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FAST NUMERICAL METHOD FOR THE BOLTZMANN
EQUATION ON NON-UNIFORM GRIDS

ALEXEI HEINTZ, PIOTR KOWALCZYK, AND RICARDS GRZIBOVSKIS

ABSTRACT. We introduce a new fast numerical method for computing
discontinuous solutions to the Boltzmann equation and illustrate it by
numerical examples. A combination of adaptive grids for approximation
of the distribution function and an approximate fast Fourier transform on
non-uniform grids for computing smooth terms in the Boltzmann collision
integral is used.

1. INTRODUCTION

This paper is devoted to a new deterministic scheme for numerical solution
of the classical Boltzmann equation [10] for a dilute gas of particles.
of

where f := f(t,x,v) and f : R, x Q x R® — R,. The collision operator Q
is defined as follows

(12 QUNW = [ | [ Blv=wlo U = f)f(w)] dodw.

where v, w are the velocities of the particles before the collision and v', w’
— the velocities of the particles after collision — are given by

1 1
v'::§(v+w+|v—w|w), WIZ=§(V+W—|V—W|LU).
Moreover 6 is the angle between the relative velocity u = v — w before and
u’ = v/ — w' after collision.

The function B(|v — w|,0) is of the form

|(u, w)|
[l

B(|u|’0) = By (\u\, ) , U € R3,w € 5(2), 5(2) = {q € R3 : |q| — 1}_

It contains the information about the binary interactions of particles and
reflects the physical properties of the model.

The condition B(|ul,-) € L'(S®), u € R® is usually assumed to obtain
separately convergent integrals for the positive “gain” and the negative “loss”
parts in (1.2). For example if the particle interactions are modeled by inverse

Key words and phrases. Boltzmann equation, non-uniform grids.
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2 A. HEINTZ, P. KOWALCZYK, AND R. GRZIBOVSKIS

power forces with angular cut-off that means that grazing collisions do not
take place, then

(1.3) By(r,z) = r7b(x),
where v € (—3,1], and b € L([0, 1]). In the case of “hard sphere” molecules,
By(r,z) = rx.

In the case of popular Variable Hard Sphere model (VHS) the collision
kernel B has the following form

(1.4) B(lv —w|,0) = Cy|lv — w|*

with —3 < a < 1. For a = 0 with Cy = ﬁ we get the so called Maxwellian
gas and for « = 1 with C; =1 we get the gas of hard spheres.

To solve the non-stationary Boltzmann equation numerically a splitting
method in time is commonly applied.

At each time step in one solves first the homogeneous Boltzmann equation

(1.5) g—{ =Q(f, f) forallx e
and then the transport equation
(1.6) g—{+v-vwf:0 for all v € R®.

The main problem for the efficient numerical computations of the Boltz-
mann equation is a proper approximation of the collision operator Q(f, f).
We concentrate here mainly on the approximation of the collision operator
in velocity space and hence demonstrate the method on examples with space
homogeneous solutions. The application of the same approach for space de-
pendent problems will be demonstrated in a subsequent paper.

In the next sections we will omit the dependence of f on the ¢ and x
variables for brevity where it is not confusing.

The numerical solution of the Boltzmann equation is difficult due to the
nonlinearity of the collision integral, the large number of independent vari-
ables and the complicated integration over a five-dimensional cone in the
six-dimensional space of pre and post collisional velocities. This analytical
structure of Q(f, f) implies that a straightforward computation of the colli-
sion integral by a standard quadrature has the computational cost N3 for N
points representing state of a gas in the velocity space. We point out that
this is the cost of computations just in one point x in the physical space for
a space non-homogeneous problem.

Particular symmetries of the collision operator imply conservation laws
that in turn imply important connections between the Boltzmann equation
and equations of classical gas dynamics.

Consequently the major part of practical applied computations concerning
the Boltzmann equation is based on different variants of the probabilistic
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Monte Carlo methods. Monte Carlo methods are advantageous for many high
dimensional problems in physics, giving realistic and meaningful results with
low computational cost proportional to the number N of particles (points)
representing the system. On the other hand getting high precision results
by Monte Carlo methods requires a higher computational time and for the
number Ny, of stochastic trajectories they demonstrate low convergence order
/Ny We refer to the direct simulation method (DSMC) by Bird [5] and to
variants of Monte Carlo method for the Boltzmann equation by Nanbu [17]
and Babovsky [3].

Development of deterministic methods for the Boltzmann equation is usu-
ally motivated, see [22], [18] by the desire of higher precision results, and
by the existence of situations (low Knudsen numbers, slow convection flows)
when probabilistic methods are not effective enough. Also not at the last
place in the motivation of studies in this direction one finds the mathemati-
cal challenge of the problem itself.

We begin with a short discussion of the earlier results in the area of de-
terministic methods for the Boltzmann equation. Historically so called dis-
crete velocity models (DVM) with uniform cubic grid of velocities were the
first example of a numerical approach designed specially for the Boltzmann
equation, starting from D. Goldstein, B. Sturtevant and J.E. Broadwell [12].
Later several different ideas led to other types of models all satisfying exact
conservation laws in discrete form [23]. [9], [20].

Also rigorous consistency and convergence results for such models were
proved [19], [16], [20].

Let n denote the number of points along one coordinate direction in the
uniform velocity grid. All above mentioned DVM methods have high n’
computational cost and have also a disadvantage that the integration over
the sphere S? of the possible outputs of collisions in Q(f, f) is approximated
with low precision of order 1/4/n [19]. In the case of the alternative so called
Carleman formulation for Q(f, f) this integration is substituted by the inte-
gration over some arbitrarily oriented planes with the same approximation
problems [20]. It happens because only a small number of points from the
uniform cubic grid meets spheres and arbitrarily oriented planes and these
points are distributed not uniformly.

The Kyoto group in kinetic theory developed a family of finite difference
methods for the Boltzmann equation, linearized Boltzmann equation, and the
BGK equation and investigated numerically many mostly stationary prob-
lems [18],[14]. These computations demonstrate precise results but they are
very time and memory consuming.

For computation of macroscopic flows with low Knudsen numbers so called
lattice Boltzmann computational models with small (6 to 30 velocity points)
are successfully applied, see [24] for references in this area. These simple
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models have structure that reminds the Boltzmann equation but without
the goal to approximate solutions to the last one. Also several larger sim-
plified models of the collision operator Q(f, f) were suggested recently, see
for example [1] that do not approximate of the Boltzmann equation precisely
but demonstrate somehow reasonable behavior of macro-parameters.

The simpler structure of the Boltzmann collision operator in the case of
Maxwell pseudo molecules, by applying Fourier transform lets to reduce the
collision operator to an expression with smaller dimension of the integra-
tion [7]. Using this reduction and the Fast Fourier Transform (FFT) led
authors in [11] and [6] to a fast deterministic method restricted to Maxwell
pseudo molecules and having low computational cost N* but still low accu-
racy 1/v/N. Here N is the number of Fourier modes along one coordinate
direction. Another method designed for the model of hard spheres and also
using FFT was suggested in [8] and has computational cost N®log N and a
higher accuracy of order 1/N2.

A spectral method based on the restriction of the Boltzmann equation to
a finite domain and on the representation of the solution by Fourier series
was suggested in [21], and developed further in [22]. This method has an
advantage of high spectral accuracy for smooth solutions to the Boltzmann
equation and complexity N®.

Any effort to develop a deterministic scheme for boundary value problems
for the Boltzmann equation, includes as a necessary step computation of
the collision operator Q(f, f) for distribution functions typical for flows with
boundaries. A typical distribution function for a gas close to the boundary
has a discontinuity along a plane.

One observes easily that in a collisionless flow around a body the distribu-
tion function has a discontinuity in velocity space along a cone like surface
that is built of the contour of the body seen from the point of observation.
Computations done by the Kyoto group show that typical distribution func-
tions for flows around a body have actually a similar discontinuity for a wide
spectrum of Knudsen numbers [25].

It means that solutions to a boundary value problem are typically not
smooth and Fourier based spectral approximations for them loose accuracy.
The Gibbs phenomenon makes an alternative way of approximation necessary
for such solutions.

To overcome this difficulty is the main goal of the present paper. One of
the main ideas of the project comes from the classical result that the gain
term QT (f, f) in the collision operator has certain smoothing properties [15],
[26] and therefore is smooth even for discontinuous f. One can illustrate this
fact by the graph of @ (f, f) in the x-z plane for a discontinuous function,
see Figure 1. Collision frequency ¢~ (f) is also a smooth function because it
is a convolution of f with a regular function.



FAST METHOD FOR BOLTZMANN EQ. ON NON-UNIFORM GRIDS 5

‘asymm_Max_funco’

120
100

) 0.4

-0.4 e 'asymm_Max_gainl’

120
100

FIGURE 1. A distribution function f with discontinuity and
the corresponding gain term Q™ (f, f)

We introduce here an approximation scheme that can effectively handle
solutions to the Boltzmann equations discontinuous in velocity space. It
is based on a new method for approximation of the Boltzmann collision
operator and its solutions using non-uniform grids in velocity space. The
following techniques make input to its computational efficiency:

i) Fourier based spectral representation of the gain part of collision opera-
tor as a bilinear pseudodifferential operator excluding effectively integration
over spheres from numerical computations;

ii) effective resolution of discontinuities of solutions using an adaptive grid,;

iii) high precision spectral representation for smooth terms in the Boltz-
mann equation;

iv) application of an approximate Fast Fourier transform on non-uniform
grid for fast computation of the gain term and collision frequency on the
adaptive grid;

v) an approximate algebraic decomposition of the symbol of the bilinear
pseudodifferential expression for the gain term.

Techniques i) and iii) were used before, ii), iv), v) are new for the Boltz-
mann equation. The idea to combine a spectral representation for smooth
terms in the Boltzmann equation with approximation on and adaptive grid
for the discontinuous distribution function f is new. The combination of
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adaptive grids with non-uniform Fast Fourier transform was previously used
for approximation of geometric flows in [13].

2. TRANSFORMATION OF THE COLLISION INTEGRAL

The collision operator (1.2) for potentials with angular cut off [10] can be
decomposed into the gain and the loss parts

(21) Q(faf)(v):Q+(faf)(v)_Q_(faf)(V)a

where
(2.2)

QN = [ [ Bl 0= 0 = ) S = 50+ fule) dw
and

(2.3) Q(f, N)v)=f(v)a (/)(v)

with ¢~ denoting the collision frequency term

¢ (@) = [ fv=w [ B(ul.0) dwdu
RS 52
We have changed the variables u = v — w in the collision integral in (1.2) to
get the above formulations.
We will use the following form of the Fourier transform

(2.4) Fym)[f] = frn = | F(v)e2mm gy
R3

and inverse Fourier transform

(25) Fnzl(v)[f] = f(V) — fme*2m(m,v) dm.
R3

Now we can reformulate the gain and collision frequency terms using the
Fourier transform:

(2.6) Q* (£, W) = F ' WF (%) | ifuBLm)|
(2.7) (V) = F}(v) [ fnB(m,m)|
where

(2.8) B(l,m) = / / B(lul, 0)e2m (5" 2mlul(™ ) gy
R3 J§2

The gain term is a kind of bilinear pseudodifferential operator with symbol
B(l,m). The kernel B(1l,m) is a distribution, hence for using it in practical
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computations we have to regularize it. We will choose in a proper way the
constant R > 0 and write the regularized kernel as

(2.9) BR(I,m):/ /B(|u|,0)62”’(#’“)62“”“(%’“)dwdu.
B(O,R) J 52

We denote by Q% (f, f) and g5 (f) the gain and collision frequency terms with
regularized kernel Bg.
The kernel By can be computed analytically for some special cases of VHS
model (see [22]). In particular, for hard sphere gas it is given by
BR(I, m) =
8p2 [T Rgsin(mRq) + cos(mRq)] — ¢* [w Rpsin(m Rp) + cos(m Rp)] — 4€n
m2np*q? ’
whereas for Maxwellian gas we have the following formula

psin(mRq) — ¢sin(7Rp)
m2Enpq
where p=¢6+4+n,g=&—nand =1+ m|, n=|1—m)|.

Y

Br(1,m) =2

3. DISCRETIZATION OF THE COLLISION INTEGRAL

3.1. Discretization of velocity space. We will illustrate our approach to
the numerical solution of the Boltzmann equation by space homogeneous
problems with discontinuous initial data. A standard semi-implicit finite
difference scheme in time will be applied pointwise with respect to velocity
variable.

The distribution function f(¢,v) is usually negligible small outside some
ball, so for the numerical treatment of the Boltzmann equation we assume
that

supp f C Q, :=[-L, L],

where we take L = % for the technical reason which will be given later.

One of the main problems with efficient deterministic computation of the
Boltzmann equation is a fixed usually uniform discretization of the velocity
domain. Hence a huge number of discretization points is required to get the
desired accuracy.

We overcome this problem by introducing a nonuniform velocity grid G, C
Q, with N,, denoting the number of points in G,. The grid G, C €2, of discrete
points will be chosen in such a way that the jump of the function values
between neighboring points is lower than some prescribed threshold. Thus
the grid will have much more discrete points in regions where the function
changes rapidly than in the regions where the function is almost constant. In
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order to treat the discontinuous functions we impose an additional condition
that the neighboring points should not be closer than some given number.

The numerical method that we introduce in this paper gives a possibility
after some preprocessing to compute approximate values of the gain term
Q*(f,f) and the collision frequency ¢~ (f) at arbitrary points in velocity
space for a very low cost. It makes that Q3 (f, f) and g5 (f) can be computed
effectively on a non-uniform grid different from one where the function f is
defined.

This property lets to a natural idea to built at each time step a nonuni-
form grid in €2, that is changed adaptively to follow the the changes of the
distribution function f (see Section 4).

At each time step we will first compute the values of the solution at vertexes
of cells that build some initial coarse grid. Then using some reasonable
criteria we will decide which cells in this coarse grid must be divided into
smaller ones. The simplest criteria is a threshold for the variation of the
solution within the cell.

After dividing chosen cells we compute values of the solution in new ver-
texes of the new cells and then continue the subdivision in the same way.
Thus we generate much more grid points in parts of {2, where the function f
changes rapidly than in those where the function is almost constant. In order
to treat discontinuous functions we impose an additional condition that the
neighboring points should not be closer than some given number.

During this process of subdivision we create an adaptive grid in parallel
with computation of the values of the solution at each time step. Details of
this adaptive procedure like distribution of grid points and the shape of the
cells can be managed in various ways. They are in our method completely
independent from the main challenge that is the effective computation of the
gain term QL (f, f) on an arbitrary non-uniform grid.

Particular adaptive grids that we use in examples at the end of the paper
are grids consisting of an hierarchy of cubes, subdivided into eight smaller
ones in a binary way in regions with high variation of f.

3.2. Discretization of Fourier transform. Now we focus on the numer-
ical approximation of the Fourier transform integrals (2.4) and (2.5) for f
defined on a non-regular grid.

We have restricted the function f to a bounded domain ,. See [22] for
discussion of the validity of such a restriction. For the sake of simplicity we
will describe here the evaluation of the integral

fm — f(V)€2m(v’m) dV,
Qy
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for f approximated by a function f piecewise constant on cells defined by
the discretization of the velocity space. The approach we use below does not
depend on this issue.

Using an approximation f for f we get the following discrete in velocity
variable approximation for Fourier transform of f (we keep the same notation
for the Fourier transform and its discretization)

fm — Z fK/ eZm(v,m) dv = Z Cm.fK Z eQm(vK,m)’
K K K VK

where K denotes a cubic cell of the discretization of €,, fx is a constant
approximating f on K and C,, is a constant depending only on m. The
above formulation has a disadvantage that some points are counted multiple
times depending on how many cells have the given point in common. To
avoid this multiple counting we build the unique-node grid of velocity points
to get the following formulation

(31) fm — Cm Z .f] 627rz(vj',rn)’
J

where f; is a value of function f in a point v;. Another higher order approx-
imation for f on cells using values f; in vertexes of the cells would lead to a
similar formula.

The standard Fast Fourier Transform (FFT) algorithm commonly used to
compute numerically trigonometric sums cannot be used here for sums like
one in (3.1), since the points v; in the velocity space €2, are not equidistant.
To manage this problem we use the Unequally Spaced Fast Fourier Trans-
form (USFFT) algorithm developed by G. Beylkin [4]. This procedure is
convenient to formulate if we scale the problem so that points v; lay within
the cube —%, %]3 Hence we assume later that the problem is scaled so that
the support of the function f lies in such a cube.

Below we give for completeness of the presentation an outline of the algo-
rithm. Values of Fourier transform f,, by formula (3.1) will be computed on
a uniform grid in R? in Fourier domain: {m = (my, mo, m3) : my, my, mz =
—M,...,M — 1} for M = 272 with n < 0. We will use for brevity the
shortened notation m = —M, ..., M — 1 for multi-indices denoting points of
such grids. Hence we need to compute the sum (3.1) form = —M, ..., M —1.

Let N =4M. The first step is computing the coefficients

gt = FiBE(0;) B (052) B (v3), k=0,...,N—1,
7

where v; = (vj,1,0;2,v;3) and B8 (z) = 275 @) (2 "z —r) with B®) being the
central B-spline of order p. The computational cost of this step is O(p*N,).
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Then we evaluate a trigonometric sum
N-1
F=) g™ ®V/N 1=-N/2,...,N/2—1
k=0

using standard FFT algorithm with the cost O(N?log N).
The last step is a scaling of Fourier transform F; according to the formula

fon = —5 L E, m=-M,. . . M-1.
N3y/a® (m,/N)a® (my/N)a® (mz/N)

This step requires only O(N3) multiplications, hence the total cost of the
USFFT algorithm can be estimated as O(p*N,)+O(N?3log N). The precision
of these computations depends on the order p of the the central B-splines
$®) and on the oversampling that is relation between 2 in this case.

A similar procedure is used to calculate the inverse Fourier transform (2.5)
which, discretized in Fourier domain, is given by

M-1
(3.2) f¥)= ) eV veq,
m=—M

Namely, we start with extending the Fourier coefficients

G = { (J;’”M fth_er]v‘isi ksM-1, y_ —~N/2,...,N/2—1.
Then we scale gj according to the formula
gk = $,
bky iy Ok

where i)kj = Z;Tipgl B®)(1)e?mki/N - Next we apply the FFT algorithm to
compute the sum

N/2—1

fi= Y e MON D 1= —N/2,.. N/2-1.

k=—N/2

Finally, we evaluate f at any point v € {2, using the formula
N/2-1
=3 FB9 (on — 1) B0 (v — L) (s — 1),

The cost of the first two steps of the algorithm is O(N3log N). The cost of
the last step depends on the number of required computations of f in the

velocity domain and for N, points it is O(p®N,). Hence the total cost of
calculation of the inverse Fourier transform is the same as before.
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3.3. Decomposition of the gain term Q7(f, f). Discretization of the
collision operator is splitted into two parts according to (2.1). We start with
the gain term QT (f, f) (2.2), which is discretized as follows

M-1
QT(f, fllv) = Z FifnB(1, m)e2m+my)

Ilm=—M

To reduce the computational cost of this formulation we want to decouple
dependence on variables 1 and m in the kernel B(l,m). This makes the
bilinear expression easy to calculate.

It is easy to check that the kernel B(l,m) is a symmetric matrix. It is a
function of [ —mj|, |1+ m| and (1—m)(14+ m) (and in the case of VHS model
of |l — m| and |l + m| only) [22]. Hence we use the spectral decomposition
to get

(33) B(lm)=>" d,U,1)U(m),

where s = 8 M3 is the number of eigenvalues and U, is the eigenvector corre-
sponding to the eigenvalue d,. Obviously we can take in (3.3) only significant
eigenvalues (with some prescribed threshold) to get a reasonable approxima-
tion of the kernel. A

Now let s denote the number of significant eigenvalues of B(1, m), which
is typically % to i part of the total number. Hence we get the following
approximation to the gain term

2

s M-1
(3.4) QT (f, Nv) = Z d, Z fU, (m) e 2m(m)
p=1 m=—M

In our algorithm we need to compute the sum (3.4) in many arbitrary points
v in the velocity domain 2, so that finally they will build an adaptive grid
that suites well for the approximation of the solution f at the next time
step. A straightforward calculation of the sum of squares in (3.4) would be
too much time and memory consuming. To do it efficiently we compute first
the sums .M ~" £ U,(m)e 2™(™V) on a regular grid in Q, using standard
FFT algorithm and then compute (3.4) on the same regular grid. After
that we compute the FFT of (3.4) back into the Fourier domain. Then the
computation of Q@ (f, f)(v) on an adaptive grid is done effectively by the
USFFT algorithm described before.

The discretization of the loss term Q~(f, f) (2.3) consists of computation
of the discrete collision frequency term (2.7)

M-1
(V)= Y fuBlm,m)e Y,
m=—M
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which is a convolution operator and a pointwise multiplication of ¢~ (f)(v) by
f(v). We compute ¢~ (f)(v) again using USFFT algorithm with O(p*N,,) +
O(ocN?1log N) operations.

The total computational cost of the numerical approximation of the colli-
sion operator is O(p*N, ) +O(cN®log N), where ¢ is a small number depend-
ing on the required accuracy in the approximation of the kernel B (L, m).

We point out that the computational cost consists of two parts. The first
one depends on the approximation of the discontinuous solution and increases
linearly with the number N, of points in the adaptive velocity grid. Another
part depends on the approximation of the smooth terms in the equation.
Here N is the number of Fourier modes along one coordinate direction nec-
essary for approximating smooth terms in the Boltzmann equation that is
moderate, It implies that the suggested deterministic method for comput-
ing the Boltzmann collision operator seems to be considerably more effective
than previous ones.

4. TIME DISCRETIZATION

The homogeneous Boltzmann equation is solved numerically using the

standard semi-implicit Euler scheme

fn—|—1 __ fn N 1

L =@ty - ey,
where f" = f(t,) denotes the solution f at time ¢,. Solving this equation
for f** we get
fn+1 — fn + AtQ+(fn:fn)

1+ Atqg (f")

A higher order finite difference scheme can be also easily adapted.

(4.1)

4.1. Conservation procedure. Since the Boltzmann equation is based on
a balance principle and since the hydrodynamic equations for the macro-
scopic quantities have the form of the conservation laws, one may expect
that the proper numerical scheme should in some sense reflect these prop-
erties. However the proposed numerical scheme, as a spectral method do
not representing higher moments of solutions exactly, conserves only mass —
momentum and energy are not conserved.

A correction technique which enforces the conservativeness was proposed
by Aristov and Tcheremisin (see [2]). The numerical solution f™*! given by
(4.1) is corrected by adding a term

4
Y,
i=0
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where ¥g(v) = 1, ¢;(v) = v; for i = 1,2,3, and ¢4(v) = |v|. The numbers
«; are determined by requiring that the (discretized) conservation laws

POROY a7 (1+chz v)) = 3 ) (v)

v; €Gy V;EGy

are satisfied for [ =0,...,4.
Hence we get the following formula for the solution

n [T+ ALQY(f", f7)
(4.2) frit= 1+Atq( (1+Z ).

4.2. Adaptive grid. At each time step a new grid (based on existing one)
is built for the solution f™*! according to the formula (4.2).

We build this grid using the values of f™ on the existing grid. In case the
grid should be finer (we need more nodes in the new grid) we interpolate the
values of f™ on the neighboring nodes. We use for this purpose a simple tri-
linear interpolation i.e. the interpolating function is linear in each direction.
The values of Q1 (f", f*) and ¢~ (f™) are computed straightforwardly at the
desired points using the inverse USFFT algorithm.

5. NUMERICAL EXAMPLES

We illustrate our new method on several examples with discontinuous ini-
tial data. Having in mind future applications of our approach to boundary
value problems we chosen data with discontinuities typical for flows around
bodies. Despite the simplicity of these examples they reflect certain compu-
tational problems one is faced with solving boundary value problems.

If we think about the flow around a body then simple physical reasons
based on the collisionless picture of gas dynamics imply that the distribu-
tion function f(t,z,v) at a space point = should include two type of inputs.
These are the input from the particles coming from the body and having
corresponding temperature and zero mean velocity. Another one is the input
from the particles coming from infinity and having large mean velocity and
another temperature. Depending on the position of the point x with respect
the body and depending on the shape of the body one observes different cone
like surfaces of discontinuity in the distribution function.

We present here numerical results for maxwell molecules. On the other
hand our method is independent of this particular model.

Example 1.

The first example is the evolution starting from the initial distribution
function fy(v) that is a maxwell distribution function with temperature
0.0115 and velocity 0 in the half space x < 0 and is another maxwell distri-
bution with temperature 0.0115 and velocity —0.1 in the half space z < 0
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. Therefore f; is discontinuous on the y — z plane. This function imitates
the distribution of the gas close to the surface of a body with the similar
temperature.

Example 2. The second example imitates the distribution function in the
gas flow around a sphere at a point = at some finite distance from the sphere.
We chosen the initial distribution fy(v) similar to one that is observed in such
a flow if collisions between molecules are absent. Namely the distribution
function is initially equal to a maxwell distribution function with temperature
0.0115 and velocity 0 for points within a cone with center at the origin. This
part of the distribution function imitates particles reflected from the body.
Outside of this cone the initial distribution function is taken equal to another
maxwell distribution with temperature 0.0065 and velocity —0.1. This part
of the distribution functions imitates the flow coming from infinity. Therefore
in this case the initial distribution has a discontinuity at the surface of a cone.
We have chosen a cone having the axis laying in x-z plane with angle 135°
with respect to x- axis. The cosine of the angle between the cone and its axis
is 0.85.

Example 3.

The third example is given to illustrate the flexibility of the method to
solutions with large difference of gradients. The initial data is similar to
one in the first example but maxwell distributions in two half spaces have
different temperatures 0.0115 and 0.065 and there are no particles within a
gap in velocities with —0.1 < v, < 0.

For each of these examples we present a sequence of graphs for values of
the distribution function f(¢;,v) for several time points ¢; = 0.02 x 4. in
x-z plane and also the corresponding crossections of the three dimensional
adaptive grid with x-z plane.

One can see in all these numerical results that the initial discontinuity
in the distribution function decreases but preserves its position in complete
accordance with known properties of the Boltzmann equation.
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Ficure 3. Example 1, grid steps 0 and 5
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FiGurE 5. Example 1, grid steps 40 and 80
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Ficure 7. Example 2, grid steps 0 and 10
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Ficure 9. Example 2, grid steps 20 and 40
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Ficure 10. Example 3, solution steps 0 and 5
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