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Abstract

All sports have components of randomness that cause the “best” individual or
team not to win every game. According to many spectators this uncertainty is part
of the charm when following a competition or a match. Have different sports more or
less of this unpredictability? We suggest here a general measure, a tournament sta-
bility index, which could measure this randomness factor for different tournaments,
and different sports. As an illustration we use exemplify this measure for basketball,
squash, and soccer. Results will also be given on tournaments in (American) foot-
ball, ice-hockey, and handball. Furthermore, we will state a couple of combinatorial
optimization questions that turned up on the way.

1 Introduction
We have probably all heard sport commentators saying something like: “The ball is round
and can go either way. That’s why football is special.” You can here change the word
football to almost any other ball sport. Even to ice–hockey, if you allow yourself to a
rather liberal view of the definition of a ball.

How to quantify this unpredictability? The idea we will use is very simple: How often
will a “better” team lose against a “weaker” opponent in a tournament?

2 Tournament stability index
Suppose that there is a ranking list1 ρ of a group of n teams or individuals that play a
tournament. Let a and b be two teams (or individuals) that play each other in game i in

1I.e. ρ is a bijection from the set of n teams to {1,2,. . . ,n}.
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the tournament. Assume that a is ranked higher than b, i.e. ρ(a) > ρ(b). We put a value,
vi, on this game i according to the following scheme:

vi =





1 if a wins
−1 if b wins

0 if there is a draw.
(1)

This evaluation is used in the so called JWB2 ranking system; see [8] for example.
We get the tournament index if we sum up all matches according to the scheme (1)

above and divide the total by the number of matches played. That is, if a total of k matches
in the tournament is played, the tournament index, T , is defined as

T (ρ) =

∑k
i=1 vi

k
. (2)

We have immediately that −1 ≤ T (ρ) ≤ 1 and that T (ρ) is close to 1 if the ranking
ρ is ”correct” and there is not much randomness in the game. On the other hand, if there
is much randomness, T (ρ) will be close to zero. If on the other hand T (ρ) is close to −1,
then n− ρ + 1 would be a good ranking, where n is the number of teams or players.

3 After–ranking
The index depends heavily on the ranking we choose, see for example the last paragraph
in Section 5 . To get around that problem, we will use an after–ranking or quite simply,
a result–list. Remember that we are interested in the stability of an already completed
tournament, not to predict any future result, which is what rankings are usually supposed
to do.

We will pick an after–ranking based on the number of games won, and if that number
is equal for two or more teams (or individuals), the internal meetings will decide which
team is ranked higher. If ρr is this result ranking, we denote T (ρr) by Tr.

Using this after–ranking, we can expect a high tournament index; but perhaps a little
surprisingly, we cannot always expect to get the highest possible index result by using
this result–list ranking. That is, in some cases, there is an optimal ranking ρo such that
To := T (ρo) > Tr. We will come back to this peculiarity in Appendix A below, but for
now, let us concentrate on Tr.

4 Normalized tournament index
A problem with using the tournament’s result–list as a ranking for studying the stability
of the same tournament is that the index will be biased. For example, even if all games
were decided by coin flipping, we would of course get a clearly positive tournament index.

2Just Win Baby
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Suppose n teams meet every other team m times in a tournament, where all games
were settled by coin-tossing. Let M(n, m) denote the expected value of the index Tr of
such a random tournament. In Table 1 we give approximate values of M(n, m) using a
Monte Carlo method.

To make up for the internal bias we introduce by choosing an after–ranking, we define a
normalized result tournament index, T̂r, by a translation and rescaling of Tr in the following
way.

T̂r =
Tr − E(Tr)

1− E(Tr)
,

where Tr is calculated as in (2) for n teams playing each other m times, giving a total of
k = n(n − 1)m/2 games played and using the result–ranking ρr. We note that T̂r ≤ 1,
and that the expected value of T̂r would be zero, if the outcome of all games was decided
randomly.

We can use the index T̂r as a measure of the stability of a tournament, which could be
compared to other tournaments of different sizes and for different sports. Let us now pick
a few real world examples as an illustration.

5 NBA 1995–1996
Let us start with basketball and the NBA season 1995–1996. 29 teams played 82 games
each except the play-off teams who played up to 103 games in total (Seattle Super Sonics).
Wins and losses are conveniently presented in a matrix [5]. All teams met each other either
two or four times before the play-off. In total there were 1189 games played. Using this
data, we find T = 0.41. In order to compute the normalized index, we need the expected
value of an analogue tournament where all matches were decided randomly. In order to
get a first approximation of this, we consider a tournament where all 29 teams met exactly
three times each. We will discuss an alternative to this approximation in Section B where
we obtain M ≈ 0.15. Such a tournament would give a total of 1218 games which is a good
approximation of 1189. We can then use Table 1 where M(29, 3) ≈ 0.14 ≈ 0.15 and can
estimate

T̂r ≈ 0.41− 0.15

1− 0.15
≈ 0.29.

For comparison, let us see what happens if we pick ordinary rankings ahead of the
actual season. With the ranking ρ given in [10], based on the previous season, taking
into consideration the actual points difference in each game, we get a tournament index of
T (ρ) = 0.31. But if we instead choose a ranking method described in [9] which weights the
different games according to the strength of the opponent, we get instead T (ρ) = 0.073.
(We will come back to this approach in Section C.)
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6 Squash
We will now exemplify the tournament index for an individual sport, namely squash, and
more specifically the professional cups which are played around the world. The professional
squash association, PSA, produces rankings of the players, see [1]. We pick the twenty
highest ranked players from the list of 1st January 2002 and follow their results during the
year 2001.

We record each game whenever two players from the list meet making a result matrix
this way. In total we recorded 153 games this way. Using the result-ranking (which differs
from the PSA January 2002 ranking) we get T ≈ 0.71. Normalizing this, we find that
T̂ ≈ (0.71 − 0.33)/(1 − 0.33) ≈ 0.56, where we used the normalization factor 0.33 taken
from a Monte Carlo method of thinning of random matrixes described below in Section
B. Alternatively, we can use Table 1 to see that in a tournament with 20 players where
each one meets once, we get a total of 190 games and M(20, 1) = 0.34. In comparison to
T̂ = 0.56, we see that if we use the ranking from January 2001 and follow the 20 highest
ranked players during 2001, we get T = 0.26, and if we use the PSA ranking from January
2002 to follow the games during 2001, we get T = 0.50.

Comparing with the NBA example, where we got T̂ = 0.29, it seems that the profes-
sional top-squash during 2001 was more “stable” than the NBA season 1995–1996.

7 Premier League 2000–2001
Let us now turn to soccer, or more accurately football since we will take a look at the
English Premier League results during the season 2000–2001. We collect our data from
[4]. Here, there were 20 teams playing each other 2 times each. That gives us a total
of 380 games. Using our result-ranking, we get T = 0.24, and from Table 1 we get
M(20, 2) = 0.207. Hence

T̂ ≈ 0.24− 0.207

1− 0.207
≈ 0.048.

This result seems to indicate that professional soccer is much more random than both
basketball and squash. At least for these three tournaments studied.

Let us look at another soccer tournament to see if we get a similar result. But before
we do so, let us give an alternative description of what T̂ = 0.049 means.

8 An alternative description of small tournament in-
dexes

One might wonder if a normalized tournament index of 0.048 indicates a situation close
to complete randomness? Let us express this in another way by letting X be the the
tournament index we get from an experiment where a we toss a coin to decide each game
in a tournament with 20 teams, meeting each other 2 times each. The expected value of X
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is defined M(20, 2). By Monte Carlo simulations we can estimate the standard deviation
of X.We can also, thanks to a Lilliefors’ test, approximate the distribution of X with a
normal distribution. Now we can compute P [X > 0.24] ≈ 0.16. That is, if we were to
repeat the coin tossing experiments, we would in 16% of the trials, get an index T higher
than what we got in the soccer example. If we did the same thing for the basketball season
above, we would get an analogue frequency less than 0.0001%.

9 More soccer
Let us compare the Premier League result with another European professional soccer tour-
nament, the German Bundesliga. We pick up the data from [2] and treat it in a similar way
as above. This will give us T = 0.24 and from the Table 1, we have M(18, 2) = 0.22, which
gives us a normalized tournament index T̂ ≈ 0.027. That is even less than its English
version! If we make coin tossing tournaments of the same size, we will in 31 % of the trials
get a higher index.

10 Discussion
Our few tournament results listed in Table 3, might indicate that for example squash and
basketball seem to be more stable sports than soccer, in the sense that the “better” player
or team more often wins, compared to soccer, at least on a professional level. However,
more tournament results need of course to be studied before one could make a more solid
statement on this.

But what if soccer is indeed more random in its nature. What could then be the causes?
One obvious reason is that rather few goals are scored so that many games end in a draw
which will decrease the index. But this is not the only reasons as we shall now see. Let us
again look at the Bundesliga season and disregard all drawn games as if they were never
played. This will give us a total of 237 games instead of 306. This will give a lower M , see
Section B, and a higher normalized index T̂ = 0.082, which is still rather low.

Another reason might be that the level of the top soccer players is extremely high and
even. There are very few natural talents in that sport that are not taken care of at an
early stage. Many children play with a soccer in some form all over the world, but not all
have ever seen a squash ball.

By measuring more basketball, squash, soccer, and other tournaments, one would ask
if there might be some universal numbers of the randomness for the different sports. How
do professional series differ from amateur tournaments? Maybe there is an interval where
the tournament index should lie to become an attractive public sport? Maybe this interval
differs from person to person? How often do we want “David to defeat Goliath”?
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m
n 1 2 3 4 5 6
2 1.000 0.501 0.498 0.372 0.377 0.316
3 0.842 0.473 0.417 0.348 0.316 0.284
4 0.791 0.458 0.381 0.314 0.286 0.256
5 0.713 0.409 0.343 0.283 0.259 0.228
6 0.642 0.381 0.318 0.262 0.236 0.210
7 0.596 0.352 0.294 0.243 0.219 0.193
8 0.552 0.331 0.276 0.225 0.206 0.182
9 0.521 0.310 0.261 0.215 0.193 0.172
10 0.489 0.295 0.246 0.204 0.183 0.163
11 0.467 0.281 0.234 0.194 0.175 0.156
12 0.445 0.270 0.225 0.184 0.169 0.149
13 0.426 0.259 0.216 0.178 0.161 0.144
14 0.409 0.250 0.206 0.171 0.156 0.139
15 0.393 0.240 0.201 0.166 0.149 0.133
16 0.380 0.233 0.195 0.160 0.145 0.129
17 0.368 0.224 0.187 0.155 0.141 0.125
18 0.356 0.218 0.183 0.151 0.137 0.122
19 0.345 0.211 0.178 0.147 0.133 0.119
20 0.336 0.207 0.173 0.144 0.130 0.115
21 0.327 0.201 0.169 0.140 0.127 0.112
22 0.319 0.198 0.166 0.136 0.123 0.110
23 0.310 0.193 0.161 0.133 0.121 0.107
24 0.305 0.187 0.158 0.130 0.118 0.105
25 0.298 0.185 0.154 0.127 0.116 0.103
26 0.290 0.180 0.151 0.126 0.113 0.101
27 0.286 0.176 0.149 0.122 0.111 0.098
28 0.280 0.173 0.145 0.120 0.109 0.097
29 0.274 0.169 0.143 0.118 0.107 0.095
30 0.269 0.167 0.141 0.116 0.106 0.094

Table 1: Approximations of expected tournament indexes for completely random games,
M(n,m), where the third decimal should only be viewed as an indication. To illustrate
this, note that Equations (5) or (6) gives the exact values for the first line which should
then really read 1.000 0.500 0.500 0.375 0.375 0.3125. We have used 5000 random
matrixes in the Monte Carlo simulation for each pair n,m.
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m
n 1 2 3 4 5 6
2 1.00 0.49 0.49 0.38 0.38 0.31
3 0.83 0.49 0.43 0.35 0.34 0.29
4 0.79 0.46 0.42 0.33 0.32 0.28
5 0.74 0.44 0.39 0.32 0.30 0.26
6 0.70 0.42 0.37 0.31 0.29 0.25
7 0.65 0.39 0.35 0.29 0.27 0.24
8 0.61 0.38 0.33 0.27 0.26 0.22
9 0.59 0.36 0.31 0.26 0.24 0.21
10 0.56 0.34 0.30 0.24 0.23 0.20
11 0.53 0.33 0.29 0.23 0.22 0.19
12 0.51 0.30 0.28 0.22 0.21 0.18
13 0.49 0.30 0.27 0.21 0.20 0.17
14 0.47 0.28 0.26 0.20 0.20 0.17
15 0.45 0.27 0.25 0.20 0.19 0.16
16 0.44 0.26 0.24 0.19 0.18 0.16
17 0.42 0.25 0.23 0.19 0.18 0.15
18 0.41 0.24 0.22 0.18 0.17 0.14
19 0.40 0.24 0.22 0.17 0.17 0.14
20 0.39 0.23 0.21 0.17 0.17 0.14
21 0.37 0.22 0.21 0.16 0.16 0.14
22 0.37 0.21 0.20 0.16 0.15 0.13
23 0.36 0.21 0.20 0.15 0.15 0.13
24 0.35 0.21 0.19 0.15 0.15 0.12
26 0.34 0.21 0.19 0.15 0.14 0.12
27 0.33 0.20 0.18 0.14 0.14 0.12
28 0.33 0.19 0.18 0.14 0.14 0.12
29 0.32 0.19 0.18 0.14 0.13 0.11
30 0.32 0.18 0.17 0.14 0.13 0.11
31 0.31 0.18 0.17 0.13 0.13 0.11

Table 2: Crude approximations upper estimations of expected optimized tournament in-
dexes for random games, Mo(n,m). We have here used 500 random matrixes in the Monte
Carlo simulation for each pair n,m, where as usual m stands for the number of games each
team play each other team, and n for the number of teams.
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Sport Country Season Tournament T̂r T̂o CTI Ŵo

Soccer England 00/01 Premier League 4.8 17 16 22
Soccer England 02/03 Premier League 13 24 0.42 23
Soccer England 03/04 Premier League 11 27 1.2 24
Soccer Germany 00/01 Bundesliga 3 13 31 18
Soccer Germany 02/03 Bundesliga -1.0 16 57 19
Soccer Germany 03/04 Bundesliga 11 25 3.1 28
Soccer Germany 02/03 2 Bundesliga 6 21 16 24
Soccer Germany 03/04 2 Bundesliga -7.0 5.0 88 13
Soccer France 03/04 Division 1 10 22 1.8 22
Soccer Spain 03/04 Division 1 11 26 1.2 18
Soccer Italy 03/04 Seria A 21 47 0.006 34
Am. Football USA 01/02 NFC 17.5 · 11
Am. Football USA 01/02 AFC 14 · 16
Ice-hockey North America 02 NHL eastern conf. -19 · 58
Ice-hockey North America 02 NHL western conf. 6.8 · 26
Ice-hockey Switzerland 03/04 National league 19 26 0.008 22
Ice-hockey Germany 03/04 DEL 9.8 5.8 1.6 15
Handball Germany 03/04 Bundesliga 47 · < 0.0001
Basketball USA 96/97 NBA 29 · < 0.0001
Squash Intern. 01 PSA 56 · 0.0035

Table 3: This is a comparison between different tournaments from different sports, coun-
tries,and years. Please note that the values of the indexes have been multiplied by 100 for
easier display. We list rather crude approximations of four suggested indexes, the normal-
ized touring index with respect to the result list T̂r, the normalized touring index with
respect to the optimal ranking T̂o, the Coin Tossing Index, CTI, which is the expected
probability for a random tournament to have a higher T̂r than obtain in the tournament
in question, and finally, a rough estimate of the normalized Weighted Ranking Index, Ŵo,
see Section C below.
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In the following appendix, we list a few more or less technical questions that turned up
during our study above.

A Optimal ranking
We can represent a tournament with a n × n–matrix A with elements aij ≥ 0 denoting
the number of victories team i has against team j among the n teams in the tournament.
Since the teams do not meet themselves, the diagonal will be zero. Let us view the ranking
ρ as a permutation of (1, 2, 3, . . . , n). Then we have that

T (ρ) =
1

k

n∑
i=1

n∑
j=1

sgn
(
ρ(i)− ρ(j)

)
aij, (3)

where k =
∑

i

∑
j aij, i.e. the total number of decided games, and sgn(·) is the sign function.

Then the optimal ranking is the ranking/permutation ρ that gives the largest index, i.e.

To := max
ρ
T (ρ). (4)

We will now give two examples where the usual result list, i.e. a team with more victories
will be ranked higher than one with fewer wins, does not give the highest index. That is
examples where To > Tr.

A.1 Example 1 — three teams meeting each other 100 times.

Suppose such a tournament gives the following result matrix:

A =




0 41 52
59 0 53
48 47 0


 .

The usual result list, or as we also called it, after–ranking, will be (2, 3, 1) since team
number 2 has 112 wins in total, team 3 has 95 wins, and team 1 has 93 wins. Using this
ranking we get an index T = 1/15. But if we instead pick the ranking (2, 1, 3) we get
T = 7/75 > 1/15. We see that we can increase the index by switching places of teams
that have almost the same number of total victories. The reason in this case is that team
1 has 52 wins and 48 losses against team 3.

In the following example, we limit ourselves to tournaments with just one match per
pair. We then have to increase the number of teams to five in order to find an example
where the result list will not give the optimal ranking.
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A.2 Example 2 — five teams meeting each other only once.

Suppose the tournament matrix will be

A =




0 1 0 0 1
0 0 1 1 0
1 0 0 0 1
1 0 1 0 1
0 1 0 0 0




then one, of three possible, result–list rankings will be (4, 1, 2, 3, 5) giving the index T =
2/5. (The reason why there is more than one possible result is that team 1, 2, and 3 all
have two wins each and one internal win among each other, i.e. 1 won over 2 which in
turn won over 3 who won over 1.) However, the ranking (4, 3, 1, 5, 2) gives a higher index
T = 3/5. Note that team 5’s only victory was against team 2.

A.3 How to find the optimal ranking?

Question 1 Is the problem of finding the optimal ranking in (4) NP-complete?

Due to the similarities to well known NP-complete problems such as the (directed) optimal
linear arrangement, c.f. [3, p. 200]; the quadratic assignment problem, c.f. [7] and [3, p.
218], the author would be very surprised if the answer to that question would be no, even
for the case where the team just meet each other once. See also other related problems in
the three volumes of [6].

A.4 The expected value of the optimal index To for a random
tournament

Intuitively, one might argue that Mo(n,m) will decrease when the number of matches, m,
increases since the difference between the artificial teams will be levelled out when there
are more coin tosses. Similarly, we might expect Mo(n,m) to decrease when the number
of teams, n, increases, since it will be harder to find a clear ranking when more teams are
involved.

In the simple case where we just have two teams we can give a closed expression for
the expected random tournament index.

Mo(2,m) =
(m− 1)!

2m

m∑
i=0

|m− 2i|
i!(m− i)!

. (5)

Note here that if the number of matches m is an even number, then Mo(2, m + 1) =
Mo(2,m).
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To the authors grateful satisfaction, this formula (5) was later simplified by Sven-Erick
Alm and Allan Gut of Uppsala University, to the following form.

Mo(2,m) =
1

2m−1
Bin(m− 1,

[m− 1

2

]
), (6)

where [·] stands for the integer part.
For three teams, it is easy to see that Mo(3, 1) = 5

6
. In Figure 1 we illustrate Mo(n, 1)

and suggest an approximative function.

0 2 4 6 8 10 12 14 16 18 20
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

An approximation when m=1

M

Figure 1: A numerical indication with the help of Monte Carlo simulations of the function
Mo(n, 1). The smooth curve comes from an extrapolation of exact values of Mo(n, 1) for
n from 2 to 7 with the suggested function Mo(n, 1) ≈ n−

1
5 exp(1−n

50
). The other curve is a

result from a crude algorithm that searches for the optimal tournament index, Mo.

Question 2 Is it possible to find closed expression for the expected index for the optimal
ranking Mo(n,m) for higher combinations of n and m than those given?

Using a simple algorithm that tries to find the best ranking to compute the index, see
Figure 1, we can compute an approximation of the optimal normalized tournament index,
T̂o, for the examples above. In the NBA example, we get T̂o ≈ (0.42− 0.17)/(1− 0.17) ≈
0.30. For the Premier League season we have T̂o ≈ (0.2553− 0.23)/(1− 0.23) ≈ 0.033. The
squash example gives us T̂o ≈ (0.73 − 0.39)/(1 − 0.39) ≈ 0.55. In these three cases we do
not get any dramatic change of the index, and we might assume that the same is true if
we were able to find the best ranking, not just an approximation of it.

B A thinned matrix or an accumulated random matrix?
We had both in the basketball and the squash tournaments problems with the fact that
not all teams, or individuals, played each other symmetrically equally many games. We
solved the problem of finding a good M value needed in the normalization by generating a
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full random matrix that we thinned out by removing results at random positions until the
accurate total number of games was left. We could then compute an index for that thinned
random result matrix. Repeating this process gives us an estimate of the normalizing factor.

A variant of this would be if we instead started with an empty matrix and added wins,
i.e. ones, at a random position in the matrix. Repeating this process we would get a
estimate of the random index for tournaments where m teams play a total of t games
between randomly picked pairs, and where all games were decided randomly.

Question 3 What will be the difference between the thinning and the accumulation ap-
proaches?

We illustrate this question in Figure 2.

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

M

Add
Remove

A sparse tournament with 20 teams and a total of t matches 

Figure 2: A numerical indication of the difference between the estimated random tourna-
ment index where 20 teams play a total of t games. We used the thinning of a full random
result matrix with n = 20 and m = 2 and compared it when we accumulated a random
matrix instead. From the picture it looks as if the estimated index from the accumula-
tion process gives a lower value. Is that a common feature? If so, what could a heuristic
explanation be?

In the depicted example in Figure 2, we started in the thinning case with a tournament
matrix where m = 2. We might have picked a different m.

Question 4 In a tournament where not all teams play the same number of decided games.
Can we say anything in general how the resulting estimation of the tournament index will
depend on m for “thinned tournaments”?

This question is illustrated in an example in Figure 3. From the picture it seems as if the
expected index will decrease as m increases.
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0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

t, total number of games

M

m=2
m=4
m=20

Figure 3: As in Figure 2 above, n = 20. The three graphs represent estimations of the
expected random tournament index for different values of m of the starting matrix that
will be thinned out until only the total sum of all the elements in the matrix is t. We have
picked m = 2, m = 4 and m = 20.

Let us finally mention one last question in this section. In the squash example we had a
tournament over a year that was composed by a series of cups. That gave the consequence
that the best player3 also played the most games.

Question 5 If in a tournament, the “best” teams play more games as during a cup, how
will that effect the normalized index?

C A weighted ranking
The scheme (1) we have used so far for evaluate the outcome of a match is blunt in the
sense that it punish the score with -1 indifferently if for example the highest ranked team is
beaten by the lowest ranked, as if it would have been beaten by the second highest ranked
team.

A way to get around this feature is to introduce a weighted ranking, x, in the following
way. Let x = (x1, x2, . . . , xn), where all xi ∈ [0, 1]. Our new evaluation scheme of a given
tournament A = {aij}, will be

W(x) =
1

k

n∑
i=1

n∑
j=1

(xi − xj)aij, (7)

3Peter Nicol
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where k =
∑n

i=1

∑n
j=1 aij. Compare this formulation with (3).

Now, let
Wo = max

x∈[0,1]n
W(x). (8)

We denote the optimal weighted ranking by xo, i.e. W(xo) = Wo, and where xo ∈ [0, 1]n.

Question 6 Is the problem to compute the optimal weighted ranking in (8) is NP-complete?

We could use Wo as an alternative stability index for tournaments, after it has been
normalized that is to Ŵo.

We give a very rough estimate of this index in the last column in Table 3 above. Our
naive first strategy to estimate this to use several of the candidates we used in our search for
a numerical estimation of T̂o. We use this rankings and the lemma below to get candidates
x with only zeroes and ones as their components, the ones at the highest ranked positions.
All these candidate vectors were then evaluated in Equation (8).

The following immediate result can be a tool in the investigation of Question 6.

Proposition 7 The optimal weighted ranking is in a (not necessary unique) corner in the
unit hyper-cube, i.e. xo ∈ {0, 1}n.

Proof. The partial derivative with respect to xi of Equation (8) gives us immediately that
the extremal value ofW(x) has to be attained when x is in a corner in the unit hyper-cube.
¤

Let us look closer at the Premier League series 2000-20003, where the game matrix A
is ordered by the final result ranking. In this case we get a candidate for xo with

x = (1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) giving us Wo ≥ 0.2546.

We can then approximate Ŵo ≈ 0.22.

Question 8 Is there a more suitable way of weighing the ranking, than the two alternatives
we have studied?
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