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In this lecture, I will describe a series of joint works with Tatiana Toro
on the relationship between regularity properties of harmonic measure and
Poisson kernels, and regularity properties of the underlying domains.

Thus, consider a domain @ C R™" and the solution to the classical
Dirichlet problem:

Au = in §2

{ u=0 in (DP)
uly, = f € Ch(09),

u € Cy(Q), where Gy is the class of bounded continuous functions.

The maximum principle and the Riesz representation theorem yield the
formula

u(Xy) = mf(@)dﬁ*(@), X €4,

and the family of positive Borel probability measures {dw™*} is called
harmonic measure. We sometimes fix X, € Q and write dw = dw™*.
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Note that, if Q is a smooth domain, then dw**(Q) = Eg% (@, X,)do(Q),
where G is the Green’s function for §2, do is surface measure, and En%

denotes differentiation along the outward unit normal.

When € is unbounded and v is & minimal harmonic function in {2 with
’Ul a0 = 0, we define dw™, harmonic measure with pole at infinity, to be
the measure satisfying

/ pdw™ =f*u&cp, for p € C5°(2).
% £

The existence and uniqueness of v and w* (modulo multiplicative con-
stants) can be established, for instance, when {2 is an unbounded NTA
(non-tangentially accessible) domain. For example, if @ = R = {(z,1) :
t > 0}, then v(z,t) =t and dw™ = dz on R".

The work I will describe originated from trying to understand, asa — 0,
the classical theorem of Kellogg, which shows that, if € is of class C@,
0 < a < 1, then dw = kdo with logk € C?%, and its “converse”, the
free boundary regularity of Alt-Caffarelli (1981), which states that, if €2
satisfies certain necessary weak conditions (to be more fully explained
later) and dw = k do with logk € C?, then Q must be of class C1.

To motivate our results, we recall real variable characterizations of C*
and C*:




@ € CY(R™ (0 < a < 1) & Vr > 0,29 € R", there exists an affine
function L, ,, on R" such that

p(z) — Lrao ()|
r

< Cr® for |z — x| < 7. (Da

When o = 0, this condition is equivalent to the Zygmund class condition
w € A, le.,

lp(@ +h) + oz —h) - 2()] _
I
For us, when o = 0, the A, class will also be relevant, where ¢ € A, if
@ € A, and, in addition, the ratio described above tends to 0 as o — 0.

1
h € C* & sup —avp,|h — hp,| < C, (1),
r>0T
where av 4 denotes the average over the set A and B, any ball of radius
r. When a = 0, this becomes the BMO space of John-Nirenberg, but we
will be more interested in VMO, where h € VMO if A € BMO and in
r—0

addition avp |h — hg.| — 0. Note that VMO plays the role vis-a-vis
BMO that continuous functions play vis-a-vis L.

We start out by giving our geometric analogue of (I)g: We say that 2 C
R™t! is §-Reifenberg flat if it has the separation property (a quantitative
connectivity property), and, for all compact K CC R™?, there exists
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Ry > 0, such that, for 0 < r < Ry and @ € 0 N K, there exists an
n-dimensional plane L(r, Q) passing through @ such that

—-D [B(r,@) N 6%, B(r,Q) N L(r, Q)] <,

where D denotes Hausdorft distance. Note that thls is a agmﬁcant con-=
dition only for § < 1. We will always assume § < ; xf We say that Q is
Reifenberg vanishing if, as r — 0, we can take 6 — 0.

For instance, the domain above the graph of a A, function is Reifenberg
vanishing. In general, Reifenberg vanishing domains are not local graphs;
they do not have tangent planes or a “surface measure”. This class of
domains was introduced by Reifenberg (1960) in his study of the Plateau
problem for minimal surfaces in higher dimensions.




In order to state our analogue of Kellogg’s theorem in this setting, we
need to introduce “multiplicative” analogues of (I)o.

A measure p, supported on <), is doubling if, VK CC R™!, there
exists Rx > 0 such that, if 0 < r < Rk, then

p(B(2r,Q) N o) < C p(B(r,Q)N 09Q).

Such a g is called asymptotically optimal doubling if it is doubling and

j : p(B(rr,@Q)NoY) .. p(B(tr,@Q)NoQ)
iy ool w(B(r Q) N9)  Tdaisik MBHLQNO)

for0 <7 <1, K CC R™*

For example, if Q is of class C* and do denotes surface measure,
then o(B(r,Q) N 0Q) = aur™ + O(r™*®), @ € 0K, and hence o is
asymptotically optimal doubling. If logk € C?, then the same is true for
dw = kdo.

Our analogue of Kellog’s theorem is:
Theorem 1. (1997) If Q is a Reifenberg vanishing domain, then w
(w®) is asymptotically optimal doubling.

To understand a possible converse to Theorem 1, we recall a geometric
measure theory (GMT) problem, first posed by Besicovitch: let u be a
positive Radon measure on R*™ such that, for each ¢ € X (X the support
of ) and each r > 0, we have

p(B(r,Q)) = ar”, o> 0 fixed. (B)
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Then, what can be said about u? Clearly, if du = dz on R* C R™,
then (B) holds.

Nevertheless, in 1987, D. Preiss found the following interesting example:
let S be the light cone z7 = 22 + 2§ + =3, and du = doy,, its surface
measure. Then p satisfies (B). Moreover, the general case of (B) is settled
by the following remarkable theorem of Kowalski-Preiss (1987).

Theorem . Let i be a non-zero measure with property (B), and rput
Y =suppp C R*L. Ifn = 1,2, then ¥ =R". Ifn > 3, then either
Y =R" or & =S¢ ® R" 3, modulo rigid motions.

The connection of the Preiss example to our problem comes from the
fact that, if Q = {22 < z? + 23 + 2}, @ C R, then dw® = dog,
(separation of variables) and, by Preiss’s result, w™ Is asymptotically op-
timal doubling, but, of course, § is not Reifenberg vanishing, since it is
ﬁ—Reifenberg flat, and no better.




Our converse to Theorem 1 is now:

Theorem 2. (1999) Assume that Q C R™*!| it verifies the separation
property , and that w (W) is asymptotically optimal doubling. If n =
1,2, then Q is Reifenberg vanishing. If n > 3 and () is é-Reifenberg
flat, § < ﬁ, then §) is Reifenberg vanishing.

This is in fact a GMT result. It remains valid if w (w®™) is replaced by
any asymptotically optimal doubling measure p with support 9€). The
idea of the proof is to use a “blow-up” argument to reduce matters to the
Kowalski-Preiss theorem.

We now turn to the results motivated by (I1);. Note that the unit
normal 77 satisfies |77| = 1, and so the BMO condition on it is automatic,
but the VMO condition is not. To put our work in perspective, we recall
some of the history of the subject.

A domain  C R = R? is called a chord-arc domain is 852 is locally
rectifiable, and, whenever )1, )2 € 052, we have

E(S(QI, Qg)) < C|@Q1 — Qs|, where £ denotes length and s(Qy, Q2) is
the shortest arc between @; and Q. 2 is called vanishing chord-arc if,

in addition, as ¢); — )9, the ratio % tends to 1, uniformly on
compact sets.




Q

i

The first person to study harmonic measure on chord-arc domains in
the plane was Laurentiev (1936), who proved:

Theorem . If Q C R is chord-arc, then dw = kdo with logk €
BMO(do). (In fact, w € Ax(do), the Muckenhoupt class.)

For vanishing chord-arc domains in the plane, Pommerenke (1978)
proved:

Theorem . Suppose that Q is a chord-arc domain in R, Then Q
is vanishing chord-arc if and only if dw = k do with log k € VMO(do).

These results were obtained using function theory, so their proofs don’t
generalize to higher dimensions.

In higher dimensions, the first breakthrough came in the celebrated the-
orem of B. Dahlberg (1977), who showed that, if Q@ C R™*! is a Lipschitz
domain, then dw = k do with logk € BMO (in fact, w € Ay (do)).




One direction of Pommerenke’s result was extended to higher dimen-
sions by Jerison-Kenig (1982), who showed that, if 2 is a C* domain, then
logk € VMO. (In general, note that € is of class C" need not imply that
log k is continuous. )

In order to explain our results and to clarify the connection with con-
dition (II)g, we need to introduce some terminology.

We say that Q C R**! is a “6-chord-arc domain” if § is §-Reifenberg
flat, Q is of locally finite perimeter, the boundary of Q2 is Ahlfors regu-
lar i.e., the surface measure o (which is Radon measure on 62, by the
assumption of locally finite perimeter) satisfies the inequalities

C " < J(B(r, Q)N SQ) < Cr"
and the BMO norm of the unit normal 7 is bounded by 9.

We say that £ is “vanishing chord-arc” if, in addition, it is Reifenberg
vanishing and 77 € VMO(do).

The two notions introduced of “vanishing chord-ar¢” domains in the
plane are the same, and a domain is vanishing chord-arc exactly when it is
of locally finite perimeter, has an Ahlfors regular boundary, it is Reifenberg
vanishing and satisfies 7 € VMO. (Semmes 90, KT 97,99).




Our potential-theoretic result, which extends the work of Jerison-Kenig
(1982), is

Theorem 3. (1997) If Q is a vanishing chord-arc domain, then w
(w™ ) has the property that dw = kdo (dw™ = hdo ) withlogk € VMO
(logh € VMO).

In order to understand possible converses of this, extending the work
of Pommerenke to higher dimensions, we will recall precisely the Alt-
Caffarelli result which we alluded to earlier. In the language that we have
introduced, their local regularity theorem can be stated as follows:

Theorem . Let ) be a set of locally finite perimeter whose boundary
is Ahlfors reqular. Assume that Q) is -Reifenberg flat, 6 < 6,. Sup-

pose that dw = kdo with logk € C*(0) (0 < @ < 1). Then Q is a
CH* domain.

The reason for this being a free boundary regularity result is that, in the
case when §2 is unbounded and dw = dw®™, dw™ = hdg, then v > 0 in
0, ‘UI 9g=0,Av=0in§ and h = % Thus, knowledge of the regularity
of the Cauchy data of v (v|,,, % yields regularity of 62 (or of 77, the

normal).

59)

The first connection between the above Theorem and the work of Pom-
merenke was made by Jerison (1990), who was also the first to formulate
the higher-dimensional analogues of Pommerenke’s theorem as end-point
estimates as @ — 0 in the Alt-Caffarelli theorem.
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Before stating our result, it is useful to clagsify the assumptions in the
Alt-Caffarelli theorem. For this, we recall some examples:

Ezamples. When n = 1, Keldysh-Laurentiev (1937) constructed domains
in R'*! with locally rectifiable boundaries which can be taken to be Reifen-
berg vanishing and for which dw = do, i.e., k = 1, but which are not very -
smooth. For instance, they fail to be chord-arc. These domains do not, of
course, have Ahlfors regular boundaries. '
When n = 2, Alt-Caffarelli constructed a double cone I' in R3 such that,
for ) the domain outside the cone, dw® = do, ie., k = 1. This is of
course not smooth near the origin, the problem being that, while Q is
Ahlfors regular, © is not d-Reifenberg flat for small 4.

When n = 3, the Preiss cone we saw before exhibits the same behavior.

Qur first result was:

Theorem 4. (1999) Assume that Q C R™*! is §-chord-arc, 6 < &y,
that w (W™ ) is asymptotically optimal doubling and that logk € VMO
(logh € VMO). Then 1t € VMO and 2 is vanishing chord-arc.

Notice, however, that, when comparing the hypothesis of Theorem 4 to
the Alt-Caffarelli theorem two things are apparent :

First, we are making the additional assumption that w is asymptoti-
cally optimal doubling, and hence, in light of Theorem 2, €2 is Reifenberg
vanishing.
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Next, the “flatness” assumption in the Alt-Caffarelli theorem is ¢-

Reifenberg flatness, while in Theorem 4 we make the a prior: assumption
that, in addition, the BMO norm of 7 is smaller than 4.

Recently we have developed a new approach which has removed these
objections. We have:

Theorem 5. (2001) Let §) be a set of locally finite perimeter whose
boundary is Ahlfors reqular. Assume that §) is §-Reifenberg flat, § <
On. Suppose that dw = kdo (dw™ = hdo) with logk € VMO(do)
(logh € VMO(do)). Then 7t € VMO(do) and ) is a vanishing chord-
arc domasn.

Note that Theorems 3 and 5 together give a complete characterization
of the vanishing chord-arc domains in terms of their harmonic measure, in
analogy with Pommerenke’s 2-dimensional result, thus answering a ques-
tion posed by Semmes (1990).

Our technique for the proof of Theorem 5 is to use a suitable “blow-up”

to reduce matters to the following version of the “Liouville theorem” of
Alt-Caftarelli:
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Theorem 6. Let () be a set of locally finite perimeter whose boundary
is (unboundedly) Ahlfors reqgular. Assume that Q is an unbounded 6-
Reifenberg flat domain, § < 8,. Suppose that u and h satisfy:

Au=0 inf
u >0 inﬂu]aﬂzﬂ
and

/—u,&(p :f phdo, for ¢ € CPR™).
0 a0

Suppose that sup,cq |Vu(z)| < 1 and h(Q) > 1 for (do-)a.e. Q on
dS). Then Q) is a half-space and w(z, Tpi1) = Tny1.

This is combined with the crucial blow-up result, which we now describe.

Let 2 be as in Theorem 5, and assume in addition that 2 is unbounded.

Suppose dw™ = hdo with logh € VMO(do), and let u be the associ-
ated harmonic function. Let @); € 90 and assume that Q; — Q € OS2
as ¢ — oo (without loss of generality, Q- = 0). Let {r;}32, be a sequence
of positive numbers tending to 0, and put

Qi=—(Q-Q), 0= Q)
1 E E

TV (r, Q)1 do

where h;(Q) = avB{,._;i} —h(riQ + Q;). Then:

ui(X) = u(r; X +@Q;) and dwi® = hi(Q)doy(Q),
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Theorem 7. There exists a subsequence of {4} (which we will call
again {4} ) satisfying:

2 — Qo in the Hausdorff distance sense, uniformly on compacts;

(7.1)
0y — 0Qq in the Hausdorff distance sense, uniformly on compacts;
(7.2)
Ui — U uniformly on compacts; (7.3)
(&um =0 n .,
SU—0 o0, (7.4)
s =] i ..
Furthermore
Wi — Weq (75)
and

weakly as Radon measures. Here, 00 = H"|00s and we denotes
the harmonic measure of Qo with pole at co (corresponding to u).
Moreover, supzcq  |Vus(Z)] < 1 and ho(Q) = %{%(Q) > 1 for
H"-a.e. Q € 0F),.
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Since log h € VMO(912), the average avp(r@)h do is close to the value
of h in a proportionally large subset of B(r, Q) N &%2. This remark allows
us to conclude that (7.6) holds, which is crucial to the application and
which fails in general under just (7.1) and (7.2).

As an immediate application of Theorems 6 and 7, we obtain that Q.
is a half-plane. This already establishes that  is Reifenberg vanishing
in Theorem 5. To establish that 7 is in VMO, we assume otherwise, and
obtain @; — Qw, s — 0, such that WB(r,,@) |7 — B 0,)|°do > £,
£ > 0. We consider the corresponding blow-up sequence, and let €,,; be
the direction perpendicular to 8., By the divergence theorem and (7.1)
and (7.2), we have for ¢ € C$°(R™) that

.]jm/ {p{fﬁ,'.z-,é'nﬂ}dm=/ wdx
=00 [ 50 RP {0}
and hence

1
_HIII {/ (pd{:"?; = -—-/\ (p]ﬁ@' = €n+1|2dﬂz} = / (pdi:,
i—o0 L 50, 2 Jagq, nx {0}

so that (7.6) yields

1— 0%

lim / ©|7t; — eny1|*do; = 0.
80,

Taking ¢ > xp(,0) yields the corresponding bound for the integral on
9, N B(1,0). But

avB(l,ﬂ)ﬂﬁﬂ.;'W = En+1] do; = &VB{H,Q,,;H'H R En+1| do,
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and hence

= P 5 12
£ limio (ﬂ-"ﬂ{n—,@ 17— fipr, Q) dﬂ)

- e
< 2lim;_,, (H-VB(H,QJIH = 6“+1| dg) ¢

a contradiction. This concludes the proof.
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