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Abstract

Broadly speaking, stochastic differential equations (SDE) are used to model
the evolution of systems influenced by random effects. The strong solution
of the SDE allows for the detailed study of evolutionary scenarios, and the
weak solution the study of distributional properties.

This paper is a survey devoted to numerical methods that are used to
obtain approximate solutions, both strong and weak, of stochastic differential
equations.

Keywords: Adaptive method; Lie group method; Stochastic differential equa-
tion; Strong approximation; Symplectic method; Waveform relaxation meth-
od; Weak approximation.
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Chapter 1

Introduction

The main objective of this thesis is to provide the reader with the underlying
ideas of some of the state of the art techniques in numerical solutions of
stochastic differential equations. Some of the techniques presented here are
so new that only a few articles have been written on them.

Only techniques that have been presented in the scientific journals from
1992 and onward are presented here. The reason for choosing 1992 as a year
of “departure”, is that this is the year of the publication of the now standard
work on numerical methods for SDE, by Kloeden and Platen [29].

Upon reading the material presented here, it will be noted that in many
cases the novel techniques are not so “novel” after all. As is often the case,
what is new in the field of numerical solution of stochastic differential equa-
tions has been employed for some time in the numerical solution of ordinary
differential equations. Many such techniques have proven themselves to be
adaptable to stochastic differential equations, if not directly then through a
suitable modification.






Chapter 2

Ordinary and stochastic
integration

2.1 Modelling changes

Upon observing the world around us, one thing stands out: Everything
changes.

Mathematics tries to describe the world and naturally, in order to do this,
it has to describe these changes. The mathematical concept that describes
changes is that of a derivative. These changes usually has some cause, and
the mathematical model that tries to capture this idea of cause and effect is
that of a differential equation. If the causes have a random nature, then the
mathematical model will be a stochastic differential equation.

In order to study the effect of a specific cause, the stochastic differen-
tial equation has to be solved. The mathematical tool for doing this is the
stochastic integral, just as the ordinary (Riemann-Stieltjes) integral is used
to solve an ordinary differential equation. Sometimes, but very rarely, the
solution of a stochastic differential equation can be expressed in closed form.
In most cases however, the best one can hope for is to find an approximate
solution, using a numerical method.

This section illustrates the use of ordinary and stochastic differential equa-
tions by means of an example with a financial flavour: The evolution of a
bank account.

2.1.1 Ordinary differential equations

Suppose that you open a bank account into which, at the time ¢ = 0, you
deposit the amount Sy. Then you just let the money stay in the account and
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accumulate interest at a constant interest rate, 7. Let S(¢) be the balance of
your account at time ¢. Then the evolution of S(¢) can be modelled by the
ordinary differential equation:

dS(t) =rS(t)dt

S(0) =Sy

The evolution of such an account looks like in Figure 2.1.

Figure 2.1: Evolution of deterministic account

Call an account of the kind described above a deterministic account.
Using this model, you may want to answer questions like:

e How long do you have to wait until a certain amount has accumulated
on the account?

e How much money will you have at a specified time?

2.1.2 Stochastic differential equations

Now consider a similar situation, where at time £ = 0 you open the account
by depositing the amount Sy, and the bank gives you a fixed interest rate, r.
When using the account, you are only allowed to deposit or withdraw small
amounts of money at any time. A model for the evolution of such an account
might be:
dS(t) =rS(t) dt + rdW,
S(0) = S

Here, W, = W (t), t > 0, is the so called Wiener process, also known as
Brownian motion. In this example, W accounts for the small deposits and
the small withdrawals allowed. For a definition of the Wiener process, see

(2.1)
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page 23.
The equation (2.1) is a stochastic differential equation (SDE), and it is
interpreted in the following integrated form:

S(t) =S, +/Ot rS(s)ds+ /OtrdWS. (2.2)

The second integral in (2.2) is a so called stochastic integral. It will be
discussed on page 11.

If more than one person has access to the account, more Wiener processes
are used. If for example two people have access, then the equation will be

dS(t) = rS(t) dt + r dW,(t) + r dWs(t)
S(0) = S,

A typical evolution of a Wiener account with only one holder, may look
like in Figure 2.2.

Figure 2.2: Evolution of Wiener account

If you want to model an account with very big fluctuations, then the
Wiener process is not adequate any more. Instead you may want to consider
using Lévy processes. These processes allow jumps to occur. The stochastic
differential equation modelling such a situation is the same as that used for
the model allowing only small changes, except that the process W has been
replaced with a Lévy process L; = L(t), ¢t > 0:

dS(t) = rS(t) dt + rdL,
S(0) = S,

Such an account is referred to as a Lévy account.
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The class of Lévy processes, i.e. processes with stationary and indepen-
dent increments, is very large. It includes Wiener processes, as well as pro-
cesses that allow jumps and more “extreme behaviour” to occur, which does
not the Wiener processes.

One realisation of a Lévy account is shown in Figure 2.3.

Figure 2.3: Evolution of Lévy account

Using the Wiener account, or the Lévy account, you may want to an-
swer the same questions as those posed for the deterministic account. The
stochastic accounts have an element of chance in them. Consequently it is
no longer possible to tell with a single graph ezactly how much money there
is in the account at a certain time in advance. Nor is it possible to say for
precisely how long you have to wait in order for the balance of the account
to reach a specified level, as these characteristics are stochastic. What you
on the other hand can compute is, for example, the expected balance of the
account, and the expected time until a certain amount is reached.

The way to study a Wiener account goes via integrating the differential
equations modelling the evolution of the account. The deterministic account
is modelled by an ordinary differential equation, so the answers concern-
ing the deterministic account are obtained through deterministic integration
(Riemann integration). The Wiener account is modelled by a stochastic
differential equation, and the answers concerning the Wiener account are
obtained through stochastic integration (Itd integration).

2.2 Deterministic integration

In what follows we highlight some results from the theory of Riemann-
Stieltjes integration, that are important in the theory of stochastic integra-
tion.



2.2. DETERMINISTIC INTEGRATION 9

2.2.1 Riemann-Stieltjes integration

See for example Kannan [27] for the facts presented here on the Riemann-
Stieltjes integral.

Definition 2.2.1 A function f : [0,1] = R has bounded p-variation, for
somep > 0, if

n
SUPZ |f(t:) — ftim1) [P < oo

i=1
Here the supremum is taken over all partitions 0 =1y <t < ...<t, =1 of
[0, 1].
Theorem 2.2.1 Let f,g : [0,1] — R be two functions. The Riemann-
Stieltjes integral fol f(t)dg(t) exists if the following conditions hold:

1. f and g do not have discontinuities at the same points in [0, 1];

2. f has bounded p-variation and g has bounded g-variation, for some
p > 0 and q > 0 satisfying
1 1
-+ ->1
p q

Theorem 2.2.2 If, for any f € C([0,1]), fol f(t)dg(t) exists as a Riemann-
Stieltjes integral, then g is of bounded variation (i.e. of bounded 1-variation).

2.2.2 Interpretation of the concept of bounded varia-
tion

The concept of bounded variation is closely related to the concept of rectifi-
ability. Rectifiability is an important concept in geometric measure theory.
See for example the books by Mattila [38] and Falconer [10] on this subject.

Definition 2.2.2 Let f : [a,b] — R be a function and {m,}nen a sequence
of partitions of [a, b],

Wn:a:t(()n)<t§")<...<t5(;3:b.

For each n, the points {f(tén)) ~n determine an inscribed polygon to the
graph of f. The length of this polygon is

Np,
STIFEY) - FE)-
k=1
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The length of the curve of f is defined by

If this length is finite, then the curve defined by f is said to be rectifiable.
Upon identifying the function f : [a,b] — R with its curve, if the curve
defined by f 1is rectifiable, one says that f is rectifiable.

When comparing the above definition with that of a function of bounded
variation, it becomes clear that a function is rectifiable if and only if it is of
bounded wvariation. This shows that many, if not all, elementary functions,
like polynomials and trigonometric functions, are of bounded variation on
closed intervals in R.

Let W be the Wiener process. Then W has bounded p-variation, for
p > 2, on any fixed finite interval [0,7]. Hence the integral

[ s

exists as a Riemann-Stieltjes integral, if the function f is of bounded g-
variation for some ¢ < 2. For example, the integral

T
/ et th
0

exists as a Riemann-Stieltjes integral. The existence of this integral in the
Riemann-Steltjes sense does not, however, indicate how the integral is to be
computed.

The Wiener process does not have bounded variation, and hence its curve
has infinite length (an indication of the fractal nature of the Wiener process).
Equivalently, it is not rectifiable. Thus there exists a continuous function f on
[0, 1] such that the integral fol f(t) dW; does not exist as a Riemann-Stieltjes
integral.

2.3 Stochastic integration

The concept of a stochastic differential equation was introduced for the first
time in 1934 by Bernstein (1880-1968) in his paper [3].

Stochastic integration is a theory developed in order to make sense of
integrals like

[ 16y dgts
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where the function g is stochastic and of unbounded variation. The integral
can be defined as a Riemann-Stieltjes integral for f with bounded varia-
tion. The challenge for a theory of stochastic integration therefore lies in a
meaningful construction when f does not have bounded variation.

2.3.1 Construction of stochastic integrals

The construction is based on approximating the integral by a sum, where the
sum is interpreted as an integral of “simple functions”. These are functions
that are piecewise constant over the domain of integration. Thus a simple
function, f, typically looks something like

vVt € [0,7T) Z ko i) (t

where 0 =ty < t; < --- <tp—1 < t,41 =T is a partition of the interval [0, T
and {cx}7_, is a sequence of constants.
The integral fOT f(t) dg(t) is defined by:

/f dg(t) Zka 9(tk1) — 9(t)),

where 7, € [tg, tgt1)-

So far things look exactly like the procedure of constructing the Riemann-
Stieltjes integral. But here is where the resemblance ceases to exist. The
Riemann-Stieltjes integral is obtained as the unique limit of the sum above
as 0, = max o<k<n(tr+1 — tx) — 0 as n — oo, irrespective of how the point
T, is chosen in each subinterval [ty,tx11) of the partition. For a stochastic
integral, the limit depends on how the point 74 is chosen.

The It6 integral
If, in each of the subintervals, the choice

Tk Ztk

is made, then the integral of a simple function f becomes

[ rwasto thk o(tess) = 9(t0)). (23)

If the sum in (2.3) converges as n — oo, for a not necessarily simple

function f, then the limit is called the Ité integral fo (t)dg(t) of f, with
respect to g.
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The Stratonovich integral
If, in each of the subintervals, the choice

_ b+ttt

Tk D)

is made, then the integral of a simple function f becomes
r "Lttt
/ f(t)odgt) = > F(F55) (olten) — (k). (24)
0 k=0

If the sum in (2.4) converges as n — oo, for a not necessarily simple

function f, then the limit is called the Stratonovich integral fOT f(t) odg(t)
of f, with respect to g.

Other constructions

The It6 and Stratonovich integrals are the most used constructions of stochas-
tic integrals. The Stratonovich integral arises when one is approximating the
integrand function g with a piecewise linear function (see the Wong-Zakai
theorem below). This makes it the common choice, for example in physics.
The Ito integral does not depend on information about the future by con-
struction, so this makes it the common choice in finance. These are just two
of an infinitude of possible constructions of a stochastic integral.

In Gard [12], the following construction is mentioned: Let A € [0, 1] be a
fixed parameter. Define the stochastic integral

/ " F(0) gt

for a simple function f in the following way:

T n
| 10ds) = 3 (A 0) + (1= 0700 () = 9(6)- (25)
k=0

If the sum in (2.5) converges as n — oo, for a not necessarily simple
function f, then the limit is the integral fOT f(t)dg(t) of f, with respect to
g. It will depend on A. If A = 0, it is the It0 integral, and if A = %, it is the
Stratonovich integral. For other choices of A than these two, other stochastic
integrals will be obtained.

Thus it is evident that there are infinitely many possible constructions of
stochastic integrals.
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Example 2.3.1 The stochastic integral fot W, dWy has the following val-
ues according to the different constructions:

1t6 SWE— 1t
Stratonovich W7
2.5 LW+ (- by

Since the integral fot W,dW, depends on the choice of the approximating
sum, it does not exist as a Riemann-Stieltjes integral.

2.3.2 The Ito formula

The different constructions of stochastic integrals would not be very practical,
were there not to be something corresponding to the fundamental theorem
of calculus. This corresponding result is called the It6 formula, and in its
simplest form it looks like this:

Theorem 2.3.1 (ITO FORMULA: SIMPLE CASE) Let f : R — R be a func-
tion with continuous second derivative. Then f(W;) is given by

fWy) = f(Wh) + /Ot (W) dW, + %/Ot (W) ds. (2.6)

The first integral in the above theorem is a local martingale, with respect

to the filtration
{O'(Ws = [O,t])}

>0

induced by the Wiener process, and so it has constant expectation. (See
the book [28] by Karatzas and Shreve for a definition and properties of local
martingales.) On account of this, it is possible to interpret the It6 formula
as expressing f(W;) as a superposition of a signal part

t
F) +5 [ 1w as

and noise part

/0 ") aw,
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2.3.3 A theorem of Wong and Zakai

This section describes that when interpolating the Wiener process linearly, in
the limit of infinitely fine time-partitions, the stochastic differential equation
driven by the interpolated process, converges to the Stratonovich solution of
a corresponding process. This result was obtained by Wong and Zakai [62],
[63] and refined by Ikeda and Watanabe [22].

The linearly interpolated process that approximates the Wiener process
seems harmless enough, but the result by Wong and Zakai gives a startling
conclusion. This is so because the Stratonovich construction of stochastic
integrals is anticipating. This means that, in a sense, in order to model the
present, the future has to be known. This is in contrast to the It0 construction
which is non-anticipating, i.e. in order to model the present, all that is needed
is information on the past. The linear interpolation seems to be a natural
construction, but nevertheless Wong and Zakai’s work forces us to conclude
this seemingly unnatural dependence on the future.

Theorem 2.3.2 For every T > 0, let
0=t <t2<"'<tn<tn+1:T
be a partition of [0, T] such that

li —t.) =0.
Jim max (te1 — 1)

Let W : Q x [0,00] = RY be a vector of N independent Wiener processes.
For all n € N define a sequence of processes Zy : 2 x [0,00] — RN by:

Vk € {1, . .,’I'L}, Vt € [tk;tk—f—l] :
t—t,

Zn(t) = Wo +

(Wtk+1 - Wtk)

Let the sequence of processes X, : Q x [0,00] — R™ satisfy the stochastic
differential equation

dX,(t) = b(X,(t)) dt + a(X,(t)) dZ,(t)
Xn (0) =29
Further, let the process X : %[0, 00] — R™ satisfy the Stratonovich stochas-
tic differential equation
dX(t) = b(X(t))dt + a(X(t)) o dW,
X(O) = Xy
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where the functions a € CE(R™,Ryn) and b € CH(R™,R™). Then the fol-
lowing holds:

VI >0: lim ]E[ ma X (1) ~ X(t)ﬂ —o.

n—00 tefo,T

Observe that the notation . ..o dW, is used to denote an SDE, where the
solution should be interpreted in the Stratonovich sense.






Chapter 3

Applications

The purpose of this chapter is to show some examples that demonstrate the
diverse fields in which the theory of stochastic differential equations has been
applied. The field that seems to rely in the most crucial way on models from
the theory of SDE, is mathematical finance. However, SDE models are used
in an essential way in fields ranging from, for example, bioinformatics to
general relativity. Some such examples of usage of SDE models are sketched
in this chapter.

3.1 Fatigue cracking

In Probabilistic fracture mechanics, one might want to consider the evolution
of the length, /;, of the largest crack in a solid material, to be governed by
a stochastic differential equation. An example of this is the following model
suggested by Sobczyk [54]:

dl; = m2cg(Q)S®LF dt + mcg(Q)S™LF o dW,.

In this equation, m is an average of external influences, such as varying
temperature and pressure, c¢ is a material parameter, S is the range of the
stress intensity affecting the solid, @) is the stress ratio and g is some specified
function.

When p = 1, the above equation is linear and has a solution in closed
form. Often it is found that p > 1, in which case no closed solution exists.
In this case, the solution may explode in a finite time, 7, corresponding to
disassociation of the solid. A numerical solution of the SDE requires the
simulation of trajectories and the corresponding study of approximations of
T.



18 Applications

3.2 Finance

Option pricing Consider a simple model of a financial market consisting
of only one type of stock and one type of bond. Let S(¢) be the price of one
unit of stock, and B(t) that of one bond, at time ¢. The bond is considered
to be risk-free investment, and is modelled to have constant interest rate, r,
over the time period of our study. The stock on the other hand is a risky
asset. The price processes of the bond and the stock can be modelled by

dS(t) = a(t, S(t)) dt + b(t, S(t)) dW,
dB(t) = rB(t) dt

where W is the one dimensional Wiener process, as before.

Into the market, described by the above equation, is now introduced a
financial instrument in the form of a simple European option on the stock
price, at some specified time 7T'. This option is a note that gives its holder the
right, but not the obligation, to by one unit of stock at the time of maturation,
T, to a fixed price, K. Thus, the option pays ®(7) on maturation, where
the function ® is defined as

o 4 5@ —K, i S(T)>K
()_o, if S(T) < K

Since options are only dealt with before maturation, it is important to be
able to set a reasonable price on the option. The price can be expressed as
an expectation. This can be computed exactly only for simple models, like
the famous Black-Scholes model. For more complicated and perhaps more
realistic models, only numerical solutions are available. Thus it is important
to be able to compute the expectation of the solution of the stochastic dif-
ferential equation that models the evolution of the price of the underlying
stock. This, and more, is developed in considerable detail in for example the
book by Bjork [4].

Interest rate dynamics Consider the so called Cox-Ingersoll-Ross model
of the dynamics of interest rates, r;:

th = O!(,B — ’f't) dt + O'\/Eth,

where «, 5 and o are positive parameters, as is the initial interest rate rg.
The objective is to obtain estimates of o and . Using the quasi-likelihood
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method, as proposed in e.g. Heyde [19], the estimates are

I T — Jr(re — 1o)
J K —T?

It Ky —T(rp — 1)

IpT — Jr(re — 1o)

(o)
Il

™
I

where, using an observed realisation of the interest rate r; over the time

period [0, 7],
T1
IT :/ —d’f't
o Tt
T
1
JT:/ —dt
o Tt

T
KT:/ ’l"tdt
0

These above estimators can be evaluated using the bootstrap technique.
In order to do this, it is necessary to simulate strong approximations of the
integrals I, Jy and Krp.

As a note regarding the quasi-likelihood method it can be mentioned
that the estimates of a and § are unaffected if the constant parameter o is
replaced by a function of a. See Heyde [19] pp. 134 for more on this.

3.3 Optimisation
The problem is that of finding the global minimum of a function
V: R 5 R,
without the imposition of constraints. The object of study is the equation
x = —VV(x), (3.1)
for which the sought solution satisfies
x = 0.

A non-stochastic approach to the numerical solution of the optimisation
problem has the disadvantage of “getting stuck” at a local minimum, in-
stead of the global minimum. In order to improve the method, a stochastic
approach has been devised. It is called Simulated annealing.
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Instead of studying the equation (3.1), the following stochastic differential
equation is studied:

dX, = —VV(X,) dt + o(t) dW,. (3.2)

An interpretation of this equation can be given in a three dimensional setting
as follows:

If we are studying the motion of a particle on a surface, we want to find
the position of the lowest potential. The particle moves in a random fashion
on the surface and if it gets stuck in a local minimum of the potential, V',
then it will not stay there, because of the random motion. (One can visualise
this situation as if the particle was “cooking” at the local minimum.) Thus, if
the random motion is sufficiently wild, the particle will jump out of the local
minimum-well and continue towards another local minimum. If the particle
arrives at the global minimum, we do not want the particle to jump out of
this potential-well, so the random motion must not be too wild in order for
this optimisation method to work. Thus we have to make restrictions on the
size of the coefficient function o(t). If

ot) = ——u_ . >0,

V1og(2 +1)’

and the potential function, V', satisfies

V(x) = V(y)l
VV ()

Klx —y]

JK >0, Vx,y € R4 :
K(1+[x[?)

<
<

then, as t — oo, the distribution of the solution X; to the stochastic differen-
tial equation (3.2) converges to a limiting distribution that has the probability
mass concentrated at the point x*, where x* is the sought global minimum
of V. This is discussed in, for example, [29].

3.4 Bioinformatics

Protein kinetics Consider a protein that can occur in one of two forms:
A and B. The structure of the protein changes over time between these two
possible forms. The occurrence of one form will effect the occurrence of the
other form, neccesitating the introduction of an interaction effect in a model
of the dynamics of the protein. If X, is the proportion of proteins of form A
at time ¢, a model for the dynamics may look like this, [29]:

dXy = (a— X; + AXi(1 - X3)) dt + 0 Xy (1 — Xy) 0 dW,.
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Here a, A and o are constants. (Note that the Stratonovich integral is used.)
There does not exist a closed formula for the solution, so one has to resort
to numerical solutions. In this case it is interesting to obtain approximations
of moments to X;.

In [46], A. Neumaier uses stochastic differential equations to model the
folding mechanism of proteins that give rise to their so called tertiary struc-
ture. The problem is that of determining the structure of the protein based
on the sequence of amino acids comprising the protein.

3.5 General relativity

The famous Einstein equation in general relativity relates the dynamics of the
space-time metric with the dynamics of matter-energy. The classical equation
is deterministic in nature. This holds on the macroscopic scale. However,
when studied in the microscopic scale, more precisely on the Planck scale
(1072%), the fluctuations of the space-time metric are assumed to be ran-
dom. In order to model this, stochastic differential equations are proposed
that generalise Einstein’s original equation. It is observed that the patho-
logical properties arising from using non-stochastic gravity can be removed
in a stochastic gravity theory. The stochastic differential equation used is a
Langevin-type equation. This is presented by Miller and Miller in [39].






Chapter 4

Strong solutions

The Wiener process is the stochastic driving mechanism in the stochastic
differential equations considered in this thesis. As haves been mentioned, the
Wiener process models small stochastic changes, that affect a given system.
The mathematical machinery behind all this is introduced in the following
sequence of definitions.

Definition 4.0.1 A filtered probability space (2, F, {F:}i>0,P), is a prob-
ability space (2, F,P), equipped with a family of o-algebras {Fi}i>o, called a
filtration, such that the following properties hold:

1.V0O<s<t<oo: FyCFy

2. foo = O-(UtZO Ft) Cc F.

Definition 4.0.2 A right-continuous filtered probability space, is a filtered
probability space (Q, F,{Fi}i>0,P), such that

thO ‘Ft:ﬂe>0ft+€'

Definition 4.0.3 An augmented filtered probability space, is a filtered prob-
ability space (U, F,{Fi}i>0,P), such that Fy contains all P-null sets.

Definition 4.0.4 A stochastic process, {X;}i>0, defined on a filtered proba-
bility space (U, F,{Fi}i>0,P), is adapted if

VtZO XtEf't.

Definition 4.0.5 A (standard) Wiener process, is a continuous and adapted
stochastic process W = {Wi}i>0 = {W () }+>0, defined on a filtered probability
space (2, F,{Fi}i>0,P), such that the following conditions hold:
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1. Vs € [0,t) : W, — Wj is independent of the o-algebra F;

2. Vs € [0,t) : Wy — Wy is a normally distributed random variable with
mean E[W; — W] = 0 and variance Var[W, — W] =t — s;

4.1 Definition, existence and uniqueness
Consider the one dimensional stochastic differential equation
dXt = U,(t, Xt) dt + b(t, Xt) th (41)

As have been mentioned already, there is a concept of a strong solution
associated to this equation:

Definition 4.1.1 Fiz a filtered probability space (0, F,{Fi}i>0,P), together
with a Wiener process, W, on that probability space. Let X = {X;}i>0 be a
stochastic process with the following properties:

1. the sample paths of X are continuous;

2. X 1is adapted,

¢ ¢
3. Yt €[0,00) : P(/ la(s, X5)| ds+/ b2 (s, X,)ds < oo) =1;
0 0

t t
4. ]P’(W €[0,00) : Xy =X, +/ a(s, X;) ds+/ b(s, Xs) dWs> =1.
0 0

Then the process X is called a strong solution to the stochastic differential
equation (4.1).

If the equation (4.1) is thought of as representing a dynamical system
that has the Wiener process, W, as input and response X as output, then
the requirement that X is adapted to the filtration {F;};>o is merely the
requirement that the system obeys the principle of causality.

Having stated the definition of a strong solution, it is important to state
in what sense a strong solution is unique, if it exists:
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Definition 4.1.2 If, for any two strong solutions X and Y of the stochastic
differential equation (4.1), it holds that

]P’(Vt €[0,00): X, = Yt) —1,
then the equation is said to have a unique strong solution.
Remark 4.1.1 A pair of stochastic processes X = {X;}i1>0 and Y = {Y; };>0
satisfying
]P(Vte [0, 00) - Xt:Yt) —1
are said to be indistinguishable. This means that their respective sample

paths are the same, almost surely.

Having defined the concept strong solutions, and the sense in which such
solutions are unique, we now come to the task of giving conditions for the
existence of a strong solution. This is accomplished in the following theorem
of Yamada and Watanabe in [64]:

Theorem 4.1.1 Let the coefficients of the one dimensional stochastic dif-
ferential equation (4.1) satisfy the following conditions:

1. YVt € [0,00), Vz,y e R: Ja(t,z) —a(t,y)| < &(|lz —yl|);

2. Vt € [0,00), Yo,y € R:  |b(t,x) — b(t,y)| < /h(lz - y]),
where the functions k,h : [0,00) — [0,00) are such that:

3. k(0) =0 and h(0) = 0;

4. K and h are strictly increasing;

d. K 18 concave;

¢ dt
6. Ve > 0: /—:oo;
o K(t)

¢ dt
7. Ve >0: — =00
/oh(t)

Then the equation possesses a unique strong solution.

Since most stochastic differential equations do not have a strong solution
expressible in closed form, it is necessary to be able to obtain numerical ap-
proximations. In the upcoming chapter, several different numerical methods
will be presented that give strong approximations to a stochastic differential
equation.






Chapter 5

Strong approximations

This chapter occupies a considerable portion of the thesis, since there is a
lot of work published on strong solutions of stochastic differential equations.
One of the main reasons for this in turn, is that numerical approximation
of strong solutions take their inspiration from the well developed theory of
numerical solution of ordinary differential equations.

In this chapter, numerical methods that give strong approzrimations to
stochastic differential equations will be addressed. These methods will in-
volve concepts from differential geometry and concepts from complex variable
theory in several dimensions.

Before going into this, it is necessary to define what is meant by a strong
approximation. For this, it is suitable to first consider an example of a one
dimensional stochastic differential equation. Let that equation be

dXt = CLXt dt + bXt th
Xo=1 (5.1)
t €10,1]

An approximation, {Y,"}}_, to the solution, { X;};c[0,1], of the stochastic
differential equation (5.1), is a time-discrete stochastic process, such that Y;?
is an approximation to X (t}). Here, 0 = ¢} < ¢} < ...t" =1, is a partition
of [0,1].

The Y}':s are computed according to some scheme that is connected to

the equation (5.1). For example, they may be computed by the recursive

scheme
Y0, = Y+ aV Ry + by AW

Yo=Xo=1
where hy =13, —t; and AW, = W, ., — W, . The step sizes, hy, satisfy

(5.2)

lim max h; = 0.
n—oo 1<k<n
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Since the approximation error accumulates during the iterations, a mea-
sure of the accuracy of the numerical approximation can be obtained by
comparing the final value of the approximation, ¥, with the final value of
the exact solution, X (1). The process Y is said to be a strong approzimation
to X, or alternatively is said to converge strongly to X, if

lim E[|X (1) — Y] = 0. (5.3)

n—oo

The approximation converges strongly with order p if
3C >0,3N >1,Vn>N: E[|X(1)-Y?] <Ch?,

where
_ n
hy = lrélka;(n hy.
If this holds, it is customary to just say that the scheme (5.2) is of strong
order p.

Remark 5.0.2 Notice that, with the above language, it is a matter of L!-
convergence, rather than strong convergence in the usual sense convergence
with probability 1.

5.1 Stochastic Taylor expansions

The technique of stochastic Taylor expansions was proposed by Platen and
Wagner in [48], and a thorough discussion of this topic can be found in [29].
Here the basic idea is presented.

Until further notice, X; denotes the solution to the one dimensional
stochastic differential equation

dX, = a(Xy) dt + b(X,) dW,. (5.4)

Notice that the coefficient a and b do not depend explicitly on t. Such eq-
uations are called autonomous (or time homogeneous).

If the functions @ and b are sufficiently regular, so as to allow the appli-
cation of the It6 formula (2.6), then the following representations of a(X;)
and b(X;) hold:

t t
a(X,) = a(X,) + / Loa(X,) ds + / Lya(X,) dW,
to to

b(X;) = b(Xy,) + / t Lob(X,) ds + / t Lib(X,) dW,

to to
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Here the operators Ly and L, are given by

1 2
L():adi‘i‘in%
fe z (5.5)
Li=b—
! bdac

Remark 5.1.1 The second term in the operator Ly comes from using the
Ito integral to interpret the stochastic differential equation. If instead one
uses the Stratonovich integral, then the operator Ly will be replaced with

~ d
Lo=a—
0 a dl’ )
while p
Li=L =b—
1 1 d.’L‘ )
as before.

Insert the It representations of a(X;) and b(X}) into the integral repre-
sentation of the solution to (5.4)

i t
X, = X,, + / a(X,) ds + / b(X,,) dW,,.
to to
Then we get

t

t
Xy =Xy + a(XtO)/ ds; + b(XtO)/ dWs,
to

to
t S1 t 81
+ / / Loa(X,,) dssds, + / / La(X,,) dW,,ds,
to Jto to Jto

t S1 t S1
+ / / Lob(X,,) dsyd W, + / / Lib(X,,) dW,,dW,,
to Y to to Y to
t t
= Xto -+ a’(Xto)/ dSl —+ b(Xto)/ dWS1 + Rl,
to to

where the remainder R; is given by

t S1 t S1
R1 :/ / Loa(Xs2) d52d51 +/ / LIG,(X”) dWs2d81
to J 1o to Jto

t S1 t S1
+ / / Lob(X,,) dspd Vs, + / / Lib(X,,) dW,,dW,. .
to Jto to Jto
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Since the functions a(Xj,) and b(X,,) can be represented in the same way as
a(Xs,) and b(Xj, ), this procedure gives a representation of X; in terms of a
weighted sum of multiple Ito integrals:

t t
Xt = Xto + G(Xto) / d81 + b(Xto) / dW51
t

0 to
t S1 t S1
+ Loa(XtO)/ / d82d81 + Lla(Xto) / / dW32d81
to Jto to J 1o (56)

t S1 t S1
+ LOb(Xto)/ / dSQdWSl —+ le(Xto)/ / dWs2dW51
to J 1o to Jto
+ Rs.

The remainder, Rs, is given by the following rather involved expression:

t 81 t S1
R2 :/ / L()a(XsQ) d82d81 + / / Lla(X52) dW52d81
to Jto to Jto
t S1 t S1 S9
+/ / Lob(Xs2) dSQdWsl + / / / L()le(ng) d53dW32dWsl
to Jto to Jio to

t S1 S92
+ / / / LiLib(X,,) dW,,dW,,dW,, |
to Jto to

where

Lia(XtO) = Lia’(Xt 1= 0, 1.

)‘tzto’

An expansion of the above kind, using It6 integrals, is called an It6-Taylor
expansion. The Stratonovich-Taylor expansion is analogous, except that it
uses Stratonovich stochastic integrals instead of It integrals.

5.2 The Euler-Maruyama method

The simplest numerical approximation scheme, that can be derived using the
stochastic Taylor expansion, is a stochastic counterpart of the well known
Euler method from the numerical solution of ordinary differential equations.

Only the first two terms are retained in the stochastic Taylor expansion
(5.6), of the solution to the stochastic differential equation. This gives the
approximation

t t
Xt ~ Xto + a(XtO)/ d81 + b(Xto)/ dWsl-

to to
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To use the above approximation to construct a numerical scheme, first
partition the interval [to, t] uniformly:

o= < <---<T1, =1 (57)
h = Ty41 — Tk .

Then construct a numerical scheme, which will give approximate values to the
exact solution values, X;,, at the nodes, 7y, in the partition, in the following
way: Let the stochastic process, X = {X;}}_,, defined by

X=X,
satisfy the equation
Xir1 = X+ a(Xg) b+ 0(Xg) AW, (5.8)
where
AW =W, . — W,

The process X is called the Euler-Maruyama approzimation, of the so-
lution to the equation (5.4), and the numerical scheme (5.8) is the Euler-
Maruyama scheme, to compute that approximation. It was suggested by
Maruyama [37].

The process X is a Markov process, by construction, and the solution
to the stochastic differential equation is a diffusion process. So what we are
doing here, in essence, is to approximate a continuous-time diffusion with
a discrete time Markov process. This Markov process does not have finite
state space. However, in [30], Kushner approximated the solution of the
stochastic differential equation by a Markov chain, thus discretising both the
time variable ¢t and the values of the solution X.

In [29], Kloeden and Platen prove that the Euler-Maruyama scheme is a
numerical approximation scheme of strong order %, i.e.

3C>0,3N>1,¥n>N: E[X,-X,|] <Ch'2

From a theoretical perspective, the Euler-Maruyama scheme is a good
choice, since it is quite amenable to investigations regarding the stability, rate
of convergence and consistency. From a computational point of view, how-
ever, it is a bad choice, since it requires a very fine partition of the time in-
terval, in order to give accurate approximations.

It is worth emphasising that, when talking about the Euler-Maruyama
scheme, or any other numerical scheme that approximates the differentiation
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operator, nothing is said as to the nature of the solution process being weak
or strong.

Any numerical scheme focuses on approximating the solution of the dif-
ferential equation. If a strong solution is sought, then the following issues
have to be addressed:

e How is the driving process in a stochastic differential equation to be
represented numerically?

e How should the time interval be partitioned?

If a weak solution is sought, then it might not be necessary to simulate
the driving process as it stands, but rather replace it with a simpler process,
that possesses some wital characteristics of the original driving process, for
example its first two moments. The reason for this simplification may be
to obtain a model more amenable to theoretical investigations, or to gain in
computational speed.

5.3 The Milstein method

If the first, second and sixth integrals in the expansion (5.6) are retained,
then the Milstein approrimation is obtained:

t t
Xt ~ Xto + a(XtO)/ d81 + b(Xto)/ dW51
fo fo (5.9)

t S1
+ Lib(X,) / / dW,,dW,,.
to Jto

Here the coefficient Lb(X},) is, according to the definition (5.5) of the oper-

ator Ly, given by
db(x)
dx

Lib(Xy,) = b(2)

w:XtO

The integrals that feature in (5.9) are approximated with appropriate
sums. This leads us to a central issue in the business of stochastic Tay-
lor expansions, namely that of approximating so called multiple stochastic

integrals. Of such,
t S1
[ [ awaw,
to Jto

is the simplest non-trivial example. For the approximation, the following
result from Karatzas and Shreve [28] is important: Recall that a Hermite
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polynomial, H,,, of order n, can be defined as

n g2 d"

Hy(x) = (<1)"e” —— (e).

Theorem 5.3.1 Let M be a continuous local martingale and let H,, be the
Hermite polynomial of order n. Then we have

t s1 Sn—1 1
/ / / dM,, ...dM,,dM,, = —H, (Mt, M, M]t),
0o Jo 0 n:

Hala:y) = VilyHo ().

and [M, M| is the quadratic variation process of M.

where

Thus, multiple Wiener-1t6 integrals can be expressed using Hermite poly-
nomials. For definitions and properties of local martingales, and of the
quadratic variation process, see for example the book by Karatzas and Shreve
[28].

Since the Wiener process, W, is a continuous local martingale with quad-
ratic variation

[Wa W]t = ta

the above theorem can be used to compute, for example

1

t S1
/ / dW,,dW,, = Lo, (Wi, t) = - (W7 —t),
o Jo 2 2

where we used that
Ho(z,y) = 2% — y.
Thus, the discrete version of the Milstein approximation to the solution pro-
cess, X, is a stochastic process, Y, satisfying:
Viwr = Vi a(¥i) b+ b(Ye) AW + LBV (Vi) (AT — )
Y, = X,

(5.10)

In [29], Kloeden and Platen prove that this scheme is of strong order 1.



34 Strong approximations

5.4 Simulation of iterated It integrals

The fundamental building blocks in a stochastic Taylor expansion are the
multiple stochastic integrals, amongst which

t t S1 t S1 t S1
dWsl I / dngdsl, / / dSZdWSI and / / dWsdesl
to to Jto to J 1o to Jto

are examples. The purpose of a stochastic Taylor expansion, other than hav-
ing an alternative representation of the solution to the stochastic differential
equation, is to obtain approximate solutions. This is used when finding strong
numerical solutions to a given stochastic differential equation. For this, it is
necessary to be able to simulate multiple stochastic integrals.

5.4.1 A single Wiener process

A general multiple stochastic integral of the Wiener process, using the It
interpretation of the stochastic integral, can be written in the form:

= [ [ [ W)W G0

Here we use the notation:

ds 7=20
AWils) = {dW i=1

The multiple integral (5.11) is simulated by means of recursion:
4
i@ = [ Tis (50) AW (52)
0

As an illustration of this procedure, consider the simulation of the iterated
integral

Loy (t) = /0 t /0 ) /0 W (55)dWo (52) AW (1),

By recursion, the integral is broken up as follows:
t t
Lo (t) = / Ig(s3) dWi(ss3) = / Io(s3) dWs,
0 0
S3 83
110(83) = / ]1(82) dW()(SQ) = / 11(82) dSQ
0 0

11(82) :/ dWl(Sl) :/ dWsl = W52
0 0
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Reassembling the parts, we get

L1 (1) =/ Lo (s3) dW, / (/ W, d52>
0
=W, / W, dss — / W2 ds,
0 0

For the last step, partial integration was used:

/udvzuv—/vdu.

This reduces the simulation of the multiple integral

t S1 S92
/ / / AW, dssd V.,
0 0 0

to that of simulating the integrals

t t
/ W, dss and / Wf2 dss.
0 0

5.4.2 Multiple Wiener processes

Stochastic differential equations involving several Wiener processes are con-
siderably more difficult to obtain approximate solutions for, due to the com-
plexity of simulating the iterated integrals occurring in the stochastic Taylor
expansion. In [50], Ryden and Wiktorsson use a result of Lévy [33] to devise
a way to approximate the integral

/0 t /0 " AW (52)dWa(sy),

where W; and W, are independent Wiener processes.

We will not pursue the the topic of stochastic Taylor expansions, and the
related techniques of numerically approximating multiple stochastic integrals,
except to point the interested reader to some literature on the subject.

For an exhaustive discussion of stochastic Taylor expansions for SDE:s of
one and several variables, the standard work on numerical solution of stochas-
tic differential equations [29] by Kloeden and Platen is the best source. They
do not however discuss the numerical approximation of multiple stochastic
integrals. The book [41] by Milstein does this, both for the more simple case
of only one driving Wiener process, and also to some extent for the more
complicated case of several driving Wiener processes.
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5.5 Waveform relaxation

5.5.1 Application to ordinary differential equations

Consider the following system of ordinary differential equations, where each
component has its own time scale.

dyr
- (t)
dys

22— 1

As is seen in the following figures, the time scales of the components differ
considerably.
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This is the typical behaviour of a stiff system of differential equations. When
solving this system numerically, one has to use a time step that is small en-

ough to capture the quick variations of ys(%).

For y;(t) this is a waste of
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computational resources, since it varies rather slowly compared with y,(t).
Since the system can be broken up into two separate, non-interacting sub-
systems

dy, dys

_— = — =/ =1
i y1(t) and i 00y» (1),

it would be worthwhile to have a numerical method that solves the system
in parallel, and to use a time step that is individually adapted to each of the
components of the solution vector y(t) = (y1(t), y2(t)).

The above example is very simple, but still gives a flavour of a more
realistic one, like for example computing a solution vector of a system of
ordinary differential equations, consisting of as many as perhaps a thousand
equations.

Using universally a time step that resolves the fastest varying component
is grossly inefficient. Certainly, if applicable, a parallel numerical solution
method, along the lines indicated above, would be worthwhile. One such
family of method is the Waveform relazation methods. They are used on
very large systems of weakly interacting differential equations. The weak
interaction enables the whole system to be broken down into non-interacting
sub-systems, which can then be solved in parallel.

The problem of numerically solving large systems of differential equations
is typical in the numerical simulation of VLSI (Very Large Scale Integrated)
circuits, and indeed it was in this area that the waveform relaxation method
was developed by Lelarasmee in his PhD thesis [32]. A presentation of wave-
form relaxation methods can be found in the book [59] by Vandewalle.

Features of a waveform relaxation method As an example of the way
the waveform relaxation method works, consider the system of equations:

dz
dy
- 0) =1

The solution is of course
x(t) = sin(t)

y(t) = cos(t)

A Gauss-Seidel waveform relaxation scheme for this problem is

{mm=%m . {m@ =t

yi(t) = —a (1) n(t) =1-%
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3

=t—3

The pair (x,(t),yn(t)) is the approximate solutions after the n:th iteration.
Note that the scheme gives the Taylor expansions of sin(¢) and cos(t).

I I I
2 3 4 5 6

I
1

0
Figure 5.1: Successive iterates for the Gauss-Seidel waveform relaxation scheme
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Figure 5.2: Error of the first and fourth waveform relaxation iterate for y(t).

The features, illustrated in Figure 5.2 above, are typical for any waveform

relaxation scheme, namely that:



5.5. WAVEFORM RELAXATION 39

e The error of a specific iterate is small in the beginning of the interval
[0, 27], but grows further in.

e Each iteration lengthens the interval over which the error is small. item
The error of successive iterates is not necessarily uniformly decreasing:
At the end of the interval [0,27], the error of the fourth iterate is
larger than the error of the first iterate. This fact indicates that the
convergence rate is very slow for a waveform relaxation method.

Due to the slow convergence rate, some of the current research is fo-
cused on accelerating the convergence. Leimkiihler [31] and Janssen [26] are
examples of the articles that address this issue.

General formulation of the waveform relaxation method Many phe-
nomena that are modelled as ordinary differential equations can be cast in
the following general form: Find the function z that satisfies the equation

z=T(z)+g, (5.12)

where x € U, g € U and T : U — U is an operator from the function space
U into U.

If the equation (5.12) represents a (large) system of weakly interacting
subsystems, then the weak interaction can be used to recast the problem of
finding z in a different form: Decompose the function space U into a product
of subspaces {U;}}_;:

U=U; x...xU,.

This decomposition induces a corresponding decomposition of the operator
T into {T};}7_,, and the function g into {g;}7_,. The equation (5.12) now
takes the form:

M = Tl(x(l), ... ,x(")) + g

: (5.13)
2™ =T, (W, ... ™) + g,

where z19), g; € U; and T} : U — U,. Each subsystem
gV = Ti(zW, ..., 2™) 4 g;

is solved, and the solutions are combined to give the solution of the whole
system. The decomposition is the starting point for iteration schemes, e.g.
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the Gauss-Seidel scheme:

xz('l) =T (xz(l—)p 55@1 - axy—l)l) + 9
( 2) (n)
; T )+ g2
' ' (5.14)

:Uz(") =T, (xgl), x?) . xE"*”, :ng)l) + g,

The significant difference between waveform relaxation methods, and non-
waveform relaxation methods, is that the waveform relaxation method cal-
culates successive approximations of the function (or waveform) z, not just
approximations for specific values of the function z, as non-waveform re-
laxation methods do, hence the name waveform relaxation method. One
can say that waveform relaxation methods compute a “uniform approxima-
tion” to x, as opposed to non-waveform relaxation methods which compute
a “point-wise approximation”.

In [52], Schneider and Schurz address the question of convergence of the
iterative scheme (5.13) :

Theorem 5.5.1 Assume that
Vje{l...n}: Uj is a Banach space with norm || - ||;

and
Vie{l...n}: T, :U — Uj is linear, continuous and globally
Lipschitz, with L = (ljx)1<jk<n, the matriz of Lipschitz coefficients.

Further, assume that the spectral radius

p(L) = sup |\

1<j<n

of L satisfies p(L) < 1, where {)\;}7_, are the eigenvalues of L. Then the
iteration scheme (5.14) converges in U = Uy X ... x U, with respect to the
following norm || - ||y :

n
el = [lell; 112915
j=1

Here e = (eq,...,e,) is a strictly positive eigenfunction (in the language of
Schneider and Schurz [52]), corresponding to p(L), i.e.

Vie{l,...,n}: L(e)=p(L)e and |leil|1,-..,]|len||ln > 0.
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The proof of this theorem is similar in spirit to the proof of the fixed-point
theorem for Banach spaces. See for example Debnath and Mikusinski [9].

5.5.2 Application to stochastic differential equations

The idea behind Theorem 5.5.1 can be applied to systems of SDE:s

dX(t) = felt, X (t)) dWi(2)

= (5.15)

To that end, it has to be addressed what effect the introduction of random-
ness will have on the analogues of the Lipschitz-coefficients, that feature in
Theorem 5.5.1. Of course, the theory is more involved in a stochastic con-
text. Nevertheless, it is possible to adapt waveform-relaxation methods to
stochastic contexts.

To set the stage for a stochastic counterpart of theorem (5.5.1), consider
an augmented filtered probability space P = (2, F, {F:}ico,r), P). The first
step is to split (5.15) into a system of n weakly interacting parts:

(dX0(t) = Yoo fin(t, X (1), - - o, Xn(t)) dWi(2)
X1(0) = Xy

\ : (5.16)
dXn(t) = Do far(t, X1 (t), - .o, X0 (2)) dWi(2)

\Xn(o) = Xno

where the functions

{fjki[O,T]XRd—)Rdj} d1++dn:d,

(4,k) € {1,...,n}x{0,...,m}’

are assumed to be Lebesgue-measurable, and have the following properties:

o (A1) Vj,k: sup inf ||fix(t,y)|; < K < o0
te[0,7] yER?
o (A3 Vi,j € {1,....n}, Vk € {0,...,m},

ILY) € R, V(1. @n), (U1, -, Yn) € RE x ... x RO
it @) = Finlt, vyl < S Lz — will;,
=1

i.e. each function fj;; is globally Lipschitz continuous in z, uniformly
with respect to t.
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Given a p > 1, the waveform-relaxed solution converges to the solution of
the system of stochastic differential equations (5.16), in the space £? defined
in the following way:

EP =& EF
where
g ={X:[0,T]x Q5 R X € C(10,T]), X, € .}
gr = {X .[0,T] x Q — R ;E[ max HXtHP} < oo}
t€[0,T]
Here the norm || - || is defined in the same way as || - ||y in Theorem 5.5.1.

The space £P is a Banach space, with respect to the norm
X112, = E[ sup [1X,/P"].
t€[0,T]

The following theorem, of Schneider and Schurz [52], addresses the con-
vergence of waveform-relaxed solutions to the system of SDE:s (5.16):

Theorem 5.5.2 Assume that the coefficients { fir} of the system (5.16) are
Lebesgue-measurable and satisfy the conditions (A;) and (As). Further, as-
sume that, for a given p > 1,

E| max || X0l|; | < 0.

Then the initial value problem (5.16) has a unique solution in EP.

In essence, the proof is about showing that the assumptions imply the
existence of a spectral radius p(L) < 1 for a matrix L determined by the
Lipschitz-coefficients. This makes the operator defined by the system of
SDE:s (5.16) a contraction from £? to EP.

Perspective for waveform relaxation applied to SDE So far, there do
not seem to be much more available in terms of applications of the waveform
relaxation method to stochastic differential equations. But it seems likely
that there will be more research in this area, since large systems of stochastic
differential equations are more realistic when modelling the dependencies
between a large number of entities in, for example, financial markets.

It seems highly probable that the price of Ericsson stock, say, depends
on other stock prices in the telecommunications market, as well as on other
stocks. Numerical analysis of this seems to be amenable to the technique of
waveform relaxation. A possible difficulty might be the requirement of the
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waveform relaxation method of needing the assumption of weak interaction
between the equations in the system of stochastic differential equations. In
a specific context, this weak dependency first has to be established, before
applying the numerical method.

5.6 Adaptive methods

The methods mentioned so far always assumed a fized partition
O=ty<ti<...<t, =T

of [0, 7], when computing the approximate solution of the SDE in question.
In order to improve the approximation, the step-sizes were made smaller and
smaller, resulting in increased computation time. Looking at the SDE

dXt = a(t, Xt) dt + b(t, Xt) th,

one notices that the underlying driving stochastic noise, W;, is coupled to
the evolution of the process, X;, through the diffusion coefficient b.

In [20], Hofmann, Miiller-Grénbach and Ritter suggest that, if the co-
efficient b is big, then the coupling will be strong, indicating that a small
step-size is required to better be able to capture the influence the noise, W,
has on the solution, X;. However, this coupling varies with time, so it is
not always required to have a small step-size to get a good approximation.
Insisting on a small step-size when this is not necessary is a waste of compu-
tational resources. An adaptive partition exploits this varying coupling, to
considerably improve the efficiency of the numerical method used.

In order to know whether the step-size should be made small, one has to
know the size of the diffusion coefficient at the next time point. This requires
knowledge of the unknown value of the solution at the next time point. To
cope with this, one uses a simple explicit method e.g. the Euler-Maruyama
method, to compute an approximation to the upcoming value of the solution.
This value is then inserted in the main numerical scheme, to correct the step
size according to the size of the diffusion coefficient.

This method of predicting a future value, using a simple method, and then
inserting this value in a main scheme to make corrections to the structure,
is called a predictor-corrector method.

Hofmann, Miiller-Gronbach and Ritter also prove a theorem that gives
a lower bound on the the absolute approximation error, that holds for any
method that uses a finite number of evaluations of the Wiener process. The
adaptive scheme they propose, using the size of the diffusion coefficient as
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step size regulator, is shown to obtain this lower bound, thus making it an
optimal scheme.

In their article [11], Gaines and Lyons adjusts the step size according to
the size of the local error, as the approximate solution is being computed.
Their rationale for choosing the step size is that each local error should
contribute equally to the global error. They use methods that reduce the
mean local error, so that it becomes negligible compared to the standard
deviation of the local error. They mention that numerical schemes that are
asymptotically efficient have this property.

Since the step size is continuously being adjusted, the Wiener process that
drives the stochastic differential equation has to be generated dynamically
as the solution is being computed. This contrasts with methods using a
fixed step size, where the path of the Wiener process is simulated before the
numerical approximation procedure ensues.

Gaines and Lyons use a binary tree structure to be able to store successive
refinements of the path of the Wiener process. The need for storage arises
from the requirement to be able to compare paths of different resolution. The
method of storing a path of the Wiener process in a binary tree, is possible
because of the construction of the Wiener process by Lévy [33].

There is interesting unpublished work by Logg, Johnson and Eriksson
[34] on ordinary differential equations, in which they propose using small
stabilising explicit steps in a numerical method, instead of using an implicit
method. They demonstrate the efficiency of their method on a number of stiff
problems. It seems that no results of this kind have been published in the
context of stochastic differential equations. Numerical methods for stochastic
differential equations are often implicit. Hence, this new idea in [34] for ordi-
nary differential equations might, as has happened so often before, generate
a useful method in stochastic contexts as well.

5.7 Symplectic integration

When one desires a numerical method for approximate solutions of Hamilto-
nian systems, that have high accuracy when integrated over a long period of
time, a symplectic numerical method is a good choice. A symplectic numeri-
cal method replaces the exact Hamiltonian problem with a numerical scheme
that gives a solution to an approximate Hamiltonian system.

Symplectic integration has similarities with geometric integration which
preserves the Lie group structure of a system. See for example the survey
article by Channell [7], and the book [51] by Sanz-Serna and Calvo. The
connection with stochastic differential equations is through the article by
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Tretyakov [43].

Symplectic methods are based on the concepts of wedge product in exte-
rior algebras, and differential forms in complex analysis in several variables.
Therefore, we begin by introducing terminology required to work with these
concepts.

5.7.1 Exterior algebras and differential forms

Here we attempt to give the reader a rudimentary introduction to the topic of
exterior algebras, in order to explain symplectic numerical methods. See for
example the book by Jacob [25] for a more thorough presentation of exterior
algebras.

We begin by defining the concept of a multi-linear functional. This is a
generalisation of the concept of a linear functional on a vector space:

Multi-linear functional Let {V;}?, be vector spaces over R. A map
f:Vix...xV,— Ris called a multi-linear functional if

Vie{l,...,n}: T;: Vi >R Ti(x) = f(x1,- -, Ti1,Z, Ty - . ., Tp)

is a linear functional.

It is a fact that the family, M L(Vi,...,V,,R), of all such multi-linear
functionals is a vector space, with coordinate-wise addition and scalar mul-
tiplication.

Tensor products If V is a vector space, V* denotes it dual space, i.e.
the space of all bounded linear functionals on V. Let f; € V;*. The tensor
product fi1®...® f, : Vi x ... xV,, — R is defined by

fl ®R...Q fn(xl, e ,iCn) = fl(xl) .. fn(mn)

In the particular case when the vector spaces V; are all finite dimensional,
the tensor product of them is given by

éVzé%z%@...@Vn:ML(VI*,...,V,;",]R).

7j=1
Alternating tensor We say that f € ®" V* is an alternating tensor if

flre, ooy xy, o xn) = —f(T1, 000 X, o Ty o, T).
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The family of alternating tensors is denoted A" V*. An element in A" V* is
also called an n-form.

Now we come to the important definition of a wedge product. This con-
cept is central in determining whether a numerical method is symplectic or
not.

The wedge product The wedge product, f A g, of f € APV* and g €
A V*, is defined as

1 :
fAg=—= Z sign(o)o(f ® g). (5.17)
pa 0€Sp+q
Here S, is the set of all permutations of {1,...,p + ¢}, while, for any
f ® ge ®p+q V*,
o(f®9) (@1, -, Tprg) = [ ®9(To1), -+ Toprq))-

The function sign(o) is defined as

ien(o) 1 if the number of inversions in o is even
sign = ) ) ) ) )
—1 if the number of inversions in ¢ is odd

As a simple illustration of the wedge product, consider the following ex-
ample:

Example 5.7.1 Pick f,g € V*, where V* is a finite dimensional vector
space. According to the definition (5.17),

Fag=3 sign(0)o(f ®g).

0€ES2

Now, in Sy there are only two permutations, o;({1,2}) = {1,2} and
02({1,2}) = {2, 1}, so that

f A g=sign(oy)oi(f ® g) + sign(oz)oa(f @ g) = 01(f @ g) — g2(f ® 9).
This gives

fAg(x1,m0) = 01(f @ 9) (31, 22) — 2(f ® g) (21, 72)
= f®g(x1,22) — [ @ g(x2, 1) = f(21)9(22) — f(22)9(21)
_ ‘f(xl) g(z1)
f(z2) '

9(2)

(5.18)
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The above example shows that the wedge product is a kind of determi-
nant. This connection can be used to define the differential 2-form, used in
complex analysis of several variables. The concept of differential 2-form is of
vital importance in symplectic integration.

Differential 2-form Consider a smooth two dimensional function (f, g) :
R? — R?.
Associated with this is the functional determinant

of 9y
d(z,y) |0 99|
dy Oy

Using the connection between the determinant and the wedge product in
(5.18), the differential 2-form df A dg is defined:

of 9y
& ndg(zy) = |55 Gu).
dy Oy

Symplectic transformation Consider a transformation
£, = (Y f7) R 5 R,

that is a smooth function of ¢ > 0. Let D, be the open unit disc in R?, i.e.
Dy ={z R :|z| < 1}.

The functional determinant

df, _ d(f" 17 _ o) e
—— = =dfy \df;
dx d(x1,x2)
contains information of the way the area and orientation of D, changes un-
der f;. (A negative sign of the determinant means that the orientation is
reversed.)
If the transformation f is such that, for all ¢ > 0, the oriented area of D,
is unaltered, then f is said to be a symplectic transformation.
This can be expressed using the differential 2-form as

vt €[0,00): dfi) Adf? = dfsY A df?.
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Hamiltonian systems A Hamiltonian system of differential equations is
given by

dp;  OH

dat dq;

dg; OH

% B Op;
The function H = H(p,q,t), controlling the dynamics of the system, is
called the Hamiltonian of the system. The coordinates q = (qy,...,qq) are
called generalised coordinates, and p = (p1,- .., Pa) are their associated gen-

eralised momenta. Such systems of equations are used to formulate Newton’s
laws of motion in the framework of analytical mechanics. Hence the name
“momenta”.

The space = to which (p,q) belongs is a subset of R?Z. It is called the
phase space.

The following simple example illustrates these concepts:

Example 5.7.2 A point mass m suspended from a weight-less wire is
performing small oscillations around its point of equilibrium. If ¢ is the
angular displacement of the straight wire from the vertical, and p is the
angular momentum of the point mass, then the Hamiltonian of this system
of one degree of freedom, d, is
2 2
p° kg
H t)y=T Vig) = —+ —. 5.19
Pa,t)=Tp) +V(g) =5+ (5.19)
Since this Hamiltonian does not depend explicitly on time, the corre-
sponding system is autonomous. The Hamiltonian system of differential
equations associated with the Hamiltonian (5.19) is given by:

dp
= — _k
dt g
dg _ p
dt m

The solution of this system can be written in matrix form:

(s) =2 ()
Here the matrix

cos wt —mw sin wt [ k
@t = . 9 w = -
(mw) ™" sinwt cos wt m
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is called the propagator of the system (5.19), since it is interpreted as the
transformation that propagates the initial configuration (p (0)>, to the

q(0)
current configuration (p (*) )

q(t)

In this example the matrix ®; can be factored
mw 0\ [coswt —sinwt) [(mw)™t 0
o, = ) = AR, B.
t ( 0 1) (smwt cos wt ) ( 0 1) R
In the phase space, which in this case is R?, B contracts area by a factor
(mw)~!, while R; rotates the contracted area an angle wt, and A expands

the area by a factor mw. The net result is that the transformation induced
by the matrix ®; preserves phase space area.

In general, the propagator is the transformation @ : (pg, o) — (p, q)-
The preservation of phase space area can more conveniently be expressed
using differential 2-forms, as is illustrated in the following example:

Example 5.7.3 Consider the harmonic oscillator

dp = P, dpy + P» dgy = cos wt dpy — mw sin wt dq
dg = Q1 dpo + Q2 dgy = (mw) ' sinwt dpy + cos wt dgg

We want to show that the propagator is symplectic:

dp A dg = (PLQy — P,Q1) dpy A dgy = (cos® wt + sin® wt) (dpy A dgy)
= dp() A qu

This proves the conservation of phase space area. Note that this proce-
dure of proving conservation is more efficient than the factoring of the
propagator @, in the previous example.

It can be shown that the propagator of a Hamiltonian system is symplec-
tic. In fact, the following theorem holds:

Theorem 5.7.1 Let the domain Z of the operator ® be simply connected.
Then the only sympletic transformations on = are the propagators of Hamil-
tonian systems.

This theorem motivates the use of symplectic numerical methods, i.e. nu-
merical methods that preserve the symplectic structure of differential equa-
tions.
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5.7.2 Symplectic numerical methods

Consider solving the Hamiltonian system

dp _ 0H

dt ~  dq

dg _oH (5.20)
dt  Op

using the numerical method, represented by the operator ¥, given by

(pn-f-la QH-H) = \Iltn+1,tn (pm QH)

This is to be interpreted as saying that, during the time interval [t,,t,1], ¥
evolves the approximate solution (py, ¢,) t0 (Pn+1, Gnr1)-

The evolution from time ¢, to time ¢,.1 of the ezact solution (p(t), ¢(t))
to the Hamiltonian system, can be represented using the propagator ® given
by

(p(tn—H; Q(tn+1)) = cI)tn.|.1,tn (p(tn)a q(tn)) .

Notice that (py, ¢,) is an approximation to (p(t,), ¢(t,)). Further, ® is sym-
plectic, since it is the propagator of the Hamiltonian system (5.20).

If the operator V¥ is a symplectic transformation, i.e. the numerical scheme
is symplectic, and the space = on which the numerical solution exists is
simply connected, then Theorem 5.7.1 states that ¥ is the propagator of a
Hamiltonian system, whose Hamiltonian function is denoted

HA(ﬁa qa t)

This will make (pn, ¢,) = (P(tn), §(t,)) an exact solution to the Hamiltonian
system

dp  OH,
dt 9§
dj _ 9H,
dt 9

This system is an approximation of (5.20).

So what we have when, we have succeeded in designing a symplectic
numerical approximation scheme, is an exact solution to a perturbed version
of the problem that we were interested in solving in the first place. This
idea is called backward error analysis in numerical linear algebra. See for
example Hairer [14] and Hairer and Lubich [15] for more on the topic of
backward error analysis.
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5.7.3 Symplectic Runge-Kutta methods

A general Runge-Kutta method for numerically solving a system of ordinary

differential equations

dy

may be represented by the following tableau:

11+t QA1s
as1 Ass
b b

The entries in this tableau are used to design a numerical method
Ynt1 = Y(tnt1, tn)Yn

=Yn + hpt1 Z bif (Giytn + Cilins1),

i=1
where

G =Yn + hng1 Zaijf(Cj, tn + Cjhni1)

j=1
s

C;, = E CLZ'j
k=1

hn—l—l =tnt1 — 1ty

An ezplicit Runge-Kutta method has a lower triangular tableau:

ait 0 . 0
a1 az --- 0
(251 Ag2 Qss

bl b2 bs

To design a symplectic Runge-Kutta method, is simply a matter of choos-
ing the right kind of weights, b; and a;;, as the following theorem shows:
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Theorem 5.7.2 If a Runge-Kutta method has a tableau such that
biaij + bjaji — bzb] = 0,

then the Runge-Kutta method is a symplectic method.

5.7.4 Symplectic methods for SDE

To illustrate symplectic methods for stochastic differential equations, con-
sider the following system:

AP = (1. P.Q)d + 3 ot P.Q) dW,(1)

=1

P(t))=p
- (5.21)
dQ = g(t, P,Q)dt + Z %i(t, P, Q) dW;(t)
QR(to) = ¢

where {W;(t)}", are independent Wiener processes. If there are functions
HO(tapa q) and {Hz(tvpa Q) znll such that

_ 0H, _ 0H,
=% =%
_oH, __ 0H,

then the phase flow of (5.21) preserves symplectic structure.

For a system where the coefficients o; and 7; depend only on ¢, and where
f(t,p,q) = f(t,q) and g(t,p,q) = g(p), Milstein, Repin and Tretyakov [42]
propose an explicit symplectic method, which in the one dimensional case
takes the following form:

Ppi1= Py + f(tk + h, Qu + hg(Pr)) h + o(ty) AW
Qi1 = Qr + 9(Pr) b +(te) AW
AW =W (ty + h) — W ()

Here the interval [0, 7] is partitioned into equal parts:

O=to<ti<...<ty=T, tk+1—tk=h. (5.22)

This method is of mean-square order 1, i.e. with X = (g), and X, the
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approximation of the exact solution X(t;) at t,

VE[X(t) — Xi[?] < Ch.
Here is an example that shows some properties of a symplectic method:

dQ(t) = P(t) dt + o dWi (1)
dP(t) = —Q(t) dt + v dWs (%)

With the partition (5.22), the exact solution X(¢) = (ggg) is computed as

X(tk+1) = FX(tk) -+ Ug, (523)
where X(0) = (8), F = (—C(s)isnhh :LI; Z), and

th41 trt1
a/ cos(txr1 — 8) dWi(s) + ’y/ sin(tgy1 — 8) dWa(s)
123

123

tk+1 tk+1
—0’/ sin(tgr1 — 8) dWi(s) + ’)// cos(tg+1 — ) dWa(s)
123

t

In [41] Milstein proposes the following symplectic method:

Up =

X1 = HXp + vy
cosh sinh
H = <— sinh cos h)

1 osinh  2ysin?ih\ (AW,
Uk =, —QO'SiDQ%h osinh AW,

The error of this method is of mean-square order 2, i.e.

(5.24)

VE[X(T) - Xy[?] < OTH2.

If there is no noise in the system, then the above symplectic scheme gives
the exact solution, since H = F'. To show the performance of the symplectic
method, the following Euler approximation is computed for comparison:

X1 = HXj + Uy,

"= (—1h ?) (5.25)

5_1 o 0 AWl
FTR\0 v\ AW,

53
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Figure 5.4: The symplectic method Figure 5.7: Evolution in phase
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exact solution (solid)

Figure 5.3 shows that the Euler-Maruyama approximation is not good
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over a long time interval. In contrast to this, Figure 5.4 shows that the sym-
plectic method (5.24) is very good in approximating the exact solution over a
long time interval. Figures 5.5-5.7 show that the symplectic method really is
a symplectic method (dotted graph), i.e. it preserves phase space area. The
Euler-Maruyama does not preserve phase space area, which is demonstrated
by the widening dotted circles. The fact that the Hamiltonian system of
equations is stochastic can be seen by noticing that the exact solution (solid
circle) is moving around in the phase space. Were the Hamiltonian system
to consist of ordinary differential equations, then the exact solution would
always move on the circle determined by the initial states. Here the initial
configurations lie on the dashed circle.
For the Euler approximation (5.25), the following error estimate holds:

E[|[X(T) - X < OT*R2.

5.8 Geometric integration

The theory of geometric integration is a part of computational mathematics
involved in designing numerical methods for ordinary differential equations
evolving on a differentiable manifold. A geometric integration scheme aims
to make the numerical solution evolve on the same manifold as the exact
solution. This can be accomplished if the differentiable manifold is a Lie
group. So the theory of geometric integration is about applying the theory
of Lie groups to the problem of numerically solving an ordinary differential
equation.

The reason for geometric integration appearing in this thesis on numer-
ical methods for stochastic differential equations, is that recently there has
been some advances to extend the theory of geometric integration to cover
stochastic differential equations as well.

The following example demonstrates that, if the solution of an ordinary
differential equation evolves on a manifold, a numerical scheme that respects
this, is superior from an accuracy point of view, to a scheme that does not
respect this. Also, there is the gained benefit of studying the properties of
the numerical solution in order to obtain qualitative information of the exact
solution.

Example 5.8.1 Consider the system of ordinary differential equations

% a0 () =
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where

(1) e v- ()

The exact solution is
y1(?) sin ¢
y g = ;
Yo (%) cost

which consequently it lies on the unit circle.

As for a numerical method to solve the system, the following explicit
Euler method, obtained simply by replacing the derivative operator by a
difference quotient, might be what first comes to mind:

Yni1 =¥n + Ay, h = (1 + hA)y,.

This method gives approximations that do not lie on the unit circle, since
the matrix B = 1 4 hA is not orthogonal, and thus does not represent a
rotation. However, since BB' = (1 + h?)1, B is “almost” orthogonal, for
h sufficiently small. This is illustrated in Figure 5.8 below.

-1.5kb1 I I
-4 -3 -2

Figure 5.8: The graphs represent the exact solution (solid graph) and the numer-
ical approximation using the explicit Euler method (star-dotted graph) for two
different values of the step size h in the phase plane (y; vs. y2). The top graph

has h = -

and the bottom graph h = L

100 200"
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The length of the exact solution vector is invariant under the rotation
operator, whereas the length of the Euler approximation vector is not
invariant under the rotation operator. This suggests the use of a numerical
method that makes the length of the solution vector an invariant quantity.
An example of such a numerical method is

Yni1 =€y, (5.27)

as is shown by Figure 5.9 below.

0.8

0.6

041

02

&
0
Y1

Figure 5.9: The graph shows the exact solution (solid graph) and an approxima-
tion, using the numerical method (5.27), in the phase plane (y; vs. y2). (o-dotted

graph).

The unit circle is an example of what is called a differentiable manifold,
and the solution vector to the equation (5.26) is seen to evolve on this man-
ifold.

This simple example demonstrates a connection between the structure of
a system of differential equations, and an operation under which the solution
is invariant.

5.8.1 Differential geometry and Lie group theory

In order to be able to understand the subject of geometric integration, some
basic background material from differential geometry is required. For more
information on geometric integration, see for example the survey by Iserles
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et al. in [23]. For more on the theory of Lie groups, see for example the
books by Helgason [18], Onishchik and Vinberg [47], and Varadarajan [60].

Differentiable manifold Basic to the theory of geometric integration is
the concept of a differentiable manifold, M. An n-dimensional differentiable
manifold, M, can be embedded as a surface in RV, for some N > n, meaning
that when restricted to M, the topological properties of RV are the same
as the topological properties of M. Thus, a differentiable manifold can be
thought of as a surface that locally has a structure like R”, but globally may
differ from such a structure. When talking about manifolds in this thesis, we
will always mean differentiable manifolds.

Tangent to the manifold Let M be an n-dimensional manifold embed-
ded in RY, where N > n. A tangent at a point p € M is a vector, v € RY,
such that the distance between p + ev is of the order €2, for € small, i.e. the
vector p + ev lies close to the surface M if € is small.

Tangent vector field If p is a point on the manifold M, then TM,, is
the set of all tangents at p. It is called the tangent space at p. The set of
all tangent spaces of M is called the tangent bundle of M, and is denoted
TM. Of course TM = Up TM,. For a fixed p, TM is a linear space. (This
fact will be important when constructing numerical methods for differential
equations that evolve on a manifold.)

A tangent vector field on the manifold M is a smooth map F : M — T M
that associates a tangent vector with a point on M, i.e. F(p) € TM,, for all
p € M. The set of all tangent vector fields on M is denoted X'(M), and is
a linear space.

Differential equations evolving on a manifold If F' € X'(M) is a tan-
gent vector field on M, a differential equation evolving on M is a differential
equation which specifies that the solution y(¢) to the differential equation
changes along a tangent at y(t), i.e.

dy

i F(y(t)), y(0) € M. (5.28)

Flow of a tangent vector field The solution of a differential equation
can be considered to evolve from the initial state y(0) at time ¢ = 0, to the
state y(t) at time ¢, according to the dynamics specified by the differential
equation. The tangent vector field F' governs the infinitesimal evolution of y.
When compounded, these infinitesimal evolutions generate a finite evolution.
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Let U, r denote this finite evolution. It is called the flow of the tangent vector
field F. 1t is an operator from M to M. The infinitesimal evolutions of ¥y p

equals F'. Thus

d
F=29,,.
dt "

The solution y(¢) can be written as

y(t) = ¥y r(y(0)).

Thus, to solve the differential equation (5.28) amounts to find the flow
VU, r of F'. The process of accomplishing this is called the exponentiation of
the vector field F'. The notation is

U, p = exp(tF) = &',

The flow is an example of what is called an exponential map. The name
comes from the following particular case:

Example 5.8.2 Consider the differential equation

dy
— = Ay(t R"
7 y(t), y € R,

where A is a constant n x n matrix. The solution is given by y(t) =
e4y(0). In this example, the manifold is M = R", and the tangent vector
field F = A, so that ¥, z = €' corresponds to the matrix exponential.

Lie group A Lie group is a manifold G equipped with an operation * :
G x G — G, satisfying the following properties:

1. Vo,y,2€G: zx(y*xz)=(z*xy)*z;
2. de€ G, Ve €G: exrx=x%xe=c¢
3.VeeG,IzteG: zxaxl=alxax=c¢

4. x: (z,y) > x*y and z — 2~ ! are continuous mappings.

Lie algebra A Lie algebra, g, over a field K, where K is R or C, is a vector
space over K on which there is defined a bilinear map g x g 5 (X,Y) —
[X,Y] € g, called the commutator, having the following properties:

1. VX, Y, Zeg: [ X,[Y.Z]|+[Y,[X,Z]]+ [Z,]X,Y] = 0;
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2. VX eg: [X,X]=0.

The first property is called the Jacobi identity.

Example 5.8.3 A simple example of a Lie algebra on R, is the set of all
vectors in R®, with the bilinear map between vectors chosen as the vector
cross-product, u X v.

Lie algebra generated by tangent vector fields A Lie algebra, over R,
of tangent vector fields, is a family of tangent vector fields F' = {F;};c; that
is a linear space and closed under commutation, i.e.

Va,b € R VF,F; € F: aF, +bF, € F;
VF,F; € F: [F,Fj|cF.

The Lie algebra, g, generated by the tangent vector fields {F;}icr, is the
smallest Lie algebra of tangent vector fields containing F'.

The importance of Lie algebras, g, generated by a family, F', of tangent
vector fields, lies in the fact that the flow of any tangent vector field in g can
be approrimated arbitrarily well by composing flows of tangent vector fields
in F.

Finite dimensional Lie algebra If g is a Lie algebra generated by the
family of tangent vector fields {F;};cr, and [ is a finite index set, I =
{1,2,...,n}, then g is of finite dimension n.

The Lie algebra of a Lie group The Lie algebra, g, of a Lie group G, is
the linear space consisting of all tangents of G at the identity element, e, of
G. The bilinear map on the Lie algebra g is defined by

x.¥] = 2 p(s)o(t)o(-

s=t=0

for X,Y € g, where p(-) and o(-) are parametrisations of two smooth curves
on G such that

p(0) = e =0(0)
dp
halid =X
ds ls=0
do

t=0

dt
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Matrix Lie group A real matriz Lie group is a smooth subset of R,
the set of all real n X n matrices, that is closed under matrix products and
matrix inversion.

Matrix Lie algebra The Lie algebra, g, of a matrix Lie group g, is the
linear subspace of R, ,, consisting of all matrices of the form

dp(s)
A=
ds ls=o0’

where p(-) € G is a smooth curve such that p(0) = 1, with 1 the unit
matrix in R,,. The Lie algebra g is closed under matrix addition, scalar
multiplication, and under the matrix commutator

[A, B] = AB — BA.
The following quote is from from Iserles et al. in [23]:

”For practically any concept in general Lie theory, there exists a correspond-
ing concept within matrix Lie theory. Vice versa, practically any result that
holds in the matrix case remains valid within the general Lie theory.”

The truth of this is underscored by the following theorem of Ado (see for
example Varadarajan’s book [60] on a proof):

Theorem 5.8.1 Fwvery Lie algebra of dimension n is isomorphic to a sub-
algebra of the matriz algebra gl(n) consisting of all n x n real matrices.

The observations above are crucial when it comes to the numerical solu-
tion of an ordinary differential equation that evolves on a Lie group. Since
any numerical solution is based on a discretization, the possibly infinite di-
mensional Lie group will have to be approximated by a finite dimensional
Lie group, to which is associated a finite dimensional Lie algebra.

Differential equation evolving on a matrix Lie group If G is a matrix
Lie group, and g an associated matrix Lie algebra, then a differential equation
evolving on G is an equation of the form

%Q:A@wmww
& (5.29)
te[0,T]

Here Aisamap A: RxG — g, and A(¢, Y (¢))Y (¢) is the matrix A(¢,Y (¢)) €
g multiplied with Y'(¢) € G.
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For small ¢ > 0, the solution of (5.29) is given by
Y (t) = exp (O(1))Yo,
where ©(t) € g satisfies the differential equation

dO(t —1
% = dexpgy (A(t, Y (?))) (5.30)

©(0)=0
and 0 is the zero matrix in R,,. The operators exp (), dexp)(-) and

dexp(__)l(-) are defined below.
The equation (5.30) was originally stated by Felix Hausdorff in 1906 [17].

Definition 5.8.1 The exponential map, exp : g — G, is defined by
exp(A) = Z PR
k=0
Definition 5.8.2 The adjoint representation, Adg(A), and its derivative,
adp(A), are defined by
Adp(A) = BAB™!
adg(A) = AB — BA = [A, B]
Definition 5.8.3 The differential, dexp : g X g — @, of the exponential map
exp : g — G, is defined by the equation
dexp(A(t))
dt

dA(t)

= dexp 4 (7) exp(A(t))-

The operator dexp 4(-) is an analytic function of ad 4, that is given by

exp(ada(-)) — 1'

dex
pA( ) adA( )
Thus dexp 4(-) can be inverted, to get a formal inverse dexp ' (-):
dal(-
dexpy'() = ——294L)

exp(ada(-)) — 1°

By expanding the function f(x) = z/(e” — 1) in a Taylor series, we obtain

=, B,
PSS
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Here By = f'(x)|z—0 are the so called Bernoulli numbers. More specifically,
we have

. B 1 1 B 2. By )
dexp;'(B) = B — 5[A, B] + E[A, [A,B]] +--- = kz_:o o adi (B), (5.31)
where
AdW(B) =4,]4,...,[4,B].. ],
k times

l.e.

Ad%(B)=B

Ady(B) =[4, B]

Ad%(B) = [A,[A, B]]

5.8.2 The Runge-Kutta-Munthe-Kaas scheme

A numerical solution of (5.30) can be attempted using a Runge-Kutta type
scheme.

An m-stage Runge-Kutta scheme, used to obtain a numerical approxima-
tion to a differential equation

y’ = f(ta y)
Y(O) =Yo, l € [OaT]

can be represented by a so called Butcher tableau [6]:

Ci1 | 11 - Qim
Cm | OGm1 "  Omm
by R, b

This tableau is shorthand notation for the following numerical scheme:

m
Yot1 =¥Yn + Z bkfk
k=0
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fk = hf(tn + Ckh, Hk)

Ok = yn + Z akif;
P (5.32)

h:tn—l—l_tn
O=to<t1 <...<ty=T

When (5.32) is applied to the equation (5.30), the resulting numerical
scheme is called the Runge-Kutta-Munthe-Kaas (RKMK) scheme:

Yn+1 = exp (G)Yn

0= i bi F
k=0

Fk = dexp(f)i (Ak)

O = i ari F;
i=0

Ak = hA(tn + Ckh, exp (@k)Yn)
h = tny1 — o
O=toy<t1 <...<ty=T

(5.33)

In order to apply this scheme, it is necessary to have an approximation for
the operator dexp™'. One way to approximate dexp ' is to truncate the
expansion (5.31). If the RKMK scheme is to be of the same order as the
underlying Runge-Kutta scheme, the truncation has to be of the same order
as that of the underlying Runge-Kutta scheme. For high-order methods, this
implies the use of several commutators from (5.31), which gives very complex
numerical methods, see [8]. One way of reducing the required number of
commutators is to use so called free Lie algebras. For more on this, see the
survey article on Lie group methods by Iserles et al. [23].

An important fact is that, even if dexp™' is approximated, the resulting
numerical approximation, obtained by (5.33), will remain in the same Lie
group as the exact solution. This is the main idea with geometric integration
methods.

5.8.3 The Magnus formula

Previously we saw that the problem of solving the equation

Y' =AY
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e (-4)

was reduced to solve the associated equation ©' = dexpg'(A) for the expo-
nent, in the representation Y = exp (©)Yj.
One way to approach the solution of this equation is by way of Picard

iteration:
Ao(t) = 0

0, (t) = /0 dexpg’_, o (A(s)) ds

In a suitably small neighbourhood of 0, this scheme converges to O(t) =
lim,, o O, (t). The solution ©(t) can be represented with the Magnus ez-
pansion or the Magnus formula. This is a linear combination of iterated
integrals and commutators:

Ot) =Y H(t), (5.34)
where

Ho(t) = /0 A(sy) ds,

Hy(t) = —% /0 t [ /O " A(sy) dSQ,A(sl)} ds,
Ha(t) = %/Ot [ 051 A(sy) ds,, [/0 A(ss) dSQ,A(SI)H ds, (5.35)

N % /0 t [ /0 N [ /0 " A(sy) dsg,A(SQ)] dSQ,A(sl)} ds,

As can be seen, the terms in the Magnus expansion become increasingly
more complex. A more transparent form of the expansion can be obtained
by associating each term with a rooted binary tree. This approach makes
numerical computations and recursive derivations of additional terms in the
expansion more tractable. Thus, the use of graph theory becomes involved.

We will not go into this topic any further here, except to point the inter-
ested reader to some literature: the article by Iserles and Norsett [24], the
book by Butcher [6], which addresses the method of rooted trees, and the
book by Harary [16], on general graph theory.

It was mentioned that the Picard iteration scheme, that generated the
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Magnus expansion, holds in a suitably small neighbourhood of zero. [Recall
that ©(0) = 0.] The following theorem by Moan [45] specifies exactly how
small this neighbourhood is:

Theorem 5.8.2 If the Lie algebra g is equipped with a norm, || - ||, the
Magnus expansion is absolutely convergent with respect to this norm, for
every t > 0 that satisfies

t 2 dS
/ ||A(s)Hds§/ ~ 1.089.
0 o 4+s(l—cots)

The Magnus expansion is, of course, used to obtain approximative so-
lutions to (5.30) by truncation. The truncation cannot be performed just
anywhere in the expansion. The rooted tree approach gives information on
where to truncate, and on the order of the approximation thus obtained. Here
we give a few truncations that can be used to construct numerical schemes:

¢
O(t) ~ / A(s1) ds; Order 2
0

t t s1
O(t) ~ / A(sy) ds; — %/ [/ A(sg) dsg, A(s1) | dsy Order 4
0 o LJo

Once these truncations have been made, the integrals are approximated
by so called numerical quadrature. This is as far as we will go on this subject
here, since the aim merely is to give the reader some ideas of the methods
involved in computing numerical solutions of ordinary differential equations,
that evolve on differentiable manifolds. For more on numerical quadrature,
consult for example Shampine [53], or any other book on numerical solution
of ordinary differential equations.

5.8.4 Geometric integration and SDE: The Magnus for-
mula

In [5], Burrage and Burrage apply the Magnus formula to an SDE in Stra-
tonvich form. This seems to be the first paper in which the Magnus formula
is used in a stochastic context.

Burrage and Burrage consider the following vector valued SDE:

dX (1) = GoX () dt + G1X (1) 0 AWy () + Go X (£) 0 AW (1)

X(0) = G) (5.36)
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t € [0,1]

Here W; and W5 are independent Wiener processes, while Gy, G; and G, are

the 2 x 2-matrices, given by
_9 9
on(F8). am(} 5). m an(} B)
1 2 T 1 10
The matrices Gy, G; and G5 do not commute, so the Magnus expansion is
needed to obtain a good numerical approximation.
The solution to (5.36) is

O lw

X (t) = exp(O(t)) X (0),
with © given by (5.34) and (5.35). In our example (5.36)
A(t) dt = Go dt + G1 e} dW1(t) + G2 O dWQ(t)

Thus the first term in the Magnus expansion (5.35) is

t
Hy(t) = / A(s)ds = Got + G1J1 + GaJs,
0
where
t t
Jl = / dWl(S) = Wl(t) and JQ = / dWQ(S) = WQ(t)
0 0
The second term can be computed, with somewhat more effort,

Hy(t) = [Go, G1](J10 — Jo1) + [Go, G2](J20 — Jo2) + [G1, G2l (J21 — Ji2),

where .
Jy = / / AW (s52) 0 AW (s:)
0 0

and
Gi, G| = G;G,; — G;G,.

In order to obtain numerical solutions to the SDE (5.36), it is necessary
to simulate the iterated Stratonovich integrals J;; above. One way of doing
this is described in the article by Ryden and Wiktorsson [50].

Notice that the iterated integrals appearing in (5.35) are interrelated. See
[29] for an extensive discussion of the interrelationships.

Simulations of iterated integrals of higher order, when more terms are
needed, are more involved, of course. Using the mentioned interrelations,



68 Strong approximations

these simulation can be made more tractable, as shown by Milstein [41].

Using only Hy and H,, Burrage and Burrage [5] construct a numerical
scheme based on the Magnus expansion, and compare it to the Euler scheme.
The results are depicted in Figure 5.10 and Figure 5.11.

log error
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Figure 5.10: The logarithm of the global error versus the logarithm of the step
size. The error using the Euler scheme (0) follows a line with slope 0.5, indicating
that the scheme is of strong global order 0.5.
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Figure 5.11: The logarithm of the global error versus the logarithm of the step
size. The error using the scheme based on the Magnus expansion (o) follows a line
with slope 1.0, indicating that the scheme is of strong global order 1.0.
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5.8.5 Geometric integration and SDE: The Kunita for-
mula

Consider the d-dimensional SDE in Stratonovich form, driven by a one di-
mensional Wiener-process W (t):

dS(t) = b(S(t)) dt + g(S(t)) o dW;

S0) — o (5.37)

Here the solution process S(t) is assumed to evolve in a d-dimensional con-
nected C'*°-manifold, M,

S :[0,00) = M
b,g € C®(M,R%)

Introduce the operators X, and X;:

~ 0 ~ 9
The following formula by Kunita gives the solution of the SDE (5.37):

Theorem 5.8.3 Suppose that the Lie algebra L(Xy, X1) generated by the
operators Xo and X is p-nilpotent. Then the solution of (5.37) is

S(t) = e (S(0)) = e™(s),
where the operator Y; is given by the following formula:
1 *
VE>0: IF’(Yt =Y Wit)Xi+ ) ZCMWAJ(t)XJ) =1,
1=0 J:2<|J|<p AT

where
Wo(t) =1, Wi(t) = Wy

J:(jla"-ajm)a ‘J|:]1++]m

Xy= 1 [ X, X5l 1XG]
WAJ ://dWJl(tl) O...OdWJkl(tl)
Wi, Jr = {ix}

Wy =<1 Je = {ik, i}
0 Jo={0,0}
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The multi-index J is divided into shorter multi-indices, J = (Jy, ..., J,)
such that each J; contains the same element. A further sub-division, AJ =
(Jiso ooy gy Toyt1s - oy Jhgs - o Iy 41, - - -5 Jk;) 1s such that each Ji, contain
at most two elements, where k; < ky < ... < k; = q. AJ is called a single
divided multi-index of J if all the Jj, contain a single element. Otherwise
AJ is called a double divided multi-index of J.

The sum Y 5, denotes summation over all single and double divided
multi-indices of J.

The coefficients ca; in the theorem are computed from quite a compli-
cated formula that is not given here. For a description, see the article by
Misawa [44].

If the Lie algebra L(Xy, X;) is not p-nilpotent, then the operator Y; is
given by an infinite series:

ZW Xi+ Y Z(;AJWAJ )X, a.s.

J:2<|J| AT

(Note the absence of p in the second summation.)

If L(Xy, X;) is of finite dimension, then Arous [1] has proven that there
is an F-stopping time 7, where F is the filtration {F;}s>0, Fs = o(S(r) :
0 <r <), such that

VtST* ( ZW X + Z ZCAJWAJ >:1

J:2<|J| AT

Kunita’s formula implies that the solution S(¢) = e¥(s) can be expressed
Yi(s) = ¢(1,s), where @(7,s) satisfies the following ordinary differential
equation:
d¢

L = V()
8(0,5) =

(5.38)

5.8.6 Applying the Kunita formula

An approximate solution over the interval [0,7] is sought. Discretize the
interval into N equal parts of length At = T/N. Let t,, = nAt denote the
discretization points, and S,, = S(t,) the value of the exact solution at these
points. Further, let AW, = W, ., — W, be the increments of the driving
Wiener process. The numerical approximation is

Sn—l—l = eYnAt (Sn)a
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where
1
Yaae = TonXo + Iyn X1 + 5 (Tonn = La,0m) [Xo, Xa] + ...
nAt
I(O),n :/ dYE)(Tl) = At
T1=(n—1)At

nAt
Iy, = / dYi(m) = AW,

ni=(n—1)At

nAt T2
TIoym = / / dYo(r1)dY1(72)

Te=(n—1)At J T1=(n—1)At

nAt T2
Lo = / / 4V (r)dYo()

To=(n—1)At J 1i=(n—1)At

it i=0
a¥i(t) = {dW i=1
i

The infinite series is truncated to obtain ffmt. An example of a truncation
is

A

Yoatr = Lio)nXo + L1)n X1

In order to compute the exponential of Ynm, it is split into A = A,a¢ and
B = B,a:, where the exponentials of A and B can be computed explicitly
using (5.38). Thus

eYnAt — eA+B.

The Baker-Campbell-Hausdorff formula states the following relation:

eef = exp {A + B+ %[A,B] + %([A, [A, B]] + [B[B, A]] + - . )}

The exponential eA*?# can be approximated by e?e? according to this for-

mula. The approximation becomes exact if the operators A and B commute,
ie. [4,B]=0.

In conclusion, the numerical scheme for approximating the solution S(t)
reads:

Sﬂ-}-l — eAnAteBnAt (Sn)’
where S, is an approximation of S, = S(t,).
Here is an example that illustrates the use of Kunita’s formula:
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Example 5.8.4 Consider the Bessel-type SDE

dS(t) = S(t) dt + 2+/S(t) o dW,
(5.39)
S(0)=s
This equation is sometimes used in mathematical finance to model the
price of a stock, see for example the work by Geman and Yor [13].
The operators X, and X are

d
Xo=5—
P
d
X = 2\/§—
ds
The Lie algebra L(Xj, X;) generated by X, and X; is finite dimen-
sional since [Xo, X1] = —1X, as demonstrated by the following calcula-
tion:
d d d, d d X
— XXX, Xg = 5 (205 )20 /5 (52 ) = —yf5m = — L
KXo, 2] = XoXi= X1 Xo Sds( \/gds) \/gds(sds) \/gds 2

The truncated Kunita formula is
Yoar = At X + AW, X;.
Let the operators A,a; and B,a; be given by
Apat = At Xy and  Bpar = AW, X;.
Then the exponential map e4»2¢ can be computed in the following way:
Za(t) = e"24(24(0)) = a(1),
where the function ¢4(7) satisfies the ordinary differential equation

D) _ Araelbalr)) = Aigs 202

doa
$4(0) = 24(0)

The solution is ¢ 4(7) = 24(0)e™, which gives e4nst(s) = se®t,

As for eBr2t | this quantity can be computed in the following way:

Zp(t) = e"t(25(0)) = ¢5(1),
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where the function ¢p(7) satisfies the ordinary differential equation

d d
200  Busdon(r) = SW,2v/on 32

¢5(0) = z5(0)

This gives ¢5(7) = (TAW,, ++/25(0))?, so that ePrat(s) = (AW, ++/5)%
In conclusion, we have the following numerical approximation scheme:

Soir = (AWn + @)QeAt. (5.40)

In [44], Misawa shows that this scheme is of mean-square order 1.

The solution, S(t), to the SDE (5.39) can be shown to be non-negative.
The numerical scheme derived above shares this property. This is not the
case for e.g., the Euler-Maruyama scheme,

Spt1 = Sp b+ 2/ S, AW,

which is of mean-square order 0.5.

Since the exact solution of (5.39) cannot be obtained in closed form,
in order to compare the numerical solution based on the Kunita formula
with that obtained by the Euler-Maruyama method, a high order ap-
proximation, based on a stochastic Taylor formula, is used as a substitute
for the exact solution. This high order approximation is a method of
mean-square order 1.5, suggested by Kloeden [29]:

Spt1 = 8Sn + (Sp+1)h+24/S, AW,
+ (AW, = h) 4+ 24/ Sn L1010 (h) + v/ Sn L0100 (R) (5.41)
+ %(Sn +1) B2

Here

Ta0n(h) = % (Sn + %gn) 132

and

1 1
Ton(h) = 5 (fn - %cn) B,

where £, and (, are independent N (0, 1)-distributed random variables.
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Figure 5.12: The dotted graph (o) depicts a simulated trajectory calculated
by means of the scheme (5.40). The solid graph (-)corresponds to the Kloeden
scheme (5.41) for the SDE (5.39) with s=0.01. Also included is a simulation
from the Euler-Maruyama scheme (V).



Chapter 6

Weak solutions

6.1 Weak solution

The concept of a weak solution to a stochastic differential equation, is very
different from that of a strong solution. Based on a fized probability space,
and a fired Wiener process on that space, a strong solution may be found
under suitable circumstances, using that particular Wiener process, and that
particular probability space.

For a weak solution however, the probability space, the Wiener process,
and the solution process, are themselves part of the solution of the stochastic
differential equation.

Definition 6.1.1 The triple (X, W), (0, F,P),{Fi}>0) is a weak solution
to the one dimensional stochastic differential equation

dXt = a(t, Xt) dt + b(t, Xt) th, (61)
if the following conditions hold:

1. (0 F,{Fi}i>0.P) is a filtered, right-continuous and augmented proba-
bility space;

2. W is a one dimensional Wiener process;

3. X 1s a continuous and adapted stochastic process;

t
4. Vt €1]0,00) : ]P’(/ la(s, X,)| ds + b*(s, X,) ds < oo) =1;
0

t t
5. ]P’(Vt € [0,00): Xy =X, +/ a(s, Xs) ds—l—/ b(s, Xs) dW5> =1.
0 0
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6.2 The Feynman-Kac formula

Consider the SDE

dX(s) =a(s, X (s))dt + b(s, X (s)) dWj
X(t)==z (6.2)
X(s),Ws; e R '
s€t,T]

with coefficients that satisfy a Lipschitz condition
Vs € [tat+T]a \V/$,y eER: |G(S,£E) - a(S,y)| + |b(8,$) - b(S,y)| < K|I _y|

Associated with the SDE (6.2) is the Kolmogorov backward partial dif-
ferential operator, A, called the generator of the SDE. It is given by

n R 5

where

c(s,x) = b(s,x)b(s, )"

Here b(s, )" is the transpose of the vector b(s,z) = (bi(s, ), ..., bn(s,z)).
Using the generator A, the It6 formula may be expressed as

0
A (1, X (1)) = (8—{ £AF) (X (0) dt+ (Vo f -b) (1. X (1)) dW,,
where of o/
and o/ o/
Consider a solution f(t,z) to the partial differential equation (PDE)
of +Af =rf, where ris a constant
ot - (6.4)
(T, z) = ¢(z)

which satisfies the following additional assumption

/t E[(V.f - b)*(s, X (s))] ds < o.
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With this framework, the solution to the PDE (6.4) can be represented,
according to the Feynman-Kac formula, as

f(t,z) = e TVE[$(X(T)|X () = 2]- (6.5)

Example 6.2.1 The task is to solve the PDE

ot 2 0x? (6.6)

where b is a constant. The corresponding SDE is

dX(s) =bdWs, s € [t,T]
X(t)=z

with It6-solution X (T') = z+b(Wr—W;). According to the Feynman-Kac
formula (6.5), the solution to the PDE (6.6) is

£(t,) = B[L—oo(X(T))|X (1) = 2]

=P(X(T) <0|X(t)=z) =1 —@(ﬁ);

where ® is the standard Gaussian probability distribution function.

Remark 6.2.1 The transition probability distribution function
P(X(T) <y|X(t) =)
is obtained as the solution to the same PDE (6.6), with final value

f(T, .’13) = I(,oo,y](a:).

The above example shows not only how a solution to a PDE may be
computed via an SDE, but also that the transition probability for the solution
of the SDE may be computed as the solution of the PDE.
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Figure 6.1: The solution f(¢,z) for t € {0, i, %, %, 1}, z € [-10,10] and b = 4.



Chapter 7

Weak approximations

The expected value E[¢(X (T))|X (¢) = z] in the Feynman-Kac formula (6.5)
can be approximated by

BIO(X (1)) [X(0) = 2] ~ 7 3~ 6(Xaa (1)

Here {X; ) (T)}X, are M independent trajectories of the ezact solution,
evaluated at the final time 7', given that the value at time ¢ < 7T is x.

The exact solution is seldom available, and therefore has to be approxi-
mated. Let X denote this approximation. In order to compute the solution
of the PDE (6.4), two approximations have to be made:

El¢(X(T)) X (t) = 2] = E[¢(X(T))|X(t) = 2] = — Z ¢(Xit,0)(T))-

Thus X;(T) is approximated by a random variable X;(7). In order for the
approximation to be good, it is required that X;(T) and X;(T) are close in
the weak sense.

Let the set H contains “sufficiently many functions”, as specified by Mil-
stein [41]. Lett =tg < t; < ... <ty =T,t;11—t; = h be a uniform partition
of the interval [t, T].

The approximation X is said to be of weak order p if, for all f € H and
for all k € {0,..., N},

[BLA(X (1)) - B[/ (X (0))]| < 7.

Here C' = C(a, b, ) is a constant that may depend only on the functions
a and b and the initial value = for the PDE (6.4).
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According to Milstein, the first time a weak approximation of a stochastic
differential equation was used, was in his own article [40] from 1978.

The main idea with weak approximations, is to construct methods that do
not require the complicated modelling of complicated random variables, like
multiple It0 integrals or Stratonovich integrals. Instead, these are replaced
with simpler objects, that share some of their properties, like their first and
second moments. For example, instead of using a Wiener process increment,
i.e. a N(0,h) distributed random variable, one may use a discrete random
variable V' with the two-point distribution

1

P(V = V) =5 and P(V = —Vh) = %

The first two moments of this random variable
E[V]=0 and E[V?=h

coincide with those of the N (0, h) distribution.

The following theorem, that can be found e.g. in Milstein’s book [41],
gives the fundamental connection between a one-step approximation and an
approximation on a finite time interval. The theorem makes precise the foll-
owing rule of thumb: “If the mean-square error in one time step, from ¢
to tg11, is of order hP?, then the mean-square error over the whole interval
[tk ti+1], is of order hP2~'/2 provided that py + 3 < p;”, with p; given in the
theorem:

Theorem 7.0.1 Consider the SDE (6.2). Let Xy, ,(t) be the exact Ité solu-
tion of (6.2) with X (to) = . Consider the one-step approzimation Yy, 5 (to +
h) of Xi, «(to + h) defined by

Yoz (to + h) = x + F(to, z, h, {W;(0) — W;(to) }_,),

for 8 € [to,to+h], and for some map F specific for the approximation method
used. Assume that, for everyt € [to,T — h| and every r € R",

| Xte(t +h) = YVia(t+h)|[1 < K/ (1 + [z|?)h
| Xee(t+h) = Yiz(t+ h)|]2 < K/(1+ |2]?)hP?
| X0t +h) — Yig(t+h)|ls < K/ (1 + |z[)hre=1/4

where

IN
=

= ot
IN
=
N
+
DN —

and
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1
1Z1l, = (E[Z7])?.
Then it holds that

\/]E[ max | Xy, x, (tr) — yto,Xg(tk)|2} < K{‘/(l +E[ | Xo[4] 712,

0<k<N

where ty1 —ty = h, ty =T and Xo = X (to) is a random initial value such
that E[ | Xo[*] < oc.

7.1 The probabilistic method and determin-
istic methods

A justified question to ask at this point, is whether the discussed probabilis-
tic method based on the Feynman-Kac representation (6.5) is worthwhile,
given the fact that there are many well developed deterministic methods for
solution of PDE:s.

The probabilistic representation along with the Monte Carlo method
might be worthwhile if the dimension of the PDE is so large, greater than
four for the finite element method, that the deterministic algorithms become
too computer intensive. The suitability of the representation also depends
on the coefficients a(s,z) and b(s,x) in the generator (6.3).

Concerning the computational cost, it is to be noted that the determin-
istic algorithms have a cost that grows exponentially with the dimension,
whereas the Monte Carlo method has a cost that grows only linearly with
the dimension of the PDE.

The Monte Carlo method is an attractive alternative, if the solution of
the PDE is sought at a few points only, and not over the entire range.

There is also a possibility of combining the Monte Carlo method with, for
example, the finite element method using domain decomposition techniques.
To present the idea, consider the solution of the PDE

of

S HAf=0

f(Ta 37) = ¢(3¢)
(t,x) € [0,1] x [0, 1]

The domain [0, 1] x [0, 1] is divided into, for example, four sub-domains. At
the boundaries of these domains, the solution is approximated by the Monte
Carlo method. Then the deterministic method is used on each domain to
compute the solution to the PDE, with the Dirichlet boundary conditions
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supplied by the Monte Carlo method.
For further information, consult Talay’s article in the proceedings [57].

7.1.1 The waveform relaxation method

If the dimension of the problem is very large, say 1000 or more, then the
waveform relaxation method for SDE might be considered, since this method
is specifically designed to handle very large systems of SDE:s. It is however a
requirement that the components of the solution vector are weakly interacting
in order for the waveform relaxation method to work. There might also be
some problems with convergence, but there have been designed methods that
accelerate the convergence for specific cases.

7.2 Research on weak numerical methods

This chapter on weak numerical methods is considerably shorter than that on
strong numerical methods. The major reason for this is that the material on
weak numerical methods seems to be relatively sparse, compared to that on
strong methods. This has to do with the fact that many strong methods are
adaptations of methods from the well-researched area of numerical methods
for ordinary differential equations.



Chapter 8

Probability densities

8.1 The Fokker-Planck-Kolmogorov equation

In great generality, the transition probability densities
0
p(z,y,s,t) = a—yP(X(t) < y|X(s) = x)

of a solution X (¢) to the stochastic differential equation (6.2) satisfies a par-
tial differential equation. That PDE is called the Fokker-Planck-Kolmogorov
(FPK) equation, and is given by

ap(:C? y? S? t) _ Ap
ot
Here, A is the generator given by (6.3). To find the evolution of the transition
probabilities thus amounts to solve a PDE.
The Fokker-Planck-Kolmogorov equation governs the probability distri-
bution of the response of a dynamical system subject to random excitations.
The two main objectives when solving the FPK equation are the station-
ary solution and the non-stationary solution. See [56] on numerical methods.
The one-dimensional Fokker-Planck equation is a linear second order
parabolic partial differential equation:
0 0 0?
a—f = —DW(g, t)£ +D® (x,t)a—;;,
where DM and D® are respectively the drift coefficient and the diffusion
coefficient. In particular, by integration, the FPK equation determines both
stationary and transient moments of arbitrary orders.
Exact solutions to the FPK equation can be found under the following
circumstances [49]:

(z,y,s,t) =0.
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The drift and diffusion coefficients are linear, in which case both the tran-
sient and stationary probability distributions are Gaussian.

The stationary solution to the one dimensional FPK equation can be solved
by quadratures.

If separation of variables in multidimensional FPK is possible

In the case of a multi-dimensional FPK equation, as a rule, an exact so-
lution is impossible to find. This makes numerical approximations necessary.

The solution of FPK equation can be approximated, for example, in the
following ways:

By power series expansion.

By Edgeworth expansion.

Power series expansion Consider the SDE
AXi(t) = ai(X (1), ) dt+ ) by (X(t),t)dW,(t), i=1,...,n.  (8.1)
j=1

If the diffusion coefficient b(z,t) is constant, and the drift coefficient a(x,t)
can be represented as a power series, then the solution of the FPK equation
can be expressed as

logp(z1,...,%,,t) =

n 1 1 &
i=1

i,j=1 i k=1

Here the coefficients A(.)(t) are obtained by numerically solving a system of
ordinary differential equations.

Edgeworth expansion Consider the SDE (8.1). If the drift coefficient
a(x,t) is linear, or “weakly non-linear”, see [49], then the solution to the FPK
equation can be represented as a power series, involving the standard normal
distribution. There is a drawback with this method, namely the possibility
that the approximated probability distribution takes on negative values. See
Sobczyk and Trebicki [55] for more information on the use of power series
expansions, and Edgeworth expansions, to approximate solutions of SDE:s.

Regarding the Fokker-Planck equation for stochastic Hamiltonian sys-
tems, Soize gives a thorough discussion in his book [56].
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8.2 The Maximum-entropy method

This method works for large systems of SDE:s. An approximate analytical
solution is obtained. One of the drawbacks is the requirement to evaluate
several multiple integrals. This problem may be overcome by the use of fast
Fourier transforms, as described in [21].

8.2.1 Classical maximum entropy method

The method uses a finite set of moments {my}}_; to approximate an unknown
underlying probability distribution, f. The aim of the approximation is to
maximise the so called entropy, H(f), given by

- / f(x)log f(z)da

The problem at hand is thus to maximise a certain function, under some
imposed conditions. To find the maximum, if it exists, one augments the
entropy with so called Lagrange multipliers );. The augmented entropy func-
tion is given by

H(f, A, A —i—Z)\ mk—/xkf(x)dx).

The solution to the maximisation problem is of the form

fu(z) = Cexp ( Z/\ x ) (8.2)

where the Lagrange multipliers are determined by the constraints

/x"fM(ac)dac =my,

This method performs well (when compared with others), for SDE of dimen-
sion higher than three.
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8.2.2 Systems of stochastic differential equations

The classical maximum entropy method is applied to stochastic differential
equations by Trebicki and Sobczyk in [58]. They consider the following sys-
tem of stochastic differential equations

dXt = F(X)t dt + O'(Xt) th

8.3
X, = X, (8.3)

where /
Xt - (Xl,ta DRI Xn,t)

S R’n|m
The probability distributions, of the solution process X for (8.3) and
(8.4), cannot be expressed explicitly, with the exception for a few particular
cases. Thus, one has to resort to other means to study probabilities for X.

One way is to consider the moments of X.
Suppose that, for the solution X to (8.3) and (8.4), the moments

my (1) = Efhg (X)]

hi(X) = XFr(t) - .- XEn (1)

(8.4)

are sought. By application of the multidimensional It6 formula, the evolution
of the moments are governed by the following equation:

dmk
e — B (X, 1)
mk(to) = mko (8.5)

_ ZE(X’ 8hk ZZO"LI X t G]l X t) aagka(x])

Notice that (8.5) represents an infinite hierarchy of moments, since k =
1,2,.... Thus, the numerical solution of (8.5) requires the imposition of
closure. With some specified finite K, the problem then becomes

dm
T~ EGL (X, 1)
mi(to) = M, (8.6)
k=1,2,.... K

Let p(x,t) be the approximate probability density of the solution X(¢) of
the stochastic differential equation (8.3). In analogy with (8.2), p(x,t) takes
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the following form:

K

logp(x,t) =log C(t) — > A(t)Gk(x,1)

k=1

logC(t) = —=Xo(t) — 1

(8.7)

To solve (8.7), it remains to find the Lagrange multipliers {)\;(¢)}X,.

These can be determined by evaluating the moments in (8.6), under the
approximate probability density p(x,t).

8.2.3 Numerical solution

Consider a discretization of the system (8.6), using an Euler approximation,

myg (ti—f—l) = my (tz) + At Gk(X, ti)p(x, t,) dx.
RTL

Here the calculation of the n-dimensional integral [o, Gi(x,t;)p(x,t;)dx is
very computer intensive, as is discussed in the article [55] by Sobczyk and
Trebicki. In order to alleviate this problem, Hurtado and Barbat [21] have
suggested reformulating the integral, in terms of multidimensional Fourier
transforms.






Chapter 9

Moments

9.1 The cumulant-neglect-closure method

If the characteristic function of a distribution is known, then it is possible
to determine the moments of all orders. Conversely, if the moments of all
orders are known, with some additional technical constraints, then the char-
acteristic function can be obtained. In practice however, all the moments
are usually not accessible, but only a finite number of them. Then it be-
comes a question of using these finite set of moments to approximate the
characteristic function.

9.1.1 Statistical cumulants

Consider the following system of stochastic differential equations:

0X

= = m(X) + GX)W(2), (9.1)

where
(X1, Xo,...,X,) eR?

X =
W= (W, Ws,...,Wy) € R™

Gu G ... Gin

G- G:21 G:22 G:Qm .R* - Ry
Gnl Gn2 R Gnm

m = (my,mg,...,my,) :R* > R"

The vector Wiener process W has the following properties:
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E[W(t)] = 0
E[W(t,)W(t5)'] = 2D8(t — t»)
Dy 0 ... 0
0 Dy ... 0
= : : : € Rapn
0 0 ... Dy,
Wi (t)
W) =1
Win(t)

The aim is to obtain the moments of the solution process X to (9.1). To
that end, the function g(z) =[], z;* is formed, where s; € N.
The It6 formula is applied to g(X) in order to obtain an equation govern-

ing the evolution of the moments, a(sy,. .., s,) = E[lg(X(?))]:

do
E(Sl’ ey Sn)
= SRR 5 (50)] + 5 D S| H(0) 2o ().

Here HZJ = (2G]D)G,)Z]
For example, if the first moment of component X is sought, then we take
g(x) = z1, and the equation becomes:

= E[m(X(t))].

Notice that already this first order moment may depend on the solution X
to (9.1) in a complicated manner, and in particular, on moments of higher
order, depending on the form of the function m;.

From the above example, it seems that the problem of determining the
moments is a highly complex one. Especially, this is so for large dimensions
n, as is usually the case for dynamical systems occurring in engineering ap-
plications. It is also possible that financial applications may involve several
interacting processes X. For example, the stock prices in telecommunications
may be related to each other, thus forming a complicated stochastic dynam-
ical system. The point that is being made here is that high-dimensional
processes are important to describe real world phenomena, thus meriting a
study.
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With this we come to the subject of this section, namely the so called cu-
mulant neglect closure method, which is discussed by Bergman, Wojtkiewicz
and Johnson [2] and Wojtkiewicz, Spencer and Bergman [61]. This method
has been devised to reduce the complexity of the problem to determine the
moments of a stochastic dynamical system. Basically, it is a truncation of
the logarithm of the characteristic function ¢x, of the vector process X. The
truncation is made assuming that the so called response cumulants above a
certain threshold can be neglected, in comparison with response cumulants
below that threshold.

The characteristic function ¢x () for a one-dimensional random variable
can be represented by the following exponential map

ox(0) =exp (3 ma(0) )

o)

Here k,(X) are the so called cumulants of order n for the random variable
X, and are given by

. d"log ¢ x (6
7 K:n(X) - dOnX—( )‘9_0.

Cumulants become more useful in the context of vector-valued random
variables. Naturally, the corresponding formulae then become more involved.

9.1.2 Taylor cumulants

Expand the characteristic function ¢x(6) of a random variable X in a Taylor
series

$x(0) = et (9.2)

where
_ EX*]
Cr = X .

If the random variable X that is under consideration in (9.2) is the solu-
tion X; to the SDE

(9.3)

dX, = a(X,,t) dt + b(t) dW,, (9.4)

then the moments my,(t) = E[XF] of X = X, that feature in (9.3), can be
obtained from the following system of differential equations:
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dm1 (t) _ ]E[a(Xt, t)]
d”;i(t) = Ela(X;, 1) X,] + b2(t)
. (9.5)
dmy(t) w1y, K(E=1) 5
G = Ela(Xe X + = p (ma()

Note that if the drift-coefficient, a(X,t) in the equation (9.4) is a poly-
nomial of degree 2 or more, then the system (9.5) cannot be expected to be
solved explicitly, since the moment of order £ depends on moments of order
higher than £.

An approximation, ¥(0,t), to the characteristic function ¢(,t) in (9.2),
when the random variable X is the solution X = X; to the SDE (9.4), can
be obtained by setting the moments of order greater than some fixed number
ko equal to zero. This will reduce (9.5) to a finite system of equations, that
can be solved. However, a possible severe shortcoming of this procedure, is
that ¢ (6,t) need not be a characteristic function of a probability distribution.
In order to overcome this problem, the corresponding system of cumulants,
kr(t), given by

de,(t) Z~13rﬂ{L]E[exp(—th)a(Xt,t)] + %QbQ(t)} (9.6)

dt 007 \ 6(6, )

=0

see [36], is studied instead.

Note that the cumulants are not given explicitly by the system of equa-
tions (9.6), and that this system is an infinite hierarchy just as is the system
of moments (9.5). To obtain an approximation to ¢(#,t), the cumulants of
order larger than some fixed order kg are set equal to zero. However, due to
the implicit nature of the resulting equations, the solution is still not easy to
calculate. In addition, there is the problem that the equations are non-linear
when the drift coefficient is non-linear.

The above outlined method will work for SDE with linear or linearly
approximated drift. If the system (9.6) can be solved, the task of computing
the probability density, p(z), of the solution X;, by means of inverse Fourier
transform, still remains.
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The indicated problems suggests that an alternative approach to compute
the probability density p(z, t) for the solution X; to the SDE (9.4) is needed.
Such an approach has been suggested by DiPaola, Ricciardi and Vasta [36].
They start by Taylor expanding the probability density p(z,t)

9p(z,t)

= wi(t
= Z He(®) where pg(t) = ek
k=0 * z=0

The functions puy are related to the characteristic function ¢(6,t) by

1

e (t) = o

/ (i0)£ (0, 1) db).

Due to their resemblance to moments, these functions are called Taylor mo-
ments.
An alternative representation of p(x,t) is

o0

logp(z,t) = Z ()2

k=0

This representation assures the positivity of any truncation

p(z,t) = p(x,t) = exp (; )\k(t)xk>.

Here
oF logp(x,t)

Ae(t) = ozk

are called the Taylor cumulants.
The SDE (9.4) generates the following system of differential equations for
the Taylor cumulants:

dA(t) _
dt

( ) + ﬁ /\k+2 + Z f)/kz )\k—|—1 + ﬂkz( )Ak+1(t))‘k7i—|—1(t)

(9.7)
where
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Prilt) = <Z>5(t)
Yei(t) = — (k> 9 'a(z,t)

) Ozk—t

Again an infinite hierarchy of equations feature, so that a closure scheme has
to be used. As before, Taylor cumulants of order greater than some fixed kg
are set to zero, and the resulting finite system of equations is solved.

The following things are worth noting for the above described method:

z=0

Taylor cumulants appear explicitly in the equations (9.7) instead of implic-
itly as the cumulants in equations (9.6).

The positivity of the approximate probability distribution is assured.

Taylor cumulants translate directly to the approximate probability distri-
bution. (No inverse Fourier transformation is required.)

The method using Taylor cumulants works also for a non-linear drift a(z, t).

The method described also works well for the multidimensional SDE

The infinite hierarchy of differential equations becomes very complex in this
situation, and is therefore not presented here. However, the basic ideas, from
the one dimensional setting, remain the same.

In their article [35], Lutes and Papadimitriou present an alternative way
of formulating the system of differential equations, governing the evolution
of the cumulants of a stochastic dynamical system. Their proposed method
applies to both linear and non-linear systems.
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