, enumerative
combinatorics [S, BS], algebraic combinatorics [FK, BK, Be, Mo, R].
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1



2 COLOURED PERMUTATIONS CONTAINING AND AVOIDING CERTAIN PATTERNS

Let # € S, and 7 € S; be two permutations. An occurrence of 7 in 7 is a subsequence 1 < i < is <

- < i < mn such that (m,...,m;, ) is order-isomorphic to 7; in such a context 7 is usually called a
pattern. We say that 7 avoids T, or is T-avoiding, if there is no occurrence of 7 in 7. The set of all
T-avoiding permutations in Sy, is denoted by S, (7). For an arbitrary finite collection of patterns T,
we say that 7 avoids T if 7w avoids any 7 € T'; the corresponding subset of S, is denoted by S, (T").
The first case examined was the case of permutations avoiding one pattern of length 3. Knuth [K]
found that [S,(7)| = C, for all 7 € S3, where C), is the nth Catalan number. Later, Simion and
Schmidt [SS] found the cardinalities of |S,,(T")| for all T C Ss.

The hyperoctahedral group B, is an analog of the symmetric group S,,. Let us view the elements of B,,
as signed permutation b = b1bs ...b, in which each of the symbols 1,2,...,n appears once, possibly
barred. Thus, the cardinality of B, is n!2”. Simion [S] was looking for the analogs of Knuth’s
results for B,,; she discovered that for every 2-letter signed pattern 7; the number of 7-avoiding signed
permutations in B, is Y =0 (]) j!. Besides, Simion [S] found the number of all signed permutations
in By, avoiding double 2-letter signed patterns in Bs. Recently, Mansour and West [MW] studied the
number of signed permutations in B,, avoiding a set of 2-letter signed patterns in Bs. This invites us
to define a further generalizations for avoiding a pattern in S,, and avoiding a signed pattern in B,,.

Following [M2] (see also [St]), the group S = 8,1 C, where C, is the cyclic group of order r, is an
analog of the symmetric group (S,) and of the hyperoctahedral group (B,,). We will view the elements
of the set S{” as coloured permutations ¢ = (41, P2, ..., ¢,) in which each of the symbols 1,2, .

appears once, coloured by one of the colours 1,2, ...,r (more generally, we denote by S; {s1,.. .’zr}} the
set of all permutations of the symbols a4, ..., a, where each symbol appears once and is cdloﬁ;ed by
one of the colours sy, ...,s;). Thus, S = Sn, SP = B,,, and the cardinality of S is nlr®. The
absolute value notation means |¢| is the permutation (|¢1],...,|¢n|) where |¢;| is the symbol which

appear in ¢ at the position j. An example ¢ = (1(1),3(2) 2(1)) is a coloured permutation in 53 , and

¢l = (1,3,2).

Let ¢ = (r*V),..., (s’“)) € S,(:), and ¥ = (a{",...,al") € 8; we say that 1 contains ¢ (or is
¢-containing) if there is a sequence of k indices, 1 < i1 < is < --- < i} < n such that the following two
conditions hold: (i) (as,,...,qs,) is order-isomorphic to |4, and (ii) v;; = s; for all j = 1,2,... k.
Otherwise, we say that ¢ avoids ¢ (or is ¢-avoiding). The set of all ¢-avoiding coloured permutations
in S\ is denoted by ST(f)(qﬁ), and in this context ¢ is called a coloured pattern. For an arbitrary finite
collection of coloured patterns T', we say that ¢ avoids T if ¢ avoids any ¢ € T'; the corresponding
subset of Si) is denoted by S{)(T). As an example, ¢ = (11,2 3®)) € §{) avoids (1), 20);
that is, v € S (1M, 2)),

In this note, we extend Mansour’s (see [M1]) results for avoiding and containing certain patterns in
Sp, and Simion’s (see [S, Section 3]) results for avoiding signed patterns in B, (also, see [MW]).

2. COLOURED PERMUTATIONS AVOIDING T ()

Let I4 be any subset of {1,2,...,r} of d elements, and let us define 7}"%.(14) be the set of all coloured
permutations ¢ € S,(CT) such that ¢; = m(®) where ¢ € I ; that is,

L (Ig) = | J{¢ € 5" ¢ =m}.

c€ly

Ty (



COLOURED PERMUTATIONS CONTAINING AND AVOIDING CERTAIN PATTERNS 3
Theorem 2.1. Let k,r > 1, n>k, and k > m > 1. Then

ST (T)] = (k= 1) ’“H k=1)d+ (r - d)j).

Proof. Let G, = S (Tj".(14)), and define the functions fp . LR S,(Lzl by:
he), when i =1
[fre(@)i =q Fi-1, when |¢;_1| < h
(|pi—1] + 1)(‘“‘1), when |¢; 1| > h

foreveryi=1,...,n+1, ¢ € S,(f), 1<c¢<rand h=1,..,n+1, where a; is the colour of the symbol
|¢;| in ¢. From this we see that if ¢ € G, then

fn+1,6j (¢)7 fn,Cj (¢)J seny fn+mfk+2,c]- (¢)J fl,Cj (¢); ceey fmfl,c_,' (¢) S Gn+1

for all j =1,2,...,d, and fr(¢) € Gpy1 for all ¢ ¢ Iy and h = 1,2,...,n + 1. So we have that
((k =1)d+ (r — d)(n + 1))|Gx| < |Gn+1| where n > k.

Assume that ((k — 1)d + (r — d)(n + 1))|Gn| < |Gn+1|- Then there exists a coloured permutation
¥ € Gpy1 such that m < |¢1| < n+m—k+1 and the symbol |11 | coloured by ¢ € I, so there exist k—1
positions 1 < ;3 < --- < ix_1 < n+1such that the subsequence ¢4, ¢4, ,. .., ¢;,_, containsn € T,;“T(Id),
which contradicts the definition of G,,41. So we have that |Gp41| = (K —1)d+ (r —d)(n+1))|Gy| for
all n > k. Besides |G| = (rk — d)(k — 1)!17F=! (from the definitions), hence the theorem holds. O

Example 2.2. (see [M1, Theorem 1]) Let Ty = T;" (1) and k > m > 1. Theorem 2.1 yields for all

n >k that |S,(T/™)| = (k — 1)I(k — 1)n—k+1

Example 2.3. Theorem 2.1 yields for all m > k > m > 1 that |S§L2) (T (1)] = % For
? i=1 {22

k = 2 see [S, Equation 47] and [MW, Equation 2.2].

Example 2.4. Theorem 2.1 fork =2, m =1, and I = {1} gives |S£Lr)(T21’r(1))| =[[j—o(1+j(r—1)).
For r =2 see [MW, Equation 4.2].

Corollary 2.5. Let k,r > 1, and k>b>a > 1. Foralln >k,

IS (U Ti (1a))] = (k = 1) '“H (k+a—b-1)+j(r—d).

Proof. Let G, = s (T{".(I1))- From Theorem 2.1 we get that ¢ € Gy, if and only if either

fl,c]' (¢)a sy fa—l,Cj (¢)a fn+b7(k72),c]' (¢)5 s 7fn+1,Cj (¢) € Gn+1
where j = 1,2,...,d, or fh(¢) € Gpy1 where h = 1,2,...,n+ 1 and ¢ ¢ I;. So we have that
|Griy1] = (d(k+a—b—1)+ (r —d)(n+1))|Gy|. Besides |Gx| = (rk+d(a—b—1))(k—1)r¥~! hence
the theorem holds. O

Example 2.6. Corollary 2.5 gives |ST(l2)(Tkl,2(1) UTe,(1))| = %(n +k—2)! where n > k. For
k =2 see [MW, Equation 4.5].
This example invite us to generalize. By using Corollary 2.5 we get the following result.

Corollary 2.7. Let k,r > 1 and n > k. Then |S (UF, T (1) = vk~ (r — )"+ —Fnl.
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3. AVOIDING Ty .(I2)\{¢} AND CONTAINING ¢ EXACTLY ONCE

Let M (¢, 1a) = T (I)\{¢}, for ¢ € T} (I4). We denote by S\ (T} (Iz);7) the set of all permu-

tations in S¢” that avoid M i (¢, 1a) and contain ¢ exactly once.

Theorem 3.1. Let k,r > 1, and n > k. Then

n n 1

|STNTE L (1a); ¢ H E—1)d+(r—d Z CErE e

Jj=k Jj=

for all ¢ € T}, (1)

Proof. Let ¢ € S,(LT)(Tg,T(Id); ¢), and let us consider the possible values of :

(1)
(2)
3)

(4)

|41 is coloured by colour ¢ ¢ Iy. Evidently 4 € St (TL, (Iq); ¢) if and only if (¢s,...,%,)
avoids M;" (¢, I4) and contains ¢ exactly once.

|th1] > n—k+2is coloured by ¢ € I;. Evidently ¢ € s& (T,i,r(ld); ¢) if and only if (¢, ..., 1)
avoids M;" (¢, I4) and contains ¢ exactly once.
|1] < n — k is coloured by ¢ € I;. Then there exist 1 < 41 < --- < i < n such that
(1,%i,,...,14,) is a coloured permutation of the symbols n,...,n—k+1,1); coloured by any
colours such that i; coloured by ¢ € I;. For any choice of k¥ — 1 positions out of 41, ..., %k, the
corresponding coloured permutations proceeded by |¢1], is containing some coloured pattern
in Tl%,r(Id)- Since ¢ avoids M}".(¢,I4), it is, in fact, order-isomorphic to ¢. We thus get at
least k occurrences of ¢ in 1, a contradiction.
|1] = n — k + 1. Then there exist 1 < i; < --- < ig—1 < n such that n = (Y1, Vi, -, Yip_,)
is a coloured permutation of the symbols n,...,n — k + 1. As above, we get that 7 is order-
isomorphic to ¢. Let A, be the set of all coloured permutations 3 € Sp, (r) (Tk +(I2); ¢) such
that the symbol |31 | is n —k+1 and coloured by ¢ € I;. Define the functions fp,. : Ap — 57(21
by:

1(e), when i = h

[FreB)i =4 (Bl + 1)),  wheni<h

(1Bi=1| + 1)), when i > h,
forevery i = 1,...,n+1, 8 € A,, h=1,...,n+1and ¢ = 1,...,r, where the symbol |3;]
coloured by the colour a;. It is easy to see that for all 5 € A,,

fn+1,Cj (,3), tey fﬂ*k+3,cj (ﬂ) € An+17
and fpc(B) € Apg1 for ¢ ¢ Iy and h = 2,...,n (for h = 1 we added in the first case), hence
((k—1)d + (r — d)n)|An| < |Ant1]. Now we define another function g : Api1 — S5 by:
o (18:] — 1)(‘“), when i < h
lo(B)]: = { (IBi1] = 1)), when i+1> h,
where |Bp| =1,i=1,...,n, 8 € Apy1.

Observe that h > n — k + 3 such that |ﬂh| coloured by ¢ € Iy, since otherwise already
(Brs Bht1s - - -, Pnt1) contains a pattern from T} (1), a contradiction. Therefore g(8) € A,, for
all B € Apy1, 80 |App1| < (B=1)d+ (r — )n)|A |. Hence, using the fact that |Agx| =1 we
get that [Ap 11| = (d(k — 1) + n(r — d))|As| = [T, ((k — 1)d + (r — d)j).
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Since the above cases 1-4 are disjoint we obtain

[SSUTE (L) )| = (k= D) + (r — )|y (T}, (1); 6 I+H k=1)d+(r—d)j).

Besides |S,£T)(T,§’T(Id); #)| = 1, hence the theorem holds.
Example 3.2. If ¢ € T; ,(1) then Theorem 3.1 for n >k gives

(2) 1 . _ n+k—1

Using the natural bijection between the set S (Ty (I4); ¢) and the set s (T¢ . (I14); ¢') for all ¢ €
Tkl’T(Id), where ¢, = (k+1—|¢;])(%) and a; is a colour of the symbol |¢;| in ¢, together with Theorem

3.1 we get as follows.

Corollary 3.3. Let k,r > 1 andn > k. Then

n n 1

ST (Ta); #)| = [ (k= 1)d + (r — d)) Zk (k—Dd+ (r—d)j’

Jj=k Jj=

for all ¢ € T,iT(Id).
4. AvomiNG T (I2)\{¢} AND CONTAINING ¢ EXACTLY ONCE, 2<m <k —1

Now we find the cardinalities of the sets S\ (T{".(1a); ¢) where 2 <m <k —1, ¢ € T{".(Ia).
Theorem 4.1. Letr > 1,k >3, andn > k+ 1. Then

n

1SS @ T);9)l = [T (k=D + (r = d)j),

j=k+1
forall2<m <k -1 and ¢ € T}, (1a)-

Proof. Let G, = s (T{".(1a); ¢), ¥ € Gr, and let us consider the possible values of 91

(1) |¢1] € m — 1 and coloured by ¢ € I;. Evidently ¢ € G, if and only if (¢, ...,1,) avoids

M;". (¢, 12) and contains ¢ exactly once.

(2) 1] > n—k + m+ 1 and coloured by ¢ € I;. Evidently ¢ € G, if and only if (¢, ...,¢,)
avoids M;" (¢, I4) and contains ¢ exactly once.
(3) m < |¢1] £ m— k+ m and coloured by one of the colours c¢i,...,cq4. By definition we have

that |G| =1,s0let n > k+1. If m+ 1 < |[¢1] then ¢ contains at least m > 2 occurrences of

a pattern from T}".(I4), and If 1| <n —k +m — 1 then ¢ contains at least k —m +1 > 2

occurrences of a pattern from T7".(I), a contradiction.
3

(4) [t1] coloured by a colour ¢ ¢ I;. Evidently ¢ € G, if and only if (¢2, . . ., 9n) avoids M" (¢, 14)

and contains ¢ exactly once.

Since the above cases 1-4 are disjoint we obtain |G| = ((k —1)d + (r — d)n)|Gp—1| for all n > k& + 1.

Besides |G| = 1, hence the theorem holds.

O
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Example 4.2. Let ¢ € ,Z‘z(l) where 2 < m < k—1 and k > 3. Then Theorem 4.1 gives

S (T, (1); @) = Sokegt form > k.
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