WORDS RESTRICTED BY 3-LETTER GENERALIZED
MULTIPERMUTATION PATTERNS

ALEXANDER BURSTEIN AND TOUFIK MANSOUR

ABSTRACT. We find exact formulas and/or generating functions for the num-
ber of words avoiding 3-letter generalized multipermutation patterns and find
which of them are equally avoided.

1. INTRODUCTION

A generalized pattern T is a (possibly hyphenated) string in [¢]™ which contains
all letters in [(] = {1,...,£}. We say that the string o € [k]" contains a generalized
pattern 7 if o contains a subsequence isomorphic to 7 in which the entries corre-
sponding to consecutive entries of T not separated by a hyphen must be adjacent.
Otherwise, we say that o avoids T and write o € [k]"(7). Thus, [k]"(7) denotes the
set of strings in [k]™ (i.e. n-long k-ary strings) which avoid .

Example 1.1. An string 7 = ajas...a, avoids 13-2 if © has no subsequence
a;a;+1a; with j > i+ 1 and a; < a; < ajt1-

Classical patterns are generalized patterns with all possible hyphens (say, 2-1-3),
in other words, those that place no adjacency requirements on o. The first case of
classical patterns studied was that of permutations avoiding a permutation pattern
of length 3. Knuth [6] found that, for any 7 € Ss, |Sp(7)| = Cp, the nth Catalan
number. Later, Simion and Schmidt [8] determined the number |S,, (P)| of permu-
tations in S,, simultaneously avoiding any given set of patterns P C S3. Burstein
[2] extended this to |[k]™*(P)| with P C S3. Burstein and Mansour [3] considered
forbidden patterns with repeated letters.

Generalized permutation patterns were introduced by Babson and Steingrimsson
[1] with the purpose of the study of Mahonian statistics. Later, Claesson [4] and
Claesson and Mansour [5] considered the number of permutations avoiding one or
two generalized patterns with one hyphen.

In this paper, we consider the case of words avoiding a single generalized pattern
of length 3.

We say that two patterns 7, and 7» are Wilf-equivalent or belong to the same
Wilf class if |[k]™(m1)| = |[k]™(72)| for all integers k,n > 0. Given a generalized
pattern 7 we define its reversal r(7) to be 7 read right-to-left (including hyphens).
For example, 7(13-2) = 2-31. We also define complement of 7, denoted ¢(7), to be
the pattern obtained by substituting £+ 1 —7(7) for 7(¢) and leaving hyphens in the
same positions (for example, ¢(13-2) = 31-2). Clearly, cor =r oc, so {(¢,r) = Da,
the group of symmetries of a rectangle. We call the set {7,7(7),c(7),c(r(7))} the
symmetry class of 7. Obviously, all patterns in the same symmetry class (e.g. 13-2,

Date: April 6, 2003.
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2-31, 31-2, 2-13) are Wilf-equivalent, so we only need to consider one representative
of each symmetry class to determine Wilf classes.

Let 7 be any generalized pattern; we define #7 (o) as the number of occurrences
of 7in o. Let F.(n, k;q;a1,...,aq) be the occurrence polynomial, whose coefficient
at ¢" is the number of words in [k]™ having exactly r occurrences of 7 and ending
on aj . ..agq; that is,

E (n,k;q;a1,---,aq) Z g#r(oaraa)
o€ k]n d

For d = 0, we denote F,(n,k;q) = F,(n,k;q;0). We also denote the generating
function for the sequence {F;(n,k; q)}n>0 by Fr(x;k;q); that is,

(z,k;q) Zx"F n, k; q) Z Z g#m (@ gn,
n>0 n>0 o €lk|™
2. TWO-LETTER GENERALIZED PATTERNS

Here, the only symmetry classes with repeated letters are those of generalized
patterns 11 and 1-1. However, avoiding 1-1 simply means having no repeated letters,
o)

-0l = ()t = 0,

the n-th lower factorial of k, which is 0 when n > k. Avoiding 11 is the same as
having no repeated adjacent letters, so (see Theorem 2.1)

[K]"(11)] = k(k — )",

for all n > 1. The remaining symmetry classes is those of patterns 12 and 1-2. A
word avoiding 1-2 is just a non-increasing string, so

wraal=("TEY).

n
Avoiding 12 means there is no adjacent pair of letters in increasing order, in other
words, a string avoiding 12 is a non-increasing string so (see Theorem 2.3)

wraz= ("2 ) = el

Indeed, the strings avoiding 12 are exactly those avoiding 1-2.
Theorem 2.1. Let 7 = 11...1 € [1]! be a generalized pattern. Then

1+ (1 =g X Th(ka) — (1—q)(k—1) X ha? Y2t d(kx)
1—(k—1+q)w—<k—1><1—q)<1—ml 2)

1—-z

Fr(z;k;q) =

Proof. Let (j), =jj-..J, a string of d letters j. Then, by definition,

Fr(n,k;q; (4) ) = Z q#‘r(d,(]) @) = Z Z g# (@) =
€lk

. i=1 ge[k]n—2-1

Z Z L DI L

z7$] 06 'n d—1 O'E[k]"_d_l
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If we sum over all j =1,2,...,k, then for all d <1 — 2 we have

k

k
> Frni kg () = (k= DF(n = diksq) + 3 Fr(n,k5 545 g4)s

Jj=1

hence

-2
F.(n,k;q) = 1)> Fr(n—d,k;q) + G(n, k; q),
d=1

where G(n, k;q) = 2?21 Zae[k]n_(l_n g#7 (@) Again, by the same above ar-
gument it is easy to see

G(n,k;q) = (k= 1)Fr(n— (1 —=1),k;q) + ¢G(n — 1,k; q).

Now consider G (n, k;q) — ¢G-(n — 1, k; q) together with the two equations above
to obtain

-1

d=2

for all n > [. Besides, Fi-(n, k;q) = k™ for all n <1—1, hence, taking the generating
functions of both sides, we see that the theorem holds. a

Example 2.2. Theorem 2.1 yields for all n > 1,
Fii(n,k;q) = k(g +k—1)"""

and

1+z(1+z)(1-gq)
1—-(k—14¢qz—(k—1)(1 — q)x?

Fii(z;k;q) =

Letting ¢ = 0, we get |[k]"(11)| = k(k — 1)"~1, and

l+z+--- 4zt
S OIEMAL. . D]a" = —.
= : 1-(k-1)z—---— (k-1
For a different approach to the last formula, see [7], Example 6.4 {f., pp. 1102-1103,
for an easily generalizable case of k = 2.

We also obtain from the above that the number of strings in [k]"™ with exactly j
occurrences of the generalized pattern 11 is ("J_.l)k(k —1)ni-L,

Theorem 2.3. For alln>2 and k > 1,

1

1-(1+(1—g)z)k *
1—¢q

Fio(z;k;q) =
1+
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Proof. By definitions,

Fis(n,k;q;5 Z Z g#12wid) —

i=1 welk]n=2

qi Z q#12(wz) + Z Z q#12 (wi) —

=1 welk]"—2 =j welk
j—1
“a-DE T ey 3 e
i=1 wek]n—2 i=1 welk
j—1
=Fia(n—-1,k;q)+(¢—1) Z Z q#12(“”)
i=1 welk]™—

Besides, Fia2(n, k;q;1) = Fia(n — 1,k;q), hence it is easy to see by induction on j

that
=1

. j—1 i ,
Fia(n, k;¢;5) = (] ; )(q —1)'Fia(n—1-4,k;q).
i=0
Therefore, for all n > 1,

Fia(n, k;q) = Z ._ ( R 1>(q— DiFs(n—1—1i,k;q) =

= Zk: (’“) (g — 1Y Fia(n — j, k; q).

Besides, Fi2(0,k;q) = 1, hence the theorem holds for the generating function
Fia(z; k; q)- O

3. THREE-LETTER GENERALIZED PATTERNS

This section is divided into three subsections corresponding to the three cases of
3-letter generalized patterns: classical patterns, patterns with exactly one adjacent
pair of letters, and patterns without internal dashes (i.e. with three consecutive
letters).

3.1. Classical patterns. The symmetry class representatives are 1-2-3, 1-3-2,
1-1-2, 1-2-1, 1-1-1. It is known [2] that

[[k]™(1-2-3)| = |[k]™(1-3-2)| = gn—2(k—2) i Gh2, (n -}T-LZj)7

where

Il

k
2t 1 2t
ak,j:ZCka—ma D, (t)’ Ct:t—|——1(t)'

m=j
Recently, it was shown in [3] that
k

roani=3 () () o = S Bn - @

=0
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_ (r+9)!
— 25(r — 8)!s!
of the first kind. In particular, fi.1.1(n, k) = 0 when n > 2k. It was also proved in
[3] that

where (k); is the falling factorial, and B(r, s) is the Bessel number

k

P (20)] = [H 1) = 3 (

=0

n+k—j5-—1
n

T

where ¢(n, j) is the signless Stirling number of the first kind.

3.2. Generalized patterns with exactly one adjacent pair of letters. Let
F:(z; k) be the generating function for the sequence { f;(n, k)},>0 where f-(n,k) =
[[E]™(7)]; that is,
Fr(ask) =) f-(n, k)z".
n>0

In the current subsection, we find explicit formulas or recurrence formulas for
F,(z;k) where 7 is a three-letter generalized pattern with exactly one adjacent
pair of letters. The symmetry class representatives are 11-1, 11-2, 21-1, 21-2, 12-3,
21-3 and 13-2. We will now find F (z; k) for each of the above patterns.

Theorem 3.1. For all k > 1,

Bk (.’L‘ —Ak(.Z') 0 e 0
Bk_l(ﬂ,‘) 1 —Ak_l(.'E) . 0
Bj_(z) 0 1 ... 0
Fiia(z;k) = : : :
Bz (.’L‘) 0 0 . —A2 (.’L‘)
Bi(z) + Ai(x) 0 0 1
k k

k
Bj(z) ] 4i)

i=1 j=1 i=j+1

I
—
>
&
+
]

.2
where Aj(z) = —{=55; and Bj(z) = 1_%;[“”1)38.
Proof. Let an = |[k]"(11-1)], and let ap k(i1,...,iq) be the number of all words
o € [k]"(11-1) such that o; =i; for all j = 1,2,...d. Then it follows that a,; =
Zle an,k(%). On the other hand, an (i) = 2?21 ank(4,7)s ank(%,5) = an—1,k(j)
for i # j, and ap k(4,%) = an_2 ;—1. Therefore,
ank = k(@n_1k + Gn_2k—1) — An_1,k

for all n > 2 and k > 1. Besides, a;,x, = k and ag,, = 1, hence, for all k > 1,

1+z ka?
Fiia(z k) = S + = (k= 1)$F11-1(37,k - 1),
and Fi1.1(x;0) = 1. The rest follows by induction on k. O

Theorem 3.2. For all k> 1,

[uy

k— .
Fn-g(ﬂ?;k) = H %

Jj=0
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Proof. Let o € [k]"(11-2); then there are fi1-2(n,k — 1) such words where o; # k
for all j. Let fi1-2(n, k; j) be the number of words o € [k]™(11-2) where o; = k and
j is minimal, then o = o1kos for some o1 € [k — 1]971(11) and o5 € [k]"7(11-2).
Moreover, for all o1 and oy as above, we have o = g1kos € [k]"(11-2), so

frr2(n k) = fra(n, k— 1)+ fira(n, k; )
=1
fra(n ki) = fu(G— Lk = 1) fia(n — 4, k)

SO

an 2(n,k;§) = fue(n = Lk) + Y fu(i — Lk =1)fira(n = j k).

=2

Hence, from the Example 2.2, we get that, for all n > 1,
n—2 )

fr1a(n k) = fia(n, k= 1) + fia(n—1Lk) + > _(k—1)(k—2) fira(n — 2 — j, k).
j=0

In addition, f11_2 (0, k) = 607]9, hence

1—(k—2)x )
1—(k—1)z — 2 Fira(ask —1).

F11 2(.’L‘ k?)
The rest follows easily. a

Example 3.3. For k = 1,2, Theorem 3.2 yields Fi1.2(x;1) = ﬁ and Fi1.2(x;2) =
m. In other words, fi1.2(n,1) =1 and fi1.2(n,2) = F,43 — 1, where
F, 3 is the (n + 3)-rd Fibonacci number.

Theorem 3.4. Patterns 21-1 and and 21-2 are Wilf-equivalent, and we have, for
k>0,

k—1 k—1
F21-2(33§k)=F21-1($§k)=1+z ( d+1F211 (x;k—d) Z ( ))

d=0 i=d

Proof. Let us find Fb;_1(x; k) and Fby_2(x; k) to prove that the two are equal.

Let us derive the formula for Fyi.1(z; k).

Let gn;k (i1, ... ,4q4) be the number of words w in [k]"(21-1) such that w; = i; for
all j =1,2,...,d (in other words, w begins with the string i ...i4).

Consider gy, (i, j). There are two cases. If j > i, then the first ¢ cannot be part
of any 21-1 in a word w beginning with (4, 7) and places no further restrictions on
the rest of the w, s0 gn,k(4,J) = gn—1,6(j) if j > i. If j <4, then deleting the first ¢
from w starting with (i, j), we get a word w' € [k]*~1(21-1) which contains exactly
one j, namely, as the first letter. Now let w” € [k — 1]"~! be the word obtained
from w' by subtracting 1 from each letter > j. Obviously, this is mapping is a
bijection onto the set of words in [k — 1]"~1(21-1) starting with j (since neither it
nor its inverse, i.e. adding one to each letter > j except the first letter, creates any
new occurrences of 21-1). Thus, g,x(¢,7) = gn-1,k—1(j) if j <.
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i—1 k
In k(i Zgn k6 0) =Y gn16-1(G) + D In-1,4(5)
i=1 j=i

i—1

= fora(n = LK) + Y (gn-1,4-1(1) = gn-1,6(4))-

j=1

(3.1)

We can show by induction on d that (3.1) implies
d—1 d-1-j .
d-—1 d—1-— . L. .
9n, k(d) = ( J ) Z ( i J) (—1)’f21_1(n—1—z—j,k—]).
i=0

Hence for all n 2 1,

5

with f21_1 (0, k) =1.
If we multiply through by z™ and sum over all n > 1, we get
E d-1

Fora(z;k)—1= ZZ ( > (L =) By (a5 — ),

d=1 j=0

d

ioj ( - _]>(—1)if21-1(n— L—i—j,k—3j)

which means that

k-1 k—1 . ;
Fora(zsk) — 1= Z (md+1F21-1($; k—d) Z (1—2)1 <d)> )

d=0 i=d

Now let us find the formula for Fyi.o(z; k).

Similarly, we define hy, (i1, ...,%4) to be the number of words w in [k]"(21-2)
such that w; = i; for all j = 1,2,...,d. As before, hy 1 (i,5) = hn_1,,(j) if j > 0. If
Jj <iand w € [k]"(21-2) starts with (¢,7), then w must contain only one i. Thus,
deleting 7 and subtracting 1 from each letter > i is a bijection from the set of words
in [k]"(21-2) that start with (i,j) onto the set of words in [k — 1]"71(21-2) that
start with j. Therefore, hy, (i, j) = hp—1,-1(J) if j < 4, so it is easy to see that
hn,i (i) satisfies the same recurrence 3.1 as g, x (i), i.e.

i—1
h k(i) = fora(n = LE) + > (hn-1k-1() = hn1,(5))-
j=1
Noting that g, (i) and hy, (i) are the same when n = 0,1 or kK = 0,1, we see that
F21_1(.’L' k,‘) F21.2(.’L’ k) for k 2 0. O

Example 3.5.
Fgl_g(.’L';O) = F21_1(.’E;0) =1
1
11—z
1 z?

i-2? (-2

1 -3z + 622 — 52° + 32* — 2
(1—=)f

Fyia(z;1) = Fo14(z31) =

Fo10(2;2) = Fo1.4(x;2) =

F21_2(.’L';3) = F21-1($; 3) =
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Theorem 3.6. Patterns 12-3 and 21-3 are Wilf-equivalent, and for all k > 1,

k-1 1
Fias(z; k) = Far3(x; k) =

_ =
j=0 (1—z)’

Proof. Let 0 = (¢',k,0") € [k]™ such that 6; = k and j is minimal. (Note that
there are fi2.3(n;k — 1) (respectively, f21.3(n;k — 1)) words avoiding 12-3 (respec-
tively, 21-3) where such j does not exist.) Hence, o avoids 12-3 (respectively, 21-3)
if and only if o/ € [k — 1)7~! avoids 12 (respectively, 21) and o' € [k]"~/ avoids
12-3 (respectively, 21-3). Theorem 2.3 yields for all n > 0 and &k > 2,

n

f12_3(n,k) f12 3(” k— ]' +Z (

n

fa1:3(n, k) = for3(n,k —1) +Z(

—1+k-2

92 )f12-3(n_j7k)=

-1+k-2

_ 9 >f21-3(n = J, k).

Since f12_3(n, 1) = f21_3(n, 1) =1 as well, we get that F12_3(Z'; k‘) = F21_3(.Z';k) and

Fio3(x; k) = Fias(x;k— 1) + Fia3(z; k).

O

Lemma 3.7. Let a, (i) be the number of words o € [k]"(13-2) such that o1 = i.
Then, forn > 1,k >0

j+1
fiz2(n, k) = Zank an,i (J Zanlk ZanuJJrl)-
i=j+1
In addition, fi3.2(n,1) =1 for all n.
Proof. The first identity holds by definition, and
j+1 k
ank Zank .75 Zan,k(ja":)"' Z an,k(ja']:);
i=1 i=j+2

where a,, 1(j,4) is the number of o € [k]™(13-2) such that o1 = j and o2 = 4. If
i < j+1, then the first letter j places no restriction on the rest of o, s0 an k(j,4) =
an—1,5(4). If j +2 < i < k, then the rest of o (positions 3 to n) may not contain
any letters from j + 1 to ¢ — 1 (for a total of i — j — 1 letters), so ank(j,i) =
anfl,k+j+17,'(j + 1). Hence

Jj+1 k
ank Zan lk Z Qp—1,k+j+1— z(]+1)
i=j+2

The rest is easy to obtain. |
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We also note that a, x(k—1) = an (k) = f(n—1, k) and that the second formula
in Lemma 3.7 implies

ank(J) = @nk(j —1) —anr1(j) +ank1(j —1) =

an—1,k(J +1) —an-1,-1(j), for2<j<k-1,
= a/nfl,k(j + ]-) - anfl,kfl(j) + anfl,k(j)a for J = 17
0, forj=k.

From Lemma 3.7, it is easy to obtain explicit formulas for small values of k.

Theorem 3.8.

Fiso(z;1) = L

13-2\4y - 1— Ill"
Fi3.a(x;2) = 1

13-2\T54) = 1—22’

(1-2)?

Fizo(z;3) =

1820853) = Ao A " 3 7))

1 — 4z + 622 — 32°

F13_2(.'13;4) =

(1-3z)(1 —2x)(1 — 3z +22)’

3.3. Generalized Patterns without internal dashes. The symmetry class rep-
resentatives are 111, 122, 212, 123, 213. In the current subsection, we find explicit
formulas for F;(z;k) for each of these representatives 7. Example 2.2 yields the
following result for 111.

Theorem 3.9. For all k> 1

14+ 2+ 22

Fi(z;k) = 7 (k—1)z— (k—1)z2

Theorem 3.10.

X
Fiao(z; k) = (I-2)k—(1-2x) k> 0.

Proof. Let o € [k]™(122) where o contains j letters k. If j = 0, then there are
fi22(n,k — 1) such words. Let j > 1, ¢ = (¢',k,0"), and let o, = k where
minimal (so ¢’ does not contain k). If 0,41 # k then o avoids 122 if and only if
o' € [k —1]""1(122), and o € [k]*"(122) such that o} # k, so there are

Z f122(7' - ]., k— 1)(f122(n -, k) — f122(n -1- r, k))
r=1

such words. If .41 = k, then ¢ = 0, and ¢ avoids 122 if and only if ¢” avoids
122, so there are fi22(n — 2, k) such words. Hence

fi22(n, k) = fiea(n, k — 1) + fi22(n — 2, k)

+ ) fro2(i = 1,k — 1)(fr22(n — i, k) — fraa(n — 1 — i, k)

i=1
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for all n > 2 and k > 1, therefore,

fize(n, k) = fioa(n, k — 1) + fio2(n — 2,k)

n—1 n—1
+ Z flzg(i, k— 1)f122(n —-1- 'i, k) - Z f122(i, k— 1)f122(n -2 - i, k))
i=0 =0

In addition, f122(]., ].) = f122(0, ].) = f122(0,0) =1 and f122(n,k) =0forn <0,
hence, taking the generating functions, we see that

F122(.CL'; k) = F122(.CE; k— 1) + $L'2F122(IU; k) + (SL' - $2)F122(.CL'; k)F122($; k— ].)

Now, after dividing through by Fi12(x; k) Fi12(2; k — 1) and some routine manipu-
lations, we see that the theorem holds. O

Example 3.11. Theorem 3.10 yields Fiso(z;2) = m, which means

f122(n,2) = Fpy3 — 1, where F,,13 is the (n + 3)-rd Fibonacci number.

Theorem 3.12.
1

k—1 1
L= 0 Ty

Proof. Let da12(n, k) be the number of words o € [k]"*t1(212) such that o1 = k,
and let Daa(z; k) be the generating function for daia(n, k), that is Doja(z; k) =
En>0 d212 (TL, k’).’l)’”

Let o = (o', k,0") € [k]"(212) so that o' does not contain k. If ¢ = ¢', then
there are fa12(n, k—1) such words. Otherwise, o' € [k—1)9~! for some j = 1,...,n,
so there are fo15(j — 1,k — 1)da12(n — j, k) such words. Therefore, for all n > 1,

Foya(z3k) = , k>0.

fa12(n, k) = fora(n,k—1) + Z fa12(4 — 1,k — 1)d212(n — 4, k).

j=1
In addition, f212(0,k) =0 for all £ > 1, hence
Fy19 (.Z'; k) = (1 + .’I?D212(.Z'; k))F212 (:L‘; k— 1).

Now let 0 = (k,0") € [k]"T1(212). The first k is not part of any occurrence
of 212, so we can delete it to get any word o € [k]"(212). We can obtain an
occurrence of 212 by adding the first k back only if ¢ = (k, i, k,c""") for some 1 < k
and (k,0'") € [k]"1(212). Then neither the second nor the third letter of o can
start 212, so the number of such “bad” words is (k — 1)d212(n — 2, k). Hence,

do12(n, k) = far2(n, k) — (k — 1)dai2(n — 2,k), n>2.
Taking generating functions of both sides, we obtain
D212(.CE; k) = F212(.CE; k) — (k — 1).(132D212 (.’L’; k‘)

Now, solving the two generating function recurrences above, we get

1 _ 1 _ T
Fora(z; k) Fora(z;k—1) 14 (k—1)22’

which implies the theorem. a
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Theorem 3.13. 1

<~k _ (k\..i’
Zj:o aj(j)wj
where agy = 1, agmy1 = —1, asmy2 =0 for all m > 0.

Proof. By definition, fi23(n; k) = k™ for k = 0,1,2, so the formulas for Fia3(z; k)
hold for ¥ = 0,1,2. Let dia3(n, k) be the number of words o € [k]"(123) such
that (o,k + 1) also avoids 123, and let D123(x; k) be the generating function for
d123 (n, k) with & fixed.

Fios(z; k) = k>0

Y

Lemma 3.14.
1-3z% +2° 1
ST T Pas(433) = —————.
1-3z+z3’ 123(233) 1—3z+28
Proof. Let o € [3]"(123), and let fi23(n,k;a1,...,a4) be the number of words
o € [3]"(123) such that o; = a; for all i = 1,2...,d. Deleting the first letter
i € {1,2,3} of o, we get a word ¢’ € [3]"~1(123). Adjoining i in front of any
word o' € [3]"71(123), we get a word o € [k]"(123) or ¢ = (1,2,3,0") for some
o' € [3]"73(123). Hence,

f123(n,3) = 3f123(n — 1,3) — fi23(n —3,3), n>3.
Besides, fi23(n,3) = 3™ for n =0, 1,2, hence the formula for Fis3(z;3) holds.

Similarly, we have
d123(n,3) = 3d123(n - 1,3) - d123(n - 3,3), n Z 4.

Besides, d123(0,3) = 1, d123(1,3) = 3, d123(2,3) = 6, and dy23(3,3) = 18, hence the
formula for D123(x;3) holds as well. O

D123 (.73; 3) =

Now, we are ready to prove the two main recurrences.

Lemma 3.15. For all k > 4,

F123(.CE; k — ].) T+ (]. — .CE)D123(.T; k— ].)
123(3:7 ) 1-— Z‘D123(.Z'; k— 1)’ 123(3}7 ) 1-— $D123(£L'; k— 1)
Proof. Let o = (o', k,0") € [k]"(123) be such that o; = k and o’ € [k — 1)~ (the
leftmost k is at position j). If o = ¢’ (i.e. o has no k), then there are fia3(n,k—1)
such words, otherwise, there are dya3(j — 1,k — 1) f123(n — 4, k) of them. Therefore,

n
fras(n, k) = froa(n, b — 1) + Y diss(j — 1,k — 1) fras(n — 4, k),
j=1
for all n > 1. Besides, f123(0,%k) = 0 for k > 1, hence, taking generating functions,
we get
F123(.'L'; k— 1)

F123(x;k) = 1 —.'L'.D123(.'L';k _ 1)

Similarly, we have for all n > 1,
n—1

d123(n, k) = d123(n, k— 1) + Z d123(i -1, k— 1)d123 (TL — 1, k),
=1
or, equivalently,

di23(n, k) = dias(n,k — 1) —diaz(n — 1L,k —1) + Zd123(i — 1,k —1)dias(n — i, k)

i=1
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for all n > 1. Besides, d123(0,k) = 1, and dj23(n, k) = 0 for n < 0, hence, taking
generating functions, we get
x + (]. — ."L')D123(.’L'; k— 1)

1-— .’1,'D123(£L'; k — 1)

Dyas(x; k) =
O

Finally, Lemmas 3.14 and 3.15 together yield us Theorem 3.13. We also note
that the same Lemmas yield that

Shob (3

Diss(wsk) = ————» k>0,
2 =00 (f)mﬂ
where bgm = agm = 1, b3m+1 = a3m+2 = 0, b3m+2 = a3m+1 = —1 for all m Z 0. O
Theorem 3.16.
1
Fy3(z; k) = k>1,

l—o -2 ey (L —ja?)
and F213($;0) =1.
Proof. For k = 0 the theorem is trivial, so we may assume k > 1. Let dai13(n, k)
be the number of all o € [k]"(213) such that (o,k + 1) also avoids 213, and let

Ds13(x; k) be the generating function for da13(n, k) with k fixed.
Similarly to Lemma 3.15 we have

fa13(n, k) = for3(n, bk —1) + Zd213(j —Lk—1)fos(n—j,k), n>1

j=1
Also, f213(0,%k) = 0 for k > 1, hence, taking generating functions, we get
F213 (.’L’; k‘ — 1)
1-— $D213(.’L'; k— ].) )

Similarly to Lemma 3.15, we have for all n > 1,

Fo3(z; k) =

do13(n, k) = dais(n, k — 1) + do1z(n — 1,k — 1) + doy3(n — 2,k — 1)
n—2

+ Zd213(’1: — ].,k - 1)d213(n — i,k),

i=1

or, equivalently,

d213(n, k‘) = d213(n,k — ].) — (k — 1)d213(n — 2, k — ].)

+ Zd213(i - ].,k - 1)d213(n - i,k),

i=1
for all n > 1. Besides, d213(0,k) = 1, and d213(n, k) = 0 for n < 0, hence, taking
generating functions, we obtain

(1 — (k‘ — 1)$2)D213($; k— 1)

D213(33'; k) - 1-— IL'D213 (SU, k— 1)
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We remark that it would be interesting to see to what extent the proofs of the

theorems in this section can be automated by using enumeration schemes introduced

by

Zeilberger [9)].
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