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Abstract

We introduce a kinetic approach to approximation of generalised
curvature flows. Basing on that a convolution-thresholding approxi-
mation scheme for the generalised mean curvature evolution is con-
structed. Conditions for the monotonicity of the scheme are found and
the convergence of the approximations to the corresponding viscosity
solution is proved. We also discuss some aspects of the numerical im-
plementation of such schemes and present several numerical results.
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1 Background

Curvature flows of different types were during last 20 years and still are a
popular topic both in pure and applied mathematics. By curvature flow
we mean a family {T';},., of hyper-surfaces depending on time ¢ with local
normal velocity equal to the mean curvature or a function of it for generalised
curvature flows.

In the three dimensional case a smooth initial surface can develop singulari-
ties after some finite time ¢, (see [20], [33], Figure 1). After this moment, the
classical motion by mean curvature is undefined. There have been several
successful attempts to deal with singularities and topological complications:
the varifold approach, the level-set approach and the phase field method.



A varifold generalisation of the problem was done by Brakke in [7] where an
appropriate varifold subsolution for all ¢ > 0 is constructed and regularity
properties are established. However, as illustrated by Angenent, Ilmanen and
Chopp in [2], even if the initial data is smooth, the evolution may possess
non-uniqueness after the formation of a singularity.

An alternative approach to the extension of the surface evolution past sin-
gularities is the so called level-set approach. It was suggested in the physical
literature [28] and was extensively developed for numerical purposes by Osher
and Sethian [29]. The main idea of this method is to evolve some continuous
function u : R® — R in such way that I'y C R would always be a level-set of
u(x,t)ie. I'y={zr € R" : u(x,t) =0} V¢ > 0. The evolution equation for u

turns out to be D
u; = |Du| div <ﬁ) . (1)

The evolution equation for a function u with each point of a level-set moving
along the normal with velocity equal to some function G of the mean curva-
ture is, so called generalised level-set equation, or generalised mean curvature

evolution PDE D
. u

Both equation (1) and (2) are invariant with respect to monotone transfor-
mations of wu.

These equation are of degenerate parabolic type. The existence and unique-
ness of generalised viscosity solutions (see [14]) to the Cauchy problem

| Du]

{ u, = | Du| G (dw (&)) in R* x (0,T) )
u=g(z) € BUC (R") on R* x {0}.

was investigated in [19], [13], [26].

Let us mention some applied problems, where curvature flow arise in a natural
way. We begin with a fast reaction-slow diffusion problem

1
up = €Ay — ZVU (u) u(z,0,¢) =g (x) Oyu=0on 09,

where the potential V' : R +— R has several local minima u, us, ..., ug. The
formal asymptotic behaviour of u for small e was studied in [31]. They showed
that u (x,1, €) tends to u; at those points + where g () is in the basin of at-
traction of u; for the pure reaction equation uy = —e 'V, (v) . The boundary
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Figure 1: Example: topological changes during the evolution.

between two regions where the solution is equal to say u; and u; moves along
the normal direction towards the region with greater u with the velocity that
is proportional to [V] = V (u;) — V (u;) . In the situation when [V] = 0,
the second order asymptotic analysis gives the velocity of the front equal to
€k, where k is the mean curvature of the front. Connections between the
reaction-diffusion problem and curvature flows have been rigorously investi-
gated (see [3], [18], [22]). Moreover, such singular limits were used as a kind

of definition for curvature flows past singularities in the phase-field approach
[16], [8].

An important area, where an evolution of type (2) arises is image processing.
It is common to represent a black and white image as a real function v : R*
R,n = 2,3. To reduce noise in an image one wishes to consider a family of
smoothing operators {H.},., so called "scale space”. The result by Alvarez
et al. in [1] says, that if the scale space commutes with contrast changes and
satisfies some stability and regularity properties, then u (z,t) = H; (u) is the
viscosity solution of (3) for some nondecreasing continuous G and an initial
image as g.



1.1 Approximate methods

In order to track the evolution of Iy or a function u (x,t) defined by the
Cauchy problem (3), one needs to construct numerical approximations uy, (, t)
and prove, that these approximations converge to the unique viscosity solu-
tion u (z,t) of (3).

In [29], the authors proposed a finite difference approximation scheme for
the problem (3). Their technique is based on the use of a Hamilton- Ja-
cobi formulation and the technology developed for the solution of hyperbolic
conservation laws. This approach was further developed for a wide scale of
applied problems (see [34]).

The convergence to viscosity solutions for a class of finite difference schemes
was proved by Crandall and Lions in [15].

Another class of approximations, so called Matheron filters, comes from the
image processing. Suppose F € P(R"), where P(R") is a collection of all
subsets of R*. Define

(T'u) (z) = inf sup (z+y). (4)

The connection between such operators and the mean curvature evolution
PDE (2) was established in [12]. The authors show how to choose F so,
that suitably rescaled iterated Matheron filters would converge to the unique
viscosity solution of (3). This result was then extended for a wider class of
functions G in (3) by Guichard and Morel in [21] in the 2D case and by Cao
in [9] in higher dimensions.

A class of geometric algorithms for tracking the evolution of a plane curve was
proposed by Cao, Moisan and Lionel in [11] and [10] (for similar construction
in higher dimensions see [24], [24]). This algorithm is general enough to
resolve wide class of functions G.

Threshold dynamics models, introduced by Ishii, Pires and Souganidis in
[25], lead to approximations of the solution of the Cauchy problem, where
the right hand side can be interpreted as a general elliptic operator on a level
set of the solution. This is a generalisation of the problem, but it does not
entirely include (3) as a special case.

In the present work we construct a class of approximations of a convolution-
thresholding type to the general curvature flows . We suggest here a flexible



generalisation of this type of dynamics motivated by a kinetic approach that
suites well for approximation of general curvature flows.

Let us consider a convolution generated motion of a hypersurface in R".
By this we mean the following. Assume, that initially the surface under
consideration is a boundary of a compact set C' € R*. Take a compactly
supported functions p; : Ry — Ry 7 = 1,2 (in fact, one may also take
p; with unbounded support, but fast decreasing for large z). We define

Pi - R" — Rf—a
1
pi(@) = i (|l V)

and introduce a convolution

M; (C) (x,h) = / xc ) pi (@ — 3) dy.

n

Now M; (C) (z, h) are function of z, and we can define a new position of the
surface as a boundary of the set

HpC ={z e R": F (M, (C) (z,h), My (C) (z,h)) <0}, (5)

where F'is some (thresholding) function. The next step is to introduce an
operator on the space of bounded functions B(R"): H (h) : B(R") — B (R")
by

[H (h)u](z) =sup{A e R:z € H,u> A|}. (6)

The purpose of the present study is for a given function G in (3), to find a
corresponding thresholding function F in (5), so that H (t/m)™ g () would
converge to the unique viscosity solution of (3) as m — co.

The solution of this problem in case when G is linear was proposed by Bence,
Merriman and Osher in [5] (so called BMO method). A rigorous proof of the
convergence of such approximations is due to Evans [17] and Ishii [23]. In
this linear case it is enough to take a thresholding function depending only
on one convolution.

Suppose, that G is non-linear. As we show in Section 3, in this case one has
to use two convolutions M; and M, and a thresholding function depending
on two variables F' (Mj, Ms). This is necessary to ensure that the operator H
is consistent with the PDE in (3). We also show, how to choose convolution
kernels in order to get a monotone H. These two conditions - monotonicity
and consistency - are crucial for the convergence.



Using our approach we also suggest a construction of higher order schemes for
the classical curvature flows. The numerical experiments with these schemes
show a considerable improvement in the accuracy.

1.2 Kinetic generated schemes and
convolution-thresholding dynamics

The following kinetic approximation scheme can serve as a useful physical
interpretation of the convolution-thresholding approximation methods for
generalised curvature flows that we suggest in the present paper.

Let f(r,z,€) with £ € R" be the distribution function having the sense
of the amount of particles in the volume dxdv. The function u (7,z) =
[ f (7, 2,€) d¢ has the sense of the mean density of the gas with distribution
function f at position z at time 7. General mean values like M (1,z) =
[ f(7,2,&) A (&) d§ with a weight function A (£) > 0 are ttraditionally inter-
preted as macro parameters for a gas with the distribution function f.

We consider the following BGK type model kinetic equation for f (7, z,¢&)
with collision term consisting of two qualitatively different terms
eVt = wo© - P+ O (M) (7
— of = — (u — — u, M) .
or Kn ‘P vy
The first one is a usual relaxation term with normalised ”Maxwellian” dis-
tribution p (§), [ p(§) d€ = 1. The second term describes a kind of chemical
reaction that generates particles or eliminate them depending on the values
of the density u (7,z) and of some other macro-parameter M (7, z).

The choice of the function G(p, M, ) determines qualitative properties of so-
lutions.

A standard method for solving an equation of kinetic type is the splitting
method. Instead of solving equation (7) one can sequentially solve on small
time steps A7 the following simpler equations having a clear physical mean-

ing:

0
% + V.£f1 =0, — collisionless flow,
-
filr=o = Fy;
Ofs 1 . :
5 = —f2(&) - G(u, M), — chemical reaction (8)
Ty



f2|T:AT = fl(AT)a
ofs 1

o K—n(ul)(g) — f3), — relaxation
falr=2ar = [f2(2A7);

where the macro parameters u, M ingoing in the equations are calculated for
the actual approximation, correspondingly fi, fo , f3.

We choose parameters v and Kn small in comparison with A7. The solutions
of the second and the third equations of the splitting scheme will be after the
time A7 close to stationary solutions corresponding to zeroes of operators in
the right hand sides of these equations. These zeroes determine geometric
properties and the character of the whole process.

Zeroes of the linear operator (up (§) — f) are evidently all functions of the
form w (z) p(§). Depending on what kind of surface dynamics we want to
model we will impose more concrete conditions for p (£).

The integration of (8) with respect to & with weights 1 and A (§) gives the
equations

ou 1

5 ;Ug (UaM)
oM 1
W = ;Mg (ua M)

We choose the chemical reaction term G (u, M) such that this system of dif-
ferential equations has two stable stationary points (ui, M;) and (ug , Ms) in
the plane of macro parameters and one unstable stationary manifold deter-
mined by the equation F (u, M) = 0 and separating R? in a part attracted
to (u1, M7) and a part attracted to (ug, My).

For v << 1 the u(7,2) and M (7,z) reach after the finite time A7 one of
the stationary states depending on the initial data at the point z . Two sets
with constant density values ui, us are formed with an interface set I' that
we shall use for the approximation of generalised curvature flows.

At the third step of the splitting method the distribution function evolves
independently in all space points z tending to a locally equilibrium stage
of the form depending on z only via the density p(z) . If the parameter
Kn << 1, the equilibrium p (z) M () is achieved after the time A7 .



Consider the family I' (7) of surfaces with initial state I' (0) such that I (0) =
0C) is a boundary for a compact set Cy . We use here the notation 7 = A7 .

Take the initial distribution function f; (0,z,&) = Fo (z,€) in the form
Fo(2,8) = uo (z) - p(£),

where u, is the characteristic function of the set Cj;. We require here that the
function p (&) is non negative, dependent only on |£| and has enough many
moments.

We consider the function f; (A7, z,£) and corresponding values of mean val-
ues p , M.

i (r,) = [ (o 7€) p(€) e

The change of variables y = x — 7€ gives

wro)= [ w) ele-pMdy=wrm @ O

namely that the function u; (z) is a convolution of the initial density uq with
the function m, (y) = =p (y/7).

The same proof shows similar convolution formulas for any weight A () with
ma (y) = = A (y/7) p (y/7) :
Mi(rz) = [ mla=r)A©p(E)d -

— [ @A (@ 9)/7) ple =) )y =

= (poxmas) (o)

with mas = A (y/7) -~ (u/7).

The distribution function f5 (3A7, z, £) has the form f5 (3AT, z,£) = us (x) p (&)
where u3 is a characteristic function of a compact domain where the thresh-
olding function F' (u, M) > 0.

We see that the kinetic splitting scheme generates a kind of convolution
thresholding dynamics of surfaces with thresholding depending on two (or
more) convolutions.



This paper is organised as follows. After introducing the basic notions and
stating some results for viscosity solutions in Section 2, we turn to our method
of approximation for such solutions (Section 1.1). The main result of the
present work is described in Section 3, where we show how to construct F'in
order to get the convergence of the convolution-thresholding approximation
to the viscosity solution of (3) with a monotone continuous function G. More
precisely, the following local uniform convergence is proved

((H (t/m))™ g) () = u(2,t) ,m — o0,

where H defined by (6) and u (z,t) is the viscosity solution of

{ uy = |Du|G (dz’v (@—ZJ) in R* x (0,T)
u=g(z) € BUC (R") on R* x {0}.

We use this construction for numerical calculation for some cases of the
general curvature flows in R? and R?. Numerical results and two approaches
to the implementation are described in Section 4.

2 The viscosity solution framework

Consider the non-linear equation (2) in an open set €2 x (0, T") with function
G continuous and nondecreasing. We perform a differentiation and rewrite
it in the following form:

B 1 _Du® Duy
uy = |DulG <—|Du| tr ((I 7|Du|2 ) D u)) (10)

This is the second order equation with right hand side that is monotonous and
degenerate elliptic (see [14]) provided that G is nondecreasing and Du # 0.
Although it is not defined for Du = 0, one still can define a viscosity solution
to this equation. This was done by Evans and Spruck in [19] and by Chen,
Giga and Goto in [13]. In our presentation we will use a somewhat more
general definition of viscosity solutions introduced by Ishii and Souganidis
in [26] to allow a wider class of functions G in (2). For general degenerate
elliptic equation they consider a special class of test functions and adapt the
definition of viscosity solution for possible singularities of the right hand side.

Let us begin by introducing an auxiliary subclass of C? ([0, 00)). We say that
f:]0,00) = R lies in F C C?if f(0) = f(0) = f"(0) =0, f”(r) > 0 for

9



r > 0 and the following limits hold

() PP (% PR
lim ] G(p,I)=1 ] G (p,—1I) =0.

As was shown in [26], this set of functions is a non-empty cone, provided that
the hight hand side lies in C ((R™\ {0}) x S (n)). The class of test functions
A (G) depends on G and is defined as follows.

Definition 1. A function ¢ is admissible if it is in C? (R* x (0,T)) and for
each # = (i,{) where D¢ (4) = 0, there is § > 0, f € F and w € C ([0, 00))
such that w = o (r) and for all () € B (%,0)

6 (2,8) — ¢ () — e (2) (t —F)| < f(lz—2]) +w (|t —1]).

Let us also denote by u* and u, the upper and lower semi-continuous en-
velopes of u:

u* (z,t) = limsup u(y,s), us(z,t) = liminf wu(y,s)
(y,8)—(z,t) (y,8)—(x,t)

The definition of viscosity solution becomes

Definition 2. v : O C R* x (0,7) — RU {—o00} is a viscosity subsolution
of (10) in O if u* < 0o and for all ¢ € A(G) and all local mazimum points

(20,%0) of u* — &,

b1 (20, o) < | D6 (20,10)| G (d%) if Do (=) #0

&1 (20,%0) <0 otherwise.

Likewise, u : O — R U {00} is a viscosity supersolution in O if u, > —o0,
and for all ¢ € A(G) and all local minimum points (zy,to) of u. — @,

61 (20, 10) > | Do (20, t0)| G @%) if Dé(2) £ 0

&1 (20,%0) > 0 otherwise.

Consequently, a viscosity solution is a function that is sub- and supersolution
stmultaneously.

The result by Ishii and Souganidis presented in [26] can be restated in terms
of the level-set equation (see [30]) as follows:

10



Theorem 1. Assume, that G is continuous and nondecreasing. Then the
wnitial value problem

w = |Du|G (dw (\g—z\)) in R x (0,T)
u=g(z) € BUC (R") on R" x {0}

has an unique viscosity solution u € BUC (R" x (0,T)) .

In what follows, we also use another result by Ishii and Souganidis [26] con-
cerning locally uniform perturbations of the right hand side of the equation.
One can restate this result in case of (10) as follows (see [30]):

Theorem 2. Assume, that G is continuous and nondecreasing. Suppose
also, that {Gn}7° is a sequence of continuous, nondecreasing functions on R
and G, — G locally uniformly. Let for any m, F (G) C F (Gn) and for any
feF(a),

pminf f(p)) G (1/p) > 0
(resp. limsup f'(|p|) G (=1/p) < 0)

p—0, m—oo

N

Let u,, be a subsolution (resp. supersolution) of

ou Du
— = |Duy| Gy | div—"-1 in O.
5t | Dy, | <w|Dum|> in
Then
u* (2) = limsup {un (), |y — 2| <7, m > 1/m} (11)
70
(respuy (2) = liminf {up, (), [y — 2| <7, m >1/m}) (12)
T

is a subsolution (resp. supersolution) of (2) in O provided that ut < oo
(resp. uy > —00).

3 A convolution-thresholding method for a
generalised curvature flow
3.1 Convergence of approximation schemes

In what follows we make use of a theorem by Barles and Souganidis proved in
[4]. In order to base the proof of our main result on this theorem, we follow

11



Pasquignon [30] and restate it in terms of the generalised mean curvature
evolution PDE. Let H (h) be the approximation operator i.e.

up (z,(n+1)h) = H (h)up (z,nh) = H (h)" T ug (z),
up (,0) = wo(z).

Definition 3.

1. Consistency
An approzimation operator H (h), h > 0 is consistent with

ou Du
M _ D ;
ot Dul@ <dw |Du\) ’

iof for any ¢ € C*° (Q) and for any x € Q, the following holds,

(H (h) ¢) (x) — ¢ (z)
h

Du
| Dul

= |D¢|G (div ) +o0; (1) for Do #0. (13)
If the convergence of o, (1) is locally uniform on sets, where Du # 0,
then H (h) is said to be uniformly consistent with the PDE.

2. Monotonicity
An operator H (h), h > 0 is locally monotone if there exists 1 > 0
such that for any functions u,v € B(Q) with u > v on B (z,r)\ {z},
it holds

H (h)u(zx) > H(h)v(z)+o(h).

3. Stability B
An approzimation scheme H (h) is stable if H (h)" u € B () for every
ue B(Q),neNh>0.

In this setting the result of Barles and Souganidis reads:

Theorem 3. Consider a monotone, stable approzimation operator H (h)
that commutes with additions of constants ( i.e H (h) (u+C) = H (h)u +
C, VC € R ) and is consistent with (2). Suppose also, that

L H ) (S (= 20)) (w0)

h—0 h =0

for any f € F(G). Then up, (x,nh) converges locally uniformly to the unique
viscosity solution u (x,t) of (2) as nh — t.

12



3.2 Properties of H

Let us turn back to our main problem posed in Section 1.1. We consider a
convolution generated motion of a hypersurface in R" defined by (5) and the
corresponding evolution of an initially bounded function g : R” +— R defined
by (6). Consider also the initial value problem (3) with given G' and g. We
are looking for such a thresholding function F in (5), that Hyj g (z) would

converge (in some sense) to the unique viscosity solution of (3).

For example, set F' (M, My) = M; —1/2 and py (z) = We*ﬁ“ to get
corresponding operators Hy, and H (h) by (5) and (6). Then we get the BMO
procedure and the main result of [17] applies, and H (h)" uq converges locally
uniformly to the unique viscosity solution of (3) with G (k) = k.

We will see that, in fact, one has to use two convolutions M; and M, with
different kernels and construct a thresholding function depending on two
variables respectively to resolve this problem when G is not linear.

Let us now consider an operator H (h) defined by (6) with help (5) of an
operator H;, with an arbitrary thresholding function. We check whether
such H (h) satisfies the conditions of the Theorem 3. More precisely, we look
for requirements on F' sufficient to fulfil the conditions of Theorem 3.

1. Stability
Suppose u (z) € B(R"). We want to show, that H (h)u € B(R").

Intuitively, we require
H,R" = R", (14)

Hid =0, (15)
and denote A = max |u|. With these settings [u < A] = R" and
—A<H(Mh)u(z)=inf{AeR:ze€H,u<A} <A

It remains to find out for which F' the conditions (14) and (15) are
satisfied. To do this, we substitute the corresponding sets into the
definition of H

HyR* = {ze€R": F(MR" (z,h), MLR" (z,h)) > 0} =

= {xER"' (/ plda:/pzd:r>>0} R"™

Hib = {z €R": F(Mib (z,h), M0 (z, h)) > 0} =
= {xeRn;F(o,o)zo}—(Z).

13



Thus, the requirements on F' become

F(/ pld:c,/ mdx) > 0,
F(0

,0) < 0.

. Monotonicity
Let us now show, that if H, satisfies the so called inclusion principle,
then Hj is monotonous.

Lemma 1. Assume, that Hj, satisfies the inclusion principle i.e.
VC,,Cy CR" : C) C Cy we have HpCy C HpCoy,

then Hj is monotone, that is
Vu,v € C(R") : v < u we have Hy, (v) < Hy (u) .

Proof. Suppose, there exists zg s.t. H (h)u(zo) < H (h)v(zy). We
denote A\; = H (h)u(zy) , A2 = H(h)v(zp) and e = 2254 > 0.
Since Ay + € < inf{AeR:zp e Hp[v <A}, 20 & Hulv < A +¢€,
but Hpy [v < A+ €] D Hp [u < A1 + €]. Therefore xo ¢ Hp [u < A\ + €],
which is in contradiction with the definition of ;. O

. Consistency
We sum up some calculations in the following

Lemma 2. Let ¢ € C*°(R*) ¢(0) = 0 and D¢ (0) = (0,0,...,5).
Then the consistency of an operator H (h) with (3) is equivalent to

7(0) = hG (A7 (0)) + o (h), (16)
where x, = 7y (£) is a parametrisation of the surface
{zeR":u(x)=H(h)u(0)}

near £ = 0.

We observe that in these settings —A~y (0) = k is the (n — 1) times the
mean curvature of the graph of v at the point (0, (0)).

14



Proof. Without loss of generality, one can consider the consistency con-
dition (13) only for ¢ as in the statement. We rewrite (13) in a more
convenient form

(H () $) (0) = h D6 (0)] G (div

Du
| Du|

(0)) +o(h). (17)

Du
|Dul?

([ D¢ 1 < ¢wi¢x->
d = (51"_ : TiXj*
“’<|D¢|) Dé) Z( 97 D ) P

i,j=1

Since ¢ (0) = 0 and @y, (0) = 6,0,

Looking closer at div we write

Dpo| 1] 60, (0) s, (0) _
dlv‘Dgﬁ‘ L - 5 ;(ﬁwzwz (0) ,32 ¢wnwn (0)]
= 1A%00). (18)

B

Here A'¢ = 27:—11 Oz;0;- Our next step is to take small £, namely
|#| < Rh. For such £ we apply the inverse function theorem to ¢,

H (h)¢(0) = (2,7(2)) = ¢ (0) +By(0) + O (r*).  (19)
Putting (19) and (18) into (17) we get

v (0) = hG (%A’q& (0)) +o(h). (20)

Furthermore, differentiating both sides of H (h) ¢ (0) = ¢ (£, (£))
gives
¢$imj + ¢$zzn7w] + ¢wn$j Vs + gbmnwn')/wj’)/ml + gbxn%czzj =0

for j,i = 1,...,n — 1. We deduce 7,, (0) = 0 from the first equality
and rewrite the second one for ¢ = j

P2, (0) + ba,, (0) Va0, (0) = 0.

After a summation over j this becomes

%A'u (0) = —Av (0).

It remains to put this relation into (20) to get the desired equality
(16). O

15



3.3 The convergence result for a wider class of G

In this subsection we construct the thresholding function F' (M, M) so, that
the corresponding convolution thresholding scheme (5), (6) would give the
convergence to the viscosity solution u (z,t) of (3)

Tg(x) = u(x,t) as m— 0.

We start with F' (M,C (z, h), MyC (z,h)), where

M;C (xz,h) = /sz- (x —y) dy.

For each p; we write (26), i.e.
M; (¢ < H (h) ¢ (0)] (0,h) = A; + VhvCi + VhAy (0) B+ O (h*?) | (21)

where ¢ = 1,2. This is a system of linear algebraic equation for Ay (0) and
v. We choose the kernels so, that the determinant of this system is positive

D == ClBQ - CQBl > 0,
denote N; = M; [¢ < H (h) ¢ (0)] (0, h) — A; and write the solution

Y (0) 1 NlBQ — NgBl
=12 = 2T L0,
YT Th JiCiB, =B, TOW
1 N. - N

Vh C1By — CyB;

Looking back at the Lemma 2, we see, that the operator H will be consistent
with the PDE in (3) if we take

F(Ni,No) = v—G(-Ay(0)) =
LNlBQ — N2B1 —_G ( 1 N102 — N201> ' (22)

Vh D Vh D

Let us now take a look at the inclusion principle, which implies the mono-
tonicity of the scheme. In the case of thresholding function of one variable,
the inclusion principle holds when F' is nondecreasing. Analogously, in the
case of two variables we require

oF B, (

- - Z2_Z20 >

N, i) DG >0, (23)
oF B, C .

Z- - 22 MAa s

N, ) + DG >0 (24)
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This implies
B By
<@ <22 25
c, Gy (25)
therefore, at least for a while, we consider G with bounded and positive

derivative.

Next, we state some auxiliary results.

Lemma 3. Suppose (23) and (24) hold and H is defined by (5), then Vh €
Ry,

1. 7vl( ) (R") = R
()(@)=@

2.Va,beX:aCb=H(h)a CH(h)D.
Proof.

1. Tt is enough to show that F' (M7 (R") (z,h), My (R") (x,h)) > 0 and
F (M (@) (z,h), My (0) (z,h)) < 0. First we observe, that F' (A1, Ay) =
O M (R ) (z,h) > A; and M; (0) (z,h) = 0 < A;. This, together with

2. Since M; (b) > M; (a), F (M; (b), M, (b)) > F(M1 (a), M, (a)), there-
fore [F' (M (a) , My (a)) > 0] C [F (Ml (b) , M (b)) > 0], which is equiv-
alent to H (h)a C H (h)b.
U
Proposition 1. Define H by (6) and H by (5), then for each h > 0 and
u € B(R™) one has H (h)u € B(R™).

Proof. Without loss of generality we assume, that S; < u (z) < Sy for some
51,8, € R From Vh € R, H (k) (R*) = R* and H (h) (§) = 0 follows
x €H(h)[u<S,] and z ¢ H (h) [u < Si]. Therefore, we see that:

Si<HMhu@)=inf{rxeR:zeH()[u)}<S,.
]

With the results above, we are ready to state the convergence of the approx-
imations H (t/m)™ g to the unique viscosity solution of (3).

17



Theorem 4. Let H (h) be defined by
[H (h)u] (z) =sup{A € R:z € Hp[u> A}
with
H,C ={z € R" : F (M (C) (z,h), M2 (C) (z,h)) < 0},

where

1 NB, - N,B, 1 N,Cy — Ny
F (N1, Np) = N G (ET) ;

where p1, po have compact support, and G is continuous nondecreasing satis-

fying (25).
Then
%”g () = u(z,1)
locally uniformly when m — oo. Here u (z,t) is the unique viscosity solution

of

\Dul

u=g(z) € BUC (R") on R" x {0}.
with G satisfying (25).

{ ur = |Du| G (div <&)> in R x (0,7)

Proof. Our aim is to show here that the operator H (h) satisfies the condi-
tions of the Theorem 3.

1. The monotonicity of Hj, is ensured by Lemma 1 and Lemma 3.

2. The stability of H is exactly the result of the Proposition 1: H (h)u €
B(Q)

3. Another property of H (h) that is required is that it must commute
with addition of constant, i.e:

Vae R H(h)(u(z)+a)=H(h)u(z)+a
This equality can be easily obtained from the very definition of H (h):

HM)(u(z)+a)=inf{NeR:zeH(h)[u(x)+a< A} =

=inf{f+acR:zeH(h)|u(lx)<pl}=HMR u(z)+a

18



4. The limit we are interested in is:

H (h) u(x0)

lim =0

h—0

for u of the form u(z) = f(|Jx — x¢|), where f € C?([0,00)) with

fO)=f0)=f"0)=0and f"(r) >0forr>0.

It is enough to show, that this is true for xq = 0. First, we observe,

that H, ' [{0}] = {u < A}, where A\, = H (h)u (0) . Since both p

and p, have compact support, we can be sure, that there exists R s.
{|x| < R\/E} > H;'[{0}]. Now we observe, that {|33| < R\/E} -

{u < Xg} for some Ay > \;. From the latter equality we deduce Ay =

O (h%) and conclude by
lim L (h) u (o) < lim ¢ <h%)

h—0 h T h—0 h =0

5. To see that our approximation operator is consistent with the PDE, we
use Lemma 2. It is enough to prove the following

7(0) = hG (A7 (0)) +o(h),
where z,, = v (&) is a parametrisation of the surface
{r eR":u(x)=H h)u(0)}
near £ = 0. To show this, we use the fact that:
F (M [u < ], My u < )], = 0

We begin by writing the expressions for M; in detail:

M; = (X[ugu] TP <\|/|E>> (0) = /nX[ugu] (v) hi%pi (%) dy =

() J1(Vhi)
/ / ('y‘ > dyndy = A; +/ / pi ([y]) dyndy.
Rn-1 Rn-1

Here
0
Az=/ / pi (|y) dyndy.
R~ J —o0



Expanding 7 (hy) in a Taylor series we get:

%’Y (Vi) = Va1~ L Z Voiws (0) Yiys +

1,j=1

h .
+5 Z g (0) vigswn + O (V25
i,jl=1

Observing that v (0) = O (\/i_z), we denote @ = v . The expression
for M; becomes:

M, = A;+
, \/E \/E — O h3/2 4 du. d
- (4,0) | Vhv + == D Vs ) miy; + O (h*4*) | dyndy
2,j=1
= A; + VIwCi + VhAy (0) B; + O (h*?) . (26)
Here
Ci= / i (4, 0) di, (27)
Rn—l
1 , ,
B; = 5/ y}‘im (Z/a 0) dy. (28)
Rn—l

Remark 1. At this point it is easy to see, that a scheme with a thresh-
olding depending only on one vartable can be consistent with the PDE
(2) only in the case of a linear G. The thresholding condition on the
front becomes

F (A+VhoC + VhAY(0) B+ 0 (7)) = 0.

As was required by the inclusion principle, the function F is non de-
creasing. This implies, that F' erists almost everywhere, and we can
write:

F(A) + F'(A) (\/Eov +VhAy (0) B) +o(h)=0.
Thus

v = @z—?A’y(O)—iF(A)A —l—o(\/f_z).



Comparing this relationship with the one in Lemma 2, we see that the
only G’s we can resolve by thresholding dependent on one variable are
the linear ones: G (k) = const - k + const.

Let us denote k£ = A~ (0).

Now we can express v and k in terms of M; and constants A;, B; and
Ci .

1 N1By; — NoBy

= 0 (h),
\/ECIBQ_CZBI ()

v

1 NyCy — N1Cy

h= 2T
\/ECIBZ - C2B1

+O(h).

Since F' (M, M) = v — G (—k) =0, we have:

1O~ G (—ay(0) +01),

7(0) = hG (=Av(0)) +o(h) .

O

Remark 2. As was already mentioned above, convolution kernels p; can also
be taken with unbounded support. For example, the exponential decay for large
arguments s sufficient in order for Theorem /4 to hold.

The requirement (25) is quite restrictive. Our next result shows, that it
is enough to take G. satisfying (25) and uniformly close to G in order to
approximate the solutions of (3).

Proposition 2. Suppose G, G are continuous and G, — G uniformly on R
as € = 0. Then F (G) = F (Ge).

Proof. Suppose f € F (G). It means, that f (0) = f'(0) = f"(0), f(r) >0
for r > 0 and

o N, —1\
lim f (p)G(];) = lim f (p)G<7) =
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Since G — G uniformly, G (k) = G, (k) + 0 (1) a (k), where o € B(R). We

write

=306 () =30 (6(2) 000 (1) =g )

to see, that f € F (G.).
The proof of the reverse inclusion is analogous. O

Lemma 4. Suppose G., G are nondecreasing continuous and G, — G uni-
formly on R as e — 0. Suppose also, that for each € > 0 the operator H, s
monotone, stable, commuting with additions of constants and consistent with

Ou,
ot

Du,
— |Du/| G, (dwlDZ |) . (29)

Additionally, let the following limit hold

L Hu (B) (f (12 = o)) (20)
h—0 h

for each f € F(G). Then

=0 (30)

i (i) o () = u (z,1)

m

locally uniformly as m — oo, where u (x,t) is the unique viscosity solution of

ou . Du .
5 = |Du|G (dwm) on R" x (0,7) (31)
u(z,0) = ug () on R" x {0}.

Proof. We show here, that the operator Hy, (h) satisfies the conditions of the
Theorem 3. This operator commutes with additions of constants and satisfies
limit (30) by the assumption, therefore it is enough to check the stability,
monotonicity and consistency.

1. Stability
Since the operator H, is stable for all € > 0, it is in particular stable for e = h
for each h > 0.

2. Monotonicity
Since the operator H, is monotonous for all € > 0, it is in particular monotonous
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for e = h for each h > 0.

3. Consistency
We have to show, that for each ¢ € C*° (R") at each point where |D¢| # 0

H, (h) 6 (2) — 6 (x) = h|Dé (2)] @ (d@j 8‘) fo(n). (32

Since the operator H, is consistent with the equation (29) and Gy (k) =
G (y) + op (1) a (k) for some a € B(R) , we write
z)
o(h) =
m)\)

(
(
o (o) « o)) o
(

= hiDs@IC ( @Zé%

Hy (h) ¢ () — 6 (a) = th¢<x>|Gh< ‘DZ

Theorem 5. Consider a convolution-thresholding scheme

H.(h)u(z) = inf{AeR:xe€H(h)[u<A}
He(h)C = {xeR":F.(M;(C)(x,h), My (C)(z,h)) > 0},

where the thresholding function F, (M, My) is choosen so, that the scheme
monotone and is consistent with the equation (29) and the convolution kernels
have compact support. If G, — G uniformly then

H (%) o () — u (z, 1)

locally uniformly as m — oo, where u (x,t) is the unique viscosity solution

of (81).

Proof. In order to establish the convergence by means of the Lemma (4)
we have to show that the limit (30) holds. Let us set zy = 0, then the
set [f(|z]) < A] is a ball centred at the origin with radius O (A!/%). We
denote Hy, (h) f (0) = A\;. Observe, that \; can be characterised as a number
for which H, (h)[f < M\1] = {0}. Since we know, that Fj (A, 43) > 0
the radius of [f < A1] must be less or equal to the radius of the greatest
support, of the kernel: O ()\?[/ 3) < RvVh. From this inequality we deduce

Hy, (B) f(0) = A\ < O (h*?). This establishes the desired limit (30). O
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Let us now consider G (k) = k |k|*™" with o > 1. We set

(1—a)m®*+am®* 'k for k < —n

m %k for |k| <1/n
Gm (k) =4 _ (1-—a)m*+am®* 'k fork>n
k|k|* elsewhere.

GG, 1s continuous, increasing and its derivative is bounded below and above:
m'=® < G < am® . Moreover, Gy, — k|k|*"" locally uniformly as m
00. Using Theorem 2 it is easy to show the following

Theorem 6. Let u,, be the viscosity solution of

Ot

ot

D
= |Du,| G, (dw|DZ:‘) in O,

where G, s defined above. Then u,, — u locally uniformly as m — oo,
where u is the viscosity solution of

ou _Du '\ .
T |Du| G (dw\Du\) in O,

with G (k) = k |k|*”", alpha > 1.

Proof. First we establish the inclusion F (G) C F (Gy,). Take f € F(G).
By the definition of F (G), f'(z) = o (z®). This immediately gives

. ' IR T ! .

lim f*(p) G (1/p) = lim " (p) /p = 0,
since a > 1. We observe also, that the remaining conditions of Theorem
2 are satisfied. Hence a subsolution and a supersolution u* and . can be

constructed by means of (11) and (12). Since the equaton has the strong
comparison property (see [14]), ut = u, and the result follows. O

Remark 3. In a more general case when G (k) = O (k%), o > 1, one can
pick a sequence of increasing functions with derivative bounded below and
above and apply the Theorem 2 to get a result similar to Theorem 6.

4 Numerical implementation

This section is devoted to a description of our numerical implementations of
the convolution-thresholding scheme developed in Section 3.
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We will always consider the evolution of just one surface in R”, which is a
level-set of a function u : R* — R satisfying the Cauchy problem (3).

Given a compact set C' C R", we fix convolution kernels p;, p2 and the time
step h and approximate C; at a time moment ¢ = mh by (H (h))™ C. The
algorithm of computations consists of the following steps:

1. Compute convolutions and the thresholding function

M,C (z,h) = /nxC(y)pi(IE—y)dyi=1,2 (33)
F(z,h) = F(MC (2,h), MC (z,h)). (34)

2. Find the evolved set H (h)C = {z € R"* : F' (z,h) > 0}.

3. Repeat the procedure with the evolved set to get H?(h)C and so on.

Due to the calculation of a convolution in (33) the main computational effort
falls into the first step of the algorithm. We have implemented two different
algorithms for the calculation of the convolution step.

4.1 Spatial discretization

We observe, that the surface under consideration is always an isosurface of
some function. From the very beginning, it is some isosurface of the initial
data of (2), but after each application of H (h) it is the zero isosurface of
the thresholding function F: {x € R* : F (M (z,h), My (xz,h)) =0}. We
assume that initially our surface is closed and is contained in a unit cube.

In our implementation we use a modification of so called Marching Cubes
algorithm for extracting an isosurface. It was originally proposed by Lorensen
and Cline in [27]. This procedure was first applied for the mean curvature
flow calculations by Ruuth in [32]. The purpose of the algorithm is to create
an adaptive spatial discretization of the unit cube. For the sake of simplicity,
we describe this procedure in the case n = 2 (see Fig. 4.1):

1. Choose a rough initial grid, i.e divide the unit square into Ny x Ny
equals squares and assign 1 to the points that are inside the curve and
0 to ones outside.
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Figure 2: On the spatial discretization.

2. Divide each square that has different values assigned to its corners into
4 equal squares and assign the corresponding values to the new grid
points that appear.

3. Refine also all the squares that have more than one grid point between
their corners.

4. Repeat steps 2 and 3 while the side of the smallest square is longer
than a desired spatial accuracy.

In doing so, we significantly reduce the number of grid points. Besides that,
the accurate piecewise linear approximation of the curve (surface) can be
arranged.

4.2 Spectral method

One can use Fourier series to calculate the convolutions (33). The numerical
aspects of this has been presented by Ruuth in [32].

We expand both kernels p; and the characteristic function of a set C into the
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Fourier series to get the Fourier coefficients of convolutions M; (x, k). The
surface position after time period h is an isosurface

{r e R" : F (M, (z,h), M (z,h)) = 0}.

The adaptive refinement procedure introduces one technical complication,
namely: the standard discrete fast Fourier transform no longer applies, be-
cause the grid is not structured and not equally spaced. The way to proceed
with the spectral method in this situation is in using unequally spaced ap-
proximate fast Fourier transform algorithm developed by Beylkin in [6]. The
method involves projecting the functions on a subspace of multi-resolution
analysis, and applies scaling functions from the spline family. The way to
generalise the procedure to the functions on R” is also given in [6].

As it was calculated in [32], the numerical cost of the transform algorithm
combined with the Marching Cubes procedure is

0] (m"Np + N¥ log (Nf)) , (35)

where m is a constant depending on a desired accuracy in the calculation of
the Fourier coefficients (in case m = 23 the accuracy is comparable with the
machine truncation error) and Ny is a number of the Fourier modes along
each axis.

In the case of homogeneous grid the number of operations is
O (Nylog Ny, (36)

where Np;, is the number of points in the homogeneous grid. Let us choose a
spatial step Az = 2=M_ In order to have such discretisation, the number of
grid points in the case of homogeneous grid is N, = 2™ while in the case
of adaptive grid-N, = C"L2"~UMwhere L is n — 1 dimensional Hausdorff
measure of the boundary 0C and C" is a constant of order one. Comparing
(36) and (35), we see that in the case of adaptive discretisation one needs to

4 N7%log N
m*C" L : : f O8Ny
o T C) times less operations. Here ( = R SVarys)

our numerical experiments with different curves on the plane this acceleration
factor turned out to be around 1 : 50 on the first stages of the evolution. Since
L decreases to zero as time progresses, the advantage of the adaptive grid
becomes even bigger at large time values.

perform O ( is small. In
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4.3 Direct method

If p; and po are simple enough and have compact support, their convolutions
with x¢ can be calculated explicitly. Let us choose

< ifr<i1
0 = |B1 !
P () { 0 otherwise
~ 1 . /x
P2 (I) - an P (a)

where |B;| is a Lebesgue measure of an unit ball in R* and o € R, , o < 1.
In this case, the convolutions in (33) are proportional the measure of the
intersection of C' with a ball of radius proportional to v/A placed in the point
x.

We present expressions for the thresholding function F' (M;, Ms)) in the case
n=2:

F(Ml,MQ):U—G(k),

where

wo (2aMy — 2My — a+ 1)
4vh (a2 —1)

=3m (2M; — 2aMy + a — 1)
2Vh (a2 —1).

In this case convolutions M; and M, can be calculated as follows. We repre-
sent C as a disjoint union of squares and triangles (or cubes in tetrahedron
in case n = 3) using the adaptive grid procedure described in subsection 4.2
and calculate the area (volume) of intersection of the ball (suppp) with each
square and triangle. The numerical cost of each step of the evolution can be
estimated by O (N, * N; + N,), where N; is the number of points inside the
ball of radius dt with the center at some grid point. When dt is large, the
accuracy of the method is low, therefore one can take less grid points. Thus,
N; is entirely determined by the desired accuracy.

4.4 Computed examples

We begin by presenting some non-trivial examples of applications of the
above algorithms in case of curve evolution.
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Figure 3: The mean curvature evolution of a non-smooth, non-convex curve

Let us first look at the mean curvature evolution. In this case, according to
the Von Neumann-Mullins parabolic law, the area enclosed by a simple curve
which moves by mean curvature decays linearly in time i.e.

ds
7 2.
Consider a non-convex, non-smooth initial curve depicted on Fig 3. The mean
curvature evolution of this curve was calculated using the direct method with
timestep values dt = 1/600 and 1/6000. The shape of the curve is plotted
on the Fig. 3 for times ¢t = 1/600,2/600, - - -, when calculated with the fine
timestep. The comparison between local relative errors

. ‘Sz - SH—I - 27Tdt‘

2ndt (37)

€;

for calculations with different timesteps is seen on the Fig. 4. One can
observe, that the error indeed depends linearly on the timestep: taking ten
times smaller timestep we achieve ten times better accuracy.

The local area error dependence on time (37) depicted on the fig. 4 isin a
sense typical. Since the curve is not smooth initially, we obtain quite high
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local areaerror

time

Figure 4: Local area error dependence on time. The first order method
with timestep 1/600 — the line with triangle markers; the first order method
with timestep 1/6000 — the thin line; the second order method with timestep
1/6000 — the line with square markers.

Figure 5: The evolution v = k/? of an ellipse.

e; values for the first several time steps. Calculating further, the error stays
small until the curve turns into a small circle and begins to collapse rapidly.

Let us illustrate the evolution with the velocity v = k'/3. In this case the flow
is affine invariant [1], hence the eccentricity e of the evolving ellipse remains
constant. The evolving ellipse is depicted on Figure 5.

Remark 4. Function G (k) = k'/® has unbounded derivative at 0 and also
G' — 0 as |k| — oo. Thus, the convergence theorems 4 and 5 do not apply.
However, the curvature of an ellipse is bounded above and below by posi-
tive constants. Furthermore, it is bounded by positive constants during the
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evolution for some time period.
e<k(z,t)<1l/e Ve €&,te (0,T) (38)

Therefore, in order to track the evolution of an ellipse with v = k'3, it
s enough to construct a convolution thresholding scheme for a function G
which is equal to kY/* only on the interval (e,1/€) and has an arbitrary be-
haviour near the origin and at the infinity.

In figures 1, 6 - 8 computed 3D mean curvature evolution of non-convex
surfaces is represented.

4.5 On the higher order schemes for the mean curva-
ture motion

Let us now look at approximations to the mean curvature evolution. It is
easy to see, that if the surface is smooth, the BMO method gives the first
order approximation in time. A higher order scheme in time was proposed
by Ruuth in [32]. The author uses an extrapolation argument to obtain the
results. We show here, how to construct higher order approximations to the
mean curvature evolution using some properties of the convolution kernels.

For the sake of simplicity, we present the construction in R%2.We begin by
writing the system of linear algebraic equations (21), where each equation
is a relationship between the convolution value, mean curvature and the
velocity on the evolved front. However, now we will keep an additional term
in each equation with the fourth order derivatives to have the error O (t5/ 2):

My = A +VhoOy +Vhy" (0) By + Why™ (0) Ey + O (h*/?)
M2 = A2 + \/}_M)CQ + \/}_l’)/” (0) BQ + h\/ﬁ’)/”” (0) EQ + O (h5/2)

We multiply the first equation by F,, the second by E; and subtract one
from another to obtain

EyN, — E\Ny = VR[(EyCy — E\Co)v + (Ey By — E1By)y" (0)] + O (h°?) .

This relationship motivates to take the thresholding function F(Ny, Ny) =
EyN;y — E; N, to have the mean curvature evolution with the second order
accuracy for smooth curves. However this thresholding function does not
simultaneously satisfy (23) and (24) and, therefore, the stability of the nu-
merical scheme is not guaranteed by the previous argumentation.
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Figure 6: Computed mean curvature evolution

The calculations with the above thresholding function were performed. No
sign of instability was observed in the numerical experiments and, as one can
see on the Fig. 4, the accuracy was increased.
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Figure 8: Computed mean curvature evolution
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