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Abstract

Carleson measures for various spaces of holomorphic functions in the unit
ball have been studied extensively since Carleson’s original result for the
disk. In the first paper of this thesis, we give, by means of Green’s formula,
an alternative proof of the characterization of Carleson measures for some
Hardy Sobolev spaces (including Hardy space) in the unit ball. In the second
paper of this thesis, we give a new characterization of Carleson measures for
the Generalized Bergman spaces on the unit ball using singular integral
techniques.
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CARLESON MEASURES FOR HARDY SOBOLEV SPACES

AND GENERALIZED BERGMAN SPACES

EDGAR TCHOUNDJA

INTRODUCTION

Let Ω be a region in C
n and X a Banach space of continuous functions in Ω.

We raise the following problem: Characterize positive measures µ in Ω such
that there exists a constant C = C(µ) with the property that

∫

Ω

|f(z)|p ≤ C‖f‖p
X

for all f ∈ X. Such problems are now known in the literature as Carleson mea-
sures problem for X. The purpose of this work is to study Carleson measures
for Hardy Sobolev spaces, see Paper I, and also Carleson measures for the
Generalized Bergman spaces, see Paper II. In this introduction, we briefly give
a literature overview and motivation of this question. We outline our work in
the last two sections .

0.1. Overview and motivation. Carleson [CA58] was the first to study this
question in the case of the unit disk U of C and for the Hardy space Hp(U)
which is the space of holomorphic functions f in U with the property that:

sup
r<1

∫ π

−π

|f(reiθ)|pdθ < ∞.

Carleson measures arise in many questions involving analysis in functions
spaces. We could mention here the problem of multipliers. That is, given
a space, X, of functions on a set Ω, we want to describe those functions f

for which the map of multiplication by f is a continuous map of X to itself.
We mention also the interpolating sequences problem. That is, to characterize
those sequences {yi} in Ω with the property that, as f ranges over X, the set of
sequences of values, {f(yi)} ranges over the space of all sequences which satisfy
a natural growth condition. Carleson measures have played an important role
in the solution of some famous problems such as the Corona problem and
the duality theory for H1. See Fefferman and Stein [FS72], Carleson [CA62].
This explains why Carleson measures have been studied extensively since the
characterization obtained by Carleson [CA62] in 1962.
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2 EDGAR TCHOUNDJA

In 1967, Hörmander [H67] extended Carleson’s result to the unit ball of C
n.

Since then, for various spaces, this problem as well as its applications have
attracted many authors. Among them, we will mention Stegenga [ST80] who
characterized Carleson measures for the space, Dα, of analytic functions f in
the unit disk for which

∞
∑

n=0

(1 + n2)α|an|
2 < ∞

where f(z) =
∑

n≥0 anz
n is the Taylor expansion of f .

Cima and Wogen [CW82] gave the characterization of Carleson measures
for the weighted Bergman spaces, Ap

α (α > −1), in the unit ball, Dn, of C
n.

This is the space of holomorphic functions f in Dn such that
∫

Dn

|f(z)|p(1 − |z|2)αdλ(z) < ∞.

The Hardy Sobolev space H
p
β(Dn) is the space of holomorphic functions f

in Dn such that

sup
0≤r<1

∫

Sn

∣

∣(I + R)βf(rξ)
∣

∣

p
dσ(ξ) < ∞,

where (I +R)βf(z) =
∑

(1 + k)βfk(z) if f =
∑

fk is the homogeneous expan-
sion of f . P.Ahern [A88] characterized Carleson measures for this space when
0 < p ≤ 1. For p > 1, Cascante and Ortega [CO95] studied the same question
and gave some necessary and some sufficient conditions. They also studied
Carleson measures for the holomorphic Besov Sobolev space. The Carleson
measures for the analytic Besov spaces in the unit ball have been character-
ized by Arcozzi, Rochberg and Sawyer [ARS02, ARS06]. We mention finally
the generalized Bergman space Ap

α (α ∈ R), introduced in [ZZ05], that is the
space of holomorphic functions f in the unit ball such that for some integer m

with mp + α > −1
∫

Dn

|(I + R)mf(z)|p (1 − |z|2)pm+αdλ(z) < ∞.

Zhu and Zhao [ZZ05] characterized Carleson measures for this space when
0 < p ≤ 1 and Arcozzi, Rochberg and Sawyer [ARS062] recently obtained
results for the case p = 2 and α ∈ (−n − 1,−n].

0.2. Carleson measures on Hardy Sobolev spaces. We say that a positive
Borel measure µ on Dn is a Carleson measure for H

p
β = H

p
β(Dn) if there exists

a constant C = C(µ) such that:
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(1) ‖f‖Lp(µ) ≤ C‖f‖H
p

β

for all f ∈ H
p
β.

Observe that when β = 0 we have the usual Hardy space. For 0 < p ≤
1 and 0 < β < n

p
, Ahern[A88] described Carleson measures using atomic

decomposition for functions in Hp (see [A88, Lemma 1.1]). For β = 0 and
p > 0, Hörmander [H67] solved the problem using a covering lemma and
boundedness of a maximal function. In paper I, inspired by results in [An97,
B87], we give a new proof of these results. We use Green’s formula with
respect to an appropriate positive closed (1.1) form to reduce the problem to
pointwise estimates for functions in these spaces. Moreover we show, by giving
a counterexample, that the natural growth condition is no longer sufficient for
p > 1 and β > 0.

0.3. Carleson measures on the Generalized Bergman space. We re-
strict ourselves to p = 2. The Generalized Bergman spaces A2

α [ZZ05] consist
of all holomorphic functions f in the unit ball Dn with the property that:

‖f‖2
α =

∫

Dn

|(I + R)mf(z)|2 (1 − |z|2)2m+αdλ(z)

where 2m + α > −1. Note that this definition is independent of m.
In this case a positive Borel measure µ on Dn is a Carleson measure for A2

α if
there exists a constant C = C(µ) such that:

∫

D

|f |2dµ ≤ C‖f‖2
α, f ∈ A2

α.

One can easily observe that when α > −1 we have the usual weighted
Bergman spaces (take m = 0), and when α = −1, we have the usual Hardy
space. Thus Carleson type embedding problems have been settled in these
cases by Carleson, Hörmander, Stegenga, Cima and Wogen. The range α ∈
(−n − 1,−1) was unsolved until 2006 when Arcozzi, Rochberg and Sawyer
[ARS062] obtained results for the range α ∈ (−n− 1,−n]. Their characteriza-
tion used certain tree condition. They have transformed the question, equiva-
lently to a question of boundedness of an operator Tα in L2(µ) where

Tαf(z) =

∫

D

f(w)Kα(z, w)dµ(w), z ∈ D,

with Kα defined by Kα(z, w) = ℜ
{

1
(1−zw)n+1+α

}

.
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In paper II, we use singular integral techniques to characterize measures µ

for which this operator is bounded. To be precise, recall that for a topological
space X with a pseudo distance d, a kernel K(x, y) is called an n Calderón-
Zygmund kernel with respect to the pseudo distance d if

a) |K(x, y)| ≤ C1

d(x,y)n and

b) There exists 0 < δ ≤ 1 such that

|K(x, y) − K(x′, y)| + |K(y, x) − K(y, x′)| ≤ C2
d(x, x′)δ

d(x, y)n+δ

if d(x, x′) ≤ C3d(x, y), x, x′, y ∈ X.

Given a Calderón-Zygmund kernel K, we can define (at least formally) a
Calderón-Zygmund operator (CZO) associated with this kernel by

Tf(x) =

∫

X

K(x, y)f(y)dµ(y).

One important question in the Calderón-Zygmund theory is to find a crite-
rion for boundedness of the CZO in L2(µ). (In this context, such problem is
called a T(1)-Theorem problem)

Many authors studied this problem. In fact, when X = R
m, µ = dx (the

usual Lebesgue measure) and d is the Euclidean distance, a famous criterion
called ”T(1)-Theorem” was obtained by Journé and G. David [DJ84]. This
criterion states that a CZO is bounded in L2(dµ) if and only if it is weakly
bounded (in some sense), and the operator and its adjoint send the function
1 in BMO. This result was extended to space of homogeneous type in an un-
published work by R. Coifman. It was then an interesting question to extend
this T(1)-Theorem in the case where the space is not of homogeneous type
(This essentially means that the measure µ does not satisfy the doubling con-
dition). Several authors such as Tolsa, Nazarov, Treil, Volberg and Verdera
[T99, NTV97, V00] treated this situation in the setting of R

m with the Eu-
clidean distance. One good example of such an operator was the Cauchy
integral operator. We say that the Cauchy integral operator is bounded in
L2(dµ) whenever for some positive constant C, one has for every ǫ > 0

∫

|Cǫ(fµ)|2dµ ≤ C

∫

|f |2dµ, f ∈ L2(dµ),

where

Cǫ(fµ)(z) =

∫

|ζ−z|>ǫ

f(ζ)

ζ − z
dµ(ζ), z ∈ C.
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Their result is that the Cauchy integral operator is bounded in L2(dµ) if
and only if

i) µ(D) ≤ Cr(D), for each disc D with radius r(D).
ii)

∫

D
|Cǫ(χDµ)|2dµ ≤ Cµ(D), for each disc D, ǫ > 0.

Similarly, when we consider the kernel Kα associated with the operator Tα,
we first show that this kernel is an n + 1 + α Calderón Zygmund kernel in the
unit ball associated with a pseudo distance d. To characterize the boundedness
of this operator, we adapt the idea used by Verdera [V00] to give an alternative
proof of the T (1)− Theorem for the Cauchy integral operator. For this, we
introduce a sort of Menger curvature [M95] in the unit ball and establish a
good λ inequality.
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CARLESON MEASURES FOR HARDY SOBOLEV SPACES

EDGAR TCHOUNDJA

Abstract. The main goal of this paper is to present an alternative proof of
Carleson measures for Hardy Sobolev spaces in the unit ball (Hardy spaces
included) H

p
β . We simply use Green’s formula and pointwise estimates for

functions in these spaces. An example shows that for p > 1, the natural
necessary condition is no longer sufficient.

1. Introduction

In this note, we give a new proof of the characterization of Carleson measures
for some Hardy Sobolev spaces in the unit ball. Our method avoids some tech-
nicalities used by previous methods such as maximal functions, covering lemma
and atomic decomposition; see [7, 1]. It seems therefore easy and can be used
for other purposes. We just use Green’s formula associated to an appropriate
positive closed (1.1)− form. This method is inspired by results in [4, 2]. Let
D = {z ∈ C

n : |z| < 1} be the unit ball of C
n; and S = ∂D its boundary. We

will denote by dλ the normalized Lebesgue measure on D, and by dσ the normal-
ized Lebesgue measure on S. For β ∈ R and 0 < p < +∞, the Hardy Sobolev
space H

p
β consists of holomorphic functions f in D such that (I + R)β f ∈ Hp(D)

(the usual Hardy Space), where if f =
∑

k fk is its homogeneous expansion (see

[8]), (I + R)β f =
∑

k(1 + k)βfk. Observe that for β = 0, H
p
β = Hp(D). We say

that a positive Borel measure µ on D is a Carleson measure for H
p
β if there exists

a constant C = C(µ) such that:

(1) ‖f‖Lp(µ) ≤ C‖f‖H
p
β

for all f ∈ H
p
β. We give a new proof of the following theorem.

Theorem 1.1. Let µ be a positive Borel measure on D. Assume that 0 < p ≤ 1
and 0 < β < n

p
or p > 0 and β = 0. Then the following are equivalent:

2000 Mathematics Subject Classification. 26B20, 32A35.
Key words and phrases. Carleson measures, Hardy Sobolev spaces, Arveson’s Hardy space,

Green’s formula.
1



2 EDGAR TCHOUNDJA

i) µ is a Carleson measure for H
p
β.

ii) There exists a constant C such that

µ (Qδ(ξ)) ≤ Cδm

for any ξ ∈ S and δ > 0,

where m = n− βp and

Qδ(ξ) =
{
z ∈ D : |1 − zξ| < δ

}
.

The sets Qδ are the high dimensional analogues of Carleson boxes in the unit
disk. They are also called non isotropic balls. See [8] for more informations.

2. Preliminary results

Let Ω be a smooth pseudo-convex domain in C
n and ρ a function such that

Ω = {z ∈ C
n : ρ(z) < 0}

with |dρ| > 0 in ∂Ω = {ρ(z) = 0} , the boundary of Ω.
If ω is a positive closed (1, 1)−form in Ω, the form ω defined a Kähler metric

in Ω and the volume form with respect to this metric is given by dV = ωn

n!
.

Definition 2.1. Suppose that ω is a positive closed (1, 1)−form in Ω. The Lapla-
cian with respect to the metric induced by ω is defined by:

∆ωu
ωn

n!
= i∂∂u ∧ ωn−1

(n− 1)!
,

for any function u of class C2 in Ω.

An application of Stoke’s formula gives this Green’s formula.

Theorem 2.2. Suppose that ω is a positive closed (1, 1)−form in Ω. Let u,v ∈
C∞ (Ω

)
, and u,v real. Then

ℜ
(∫

Ω

(v∆ωu− u∆ωv) dV

)
= ℜ

(
i

∫

∂Ω

(
v∂u− u∂v

)
∧ ωn−1

Γ(n)

)
.

Recall that the Euclidean volume form is determined by the closed (1, 1)−form
β = i∂∂|z|2; precisely, dλ = βn

n!
.

In the sequel, in view of our objective, we suppose that Ω is contained in D.
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We consider now the closed (1, 1)−form on D given by ω = i∂∂ log
(

1
1−|z|2

)
.

Observe that:

ω =
β

1 − |z|2 +
γ

(1 − |z|2)2

where β = i∂∂|z|2 is the usual Euclidean closed (1, 1)−form and

γ = i
∑

j,k

zjzkdzj ∧ dzk = i∂|z|2 ∧ ∂|z|2.

We can see that γ2 = 0 and β ∧ γ = γ ∧ β. Therefore for any integer p with
1 < p ≤ n, we have by the binomial formula

ωp =
βp

(1 − |z|2)p +
pβp−1 ∧ γ

(1 − |z|2)p+1 .(2)

In particular,

(3) ωn =
βn

(1 − |z|2)n+1

and

(4) ωn−1 =
βn−1

(1 − |z|2)n−1 +
(n− 1)βn−2 ∧ γ

(1 − |z|2)n .

Using the definition of the Laplacian together with (3) and (4), we obtain
by straightforward computation, the next lemma which gives us a formula to
compute the Laplacian with respect to the above closed form ω.

Lemma 2.3. Suppose that ω = i∂∂ log
(

1
1−|z|2

)
. Then for a C2 function u on D,

the Laplacian with respect to ω is given by :

∆ωu(z) =
(
1 − |z|2

)
Lu(z)(5)

where Lu(z) =
∑

k
∂2u

∂zk∂zk
−∑j,k

∂2u
∂zj∂zk

zjzk.

From this we see that the Laplacian with respect to this form is the same as
the Bergman Laplacian or the so called invariant Laplacian. So ∆ω (u ◦ ϕa) =
(∆ωu) ◦ ϕa, where ϕa is the involutive automorphism of D that interchanges the
points 0 and a ∈ D. This invariance also follows from the fact that ϕ∗

a(ω) = ω;
just use the identity (9) and the definition of the Laplacian to see this. The
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Green’s formula in this case is given by the following result (see [10, p28]and the
references therein) .

Proposition 2.4. Suppose 0 < r < 1. If u and v are twice differentiable in D

then∫

|z|<r
(v∆ωu− u∆ωv)

dλ

(1 − |z|2)n+1
= 2n

∫

|z|=r

(
v
∂u

∂η
− u

∂v

∂η

)
r2n−1dσ

(1 − r2)n−1
.

where ∂u
∂η

is a radial derivative of u. Note that we can obtain Proposition 2.4

directly from Theorem 2.2. A direct computation gives the following lemma.

Lemma 2.5. Let s > 0. Consider the function φ(z) = (1 − |z|2)s, then

(6) ∆ωφ(z) = −
{
s(n− s)(1 − |z|2) + s2(1 − |z|2)2

}
(1 − |z|2)s−1.

Proof: Let u(z) = (1 − |z|2)s, we have

∂2u

∂zj∂zk
= −s

(
1 − |z|2

)s−1
δjk + s(s− 1)zjzk

(
1 − |z|2

)s−2
.

We use (5) to obtain

∆ωφ(z) = (1 − |z|2)s−1
(
−sn(1 − |z|2) + s(s− 1)|z|2

)

+(1 − |z|2)s−1
(
s(1 − |z|2)|z|2 − s(s− 1)|z|4

)

= (−s(n− s)(1 − |z|2) − s2(1 − |z|2)2)(1 − |z|2)s−1.

2

From Proposition 2.4 we obtain the following result.

Theorem 2.6. There exists a positive constant C such that for all u ∈ C∞ (D
)
,

u real and positive, we have

∫

D

Ludλ ≤ C

∫

S

u dσ.(7)

Proof: Let u ∈ C∞ (D
)
, fix δ ∈]0, 1[ small and apply Proposition 2.4 with

r2 = 1 − δ. Let v(z) = (1 − |z|2)n, by (6), we have ∆ωv(z) = −n2 (1 − |z|2)n+1
.

Proposition 2.4 gives

∫

|z|2<1−δ
Ludλ+ n2

∫

|z|2<r
udλ =

n

2

∫

|z|2=1−δ

(
δ
∂u

∂η
+ 2n(1 − δ)nu

)
dσ.

Letting now δ tend to 0 we obtain (7).
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2

From this, we obtain an important estimate in the following theorem.

Theorem 2.7. There exists a positive constant C such that, if g, ψ ∈ C∞ (D
)
, ψ

is real, and g is analytic in D, then for 0 < p < +∞
∫

D

Lψ(z)|g|peψdλ ≤ C

∫

S

|g|peψdσ.(8)

Proof: Let g, ψ be as in the theorem. Fix a positive ǫ small. A straightforward
computation shows that L (log |g|2 + ǫ) ≥ 0. Since for any smooth function h, we

have L(eh) ≥ ehLh, if we apply (7) to u = (|g|2 + ǫ)
p

2 eψ, we obtain

∫

D

Lψ
(
|g|2 + ǫ

) p

2 eψdλ ≤ C

∫

S

(
|g|2 + ǫ

) p

2 eψdσ

for any ǫ.
Letting ǫ tend to 0, this gives (8) and this ends the proof of the theorem.

2

We will also need the following lemma.

Lemma 2.8. Let s > 0 and a ∈ D. Consider the function ξ(z) =
(1−|z|2)

s

|1−za|2s ; then

Lξ(z) = −s
2 (1 − |z|2)s (1 − |a|2)

|1 − za|2(s+1)
− s (n− s) (1 − |z|2)s−1

|1 − za|2s

Proof: Let ξ be as in the lemma. Recall that

(9) 1 − |ϕa(z)|2 =
(1 − |z|2) (1 − |a|2)

|1 − za|2

and observe then that ξ(z) (1 − |a|2)s = (1 − |ϕa(z)|2)s. By the invariance of the
Laplacian, we have

(
1 − |a|2

)s
∆w (ξ(z)) = ∆w

(
ξ(z)

(
1 − |a|2

)s)

= ∆w

(
1 − |ϕa(z)|2

)

= ∆w

((
1 − |z|2

)s) ◦ ϕa(z).
We use now (6) and (9) to obtain the result.

2
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3. Carleson measures for Hardy sobolev

In this section, we will give a proof of Theorem 1.1. For β ∈ R and 0 < p < +∞,
we recall that the Hardy Sobolev space H

p
β(D) is the space of all holomorphic

functions f in D such that

‖f‖p
H

p
β
(D)

= sup
r<1

∫

S

∣∣∣(I + R)β f(rξ)
∣∣∣
p

dσ(ξ) <∞.

By the definition, we can see that the operator (I + R)β is an invertible opera-

tor with inverse (I + R)−β. For β > 0, by simple change of variables, we see that

(1+ k)−β = 1
Γ(β)

∫ 1

0

(
log 1

t

)β−1
tkdt, where k is an integer. Thus for a holomorphic

function f and β > 0 we have

f(z) =
1

Γ(β)

∫ 1

0

(
log

1

t

)β−1

(I + R)β f(tz)dt.(10)

On the other hand, using integration by parts, we observe that
∫ 1

0

(
log

1

t

)β−1

tkdt =
1 + k

β

∫ 1

0

(
log

1

t

)β
tkdt.

So we can extend the formula (10) for β > −1 and β 6= 0. We obtain

f(z) =
1

Γ(β + 1)

∫ 1

0

(
log

1

t

)β
(I + R)β+1

f(tz)dt.

We iterate the procedure n times and obtain that for a holomorphic function
f and β > −n, β 6= 0,−1,−2, ...

f(z) =
1

Γ(β + n)

∫ 1

0

(
log

1

t

)β+n−1

(I + R)β+n
f(tz)dt.(11)

From this discussion we will obtain the following estimates.
Lemma 3.1. Let m, s be two positive real numbers such that m−s > 0. Consider
the function f(z) = 1

(1−zw)m . Then the following holds:

i) There exists a constant C such that

|(I + R)s f(z)| ≤ C
1

|1 − zw|m+s
,

for all w ∈ D.
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ii) There exists a constant C such that

∣∣(I + R)−s f(z)
∣∣ ≤ C

1

|1 − zw|m−s ,

for all w ∈ D.

Proof: Suppose that s is an integer, then a straightforward computation shows
that

(I + R)s f(z) =
Ps(zw)

(1 − zw)m+s ,

where Ps is a polynomial of degree s. We then obtain i) in this case.
Suppose now that s is not an integer, write s = n + γ where n is an integer

and γ a real number such that γ ∈ (−1, 0). If we take β = −s, we observe that
β ∈ (−n;−n+ 1). Using (11) we have

(I + R)s f(z) =
1

Γ(−γ)

∫ 1

0

(
log

1

t

)−γ−1

(I + R)+n
f(tz)dt.

Hence

| (I + R)s f(z)| ≤ C

∫ 1

0

(
log

1

t

)−γ−1

| (I + R)+n
f(tz)|dt

≤ C

∫ 1

0

(1 − t)−γ−1

|1 − tzw|m+n
dt,

by the first case of i). We then obtain part i) of the lemma because
∫ 1

0

(1 − t)r

|1 − tz|k dt ≃ |1 − z|−k+r+1,

for k − r − 1 > 0 and −1 < r < 0. This finishes part i) of the lemma.
For the second part of the lemma, we argue in the same way. If s is an integer,

then by iteration, we can prove that

(I + R)−s f(z) =
Qs(zw)

(1 − zw)m−s ,

where Qs is a polynomial of degree s. We then obtain ii) in this case. Suppose
now that s is not an integer and write −s = −n+ γ, where n is an integer and γ
a real number such that γ ∈ (−1, 0). Substituting β = −n− γ in (11), we have
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(I + R)−s f(z) =
1

Γ(−γ)

∫ 1

0

(
log

1

t

)−γ−1

(I + R)−n f(tz)dt.

The proof of ii) follows as in i).

2

Definition 3.2. We say that a positive Borel measure µ on D is a Carleson
measure for H

p
β if there exists a constant C = C(µ) such that:

(12) ‖f‖Lp(µ) ≤ C‖f‖H
p
β

for all f ∈ H
p
β.

Recall also that, for any ξ ∈ S and δ > 0, the Carleson box is the set

Qδ(ξ) =
{
z ∈ D : |1 − zξ| < δ

}
.

The following theorem, which is proved in [10], gives a characterization of mea-
sures which satisfy certain conditions on the Carleson boxes.

Theorem 3.3. Let t be a strictly positive real and µ be a positive Borel measure
on D. Then the following conditions are equivalent:

a) There exists a positive constant C such that

µ (Qδ(ξ)) ≤ Cδt

for all ξ ∈ S and all δ > 0.
b) For each s > 0 there exists a positive constant C such that

(13) sup
z∈D

∫

D

(1 − |z|2)s

|1 − zw|t+sdµ(w) ≤ C <∞.

c) For some s > 0 there exists a positive constant C such that the inequality
in (13) holds.

From this we obtain the following necessary condition.

Lemma 3.4. Suppose m = n− βp > 0. Let µ be a positive Borel measure on D.
If µ is a Carleson measure for H

p
β, then there exists a positive constant C such

that
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µ (Qδ(ξ)) ≤ Cδm(14)

for all ξ ∈ S and all δ > 0.

Proof:
Suppose that µ is a Carleson measure for H

p
β. If for sufficiently large k we take

f(z) = 1

(1−zw)k , then by Lemma 3.1 part i), there is an absolute constant C such

that ‖f‖p
H

p
β

≤ C
(1−|z|2)kp+βp−n .

This fact together with the Carleson condition gives

sup
z∈D

∫

D

(1 − |z|2)kp+βp−n

|1 − zw|kp dµ(w) ≤ C,

which by Theorem 3.3 is equivalent to (14).

2

We are ready to give the Proof of Theorem 1.1. It is enough to proof
the Carleson inequality for f holomorphic in D, and smooth enough up to the
boundary. For such f , we consider the functions

g(z) = (I + R)β f(z) and ψ(z) = −
∫

D

(1 − |z|2)m

|1 − zw|2m dµ(w).

Since µ satisfies (14), by Theorem 3.3, we get that eψ ≃ 1. By Theorem 2.7 and
Lemma 2.8 we have

∫∫

D

(
m2 (1 − |z|2)m (1 − |w|2)

|1 − zw|2m+2
+
m (n−m) (1 − |z|2)m−1

|1 − zw|2m

)
dµ(w)|g(z)|pdλ(z)

≤ C

∫

S

|g(ξ)|pdσ(ξ).(15)

Therefore in view of Fubini’s theorem, (12) follows if we can prove that

|f(z)|p ≤ C

∫

D

(
m2 (1 − |w|2)m (1 − |z|2)

|1 − zw|2m+2

)
|g(w)|pdλ(w)(16)

+C

∫

D

(
m (n−m) (1 − |w|2)m−1

|1 − zw|2m

)
|g(w)|pdλ(w)

for all z ∈ D. We proceed to prove (16). Observe that for n − m > 0, (16) is
equivalent to
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|f(z)|p ≤ C

∫

D

(1 − |w|2)m−1

|1 − zw|2m |g(w)|pdλ(w).(17)

For 0 < p ≤ 1 and 0 < β < n
p
, by the reproducing formula for Bergman spaces

( see [10, Theorem 2.2 ]), we have for any strictly positive real number s

(I + R)β f(z) = g(z) = Cs.m

∫

D

g(w) (1 − |w|2)s

(1 − zw)n+1+s dλ(w).

Hence by Lemma 3.1 part ii), we have

|f(z)| ≤ C

∫

D

|g(w)| (1 − |w|2)s

|1 − zw|n+1+s−β dλ(w).(18)

Assume s is sufficiently large so that we can set

s =
2m

p
+ β − (n+ 1).

Thus (18) becomes

|f(z)| ≤ C

∫

D

∣∣∣∣∣
g(w)

(1 − zw)
2m
p

∣∣∣∣∣
(
1 − |w|2

)s
dλ(w).

We observe that s = n+1+m−1
p

− (n+1); therefore we apply Lemma 2.15 in [10]

to obtain

|f(z)|p ≤ C

∫

D

(1 − |w|2)m−1

|1 − zw|2m |g(w)|pdλ(w),

which is (17).

For p > 0 and β = 0, by the same reproducing formula applied to f(z)
(1−za)α for

some a ∈ D and α > 0 to be chosen, we have

f(z)

(1 − za)α
= Cs,m

∫

D

(1 − |w|2)s

(1 − zw)n+1+s

f(w)

(1 − wa)α
dλ(w).

Hence we take a = z and obtain

|f(z)|
(1 − |z|2)α ≤ C

∫

D

(1 − |w|2)s

|1 − zw|n+1+s+α
|f(w)|dλ(w).
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If 0 < p ≤ 1, we use Lemma 2.15 as in the previous case to obtain, by choosing
α = 1

p
and s = 2n+1

p
− (n+ 1),

|f(z)|p
(1 − |z|2) ≤ C

∫

D

(1 − |w|2)n

|1 − zw|2n+2
|f(w)|pdλ(w),

which is (16).
Finally if p > 1 and α > 1

p
, we simply apply Hölder estimates and Theorem

1.12 in [10] to obtain (16). This ends the proof.

2

4. Comments and further results

As we can see in our approach, the space H
p
β(D) is involved just when we want

to obtain the key estimate (16). Therefore to obtain some result for p > 1 and
β > 0, the difficulty is to prove (16). It turns out that for this case, the estimate
(16) is in general not true. We can see this by taking p = 2, β = n−1

2
(n > 2) and

f(z, w) = g(z) =
∑

α∈Nn−2

|α|!
α!

zα

(n− 2)
|α|
2 (1 + |α|) lns(1 + |α|)

,

where (z, w) ∈ C
n−2 × C

2 and 1
2
< s < 1. Indeed, in this case, the estimate (16)

will imply that

|g(z)|2 ≤ C

∫

D

(1 − |w|2)2

|1 − zw|2 | (I + R)
n−1

2 g(w)|2dλ(w),

where D is now a unit ball of C
n−2. This also implies that

|g(z)|2 ≤ C

∫

D

| (I + R)
n−1

2 g(w)|2dλ(w).

A straightforward computation using Taylor expansion finally shows that the
function g must satisfy

|g(z)|2 ≤ C
∑

m

1

(1 +m) ln2s(1 +m)
.
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This means that g must be bounded since 1
2
< s < 1. But, for z = rξ where

ξ is the point of the boundary of D given by ξ =
(

1√
n−2

, ..., 1√
n−2

)
, we see that

|g(z)| =
∑

m
rm

(1+m) lns(1+m)
tends to ∞ as r tends to 1. This gives a contradiction.

On the other hand, if we are able to prove that, for some cases (when terms
involved make sense), the inequality

sup
r<1

∫

S

∣∣∣(I + R)βp fp(rξ)
∣∣∣ dσ(ξ) ≤ C‖f‖p

H
p
β

(19)

holds, for all f ∈ H
p
β. In those cases as before, we apply the same reproducing

formula to (I + R)βp fp(z) to obtain

(I + R)βp fp(z) = Cn,m

∫

D

(I + R)βp fp(w) (1 − |w|2)m−1

(1 − zw)n+m dλ(w).

Hence by Lemma (3.1) part ii), we will have

|f(z)|p ≤ C

∫

D

(I + R)βp fp(w)|| (1 − |w|2)m−1

|1 − zw|n+m−βp dλ(w),

which is (17). Thus (14) will still characterize Carleson measures on such cases.
However, we don’t know the cases for which (19) is true apart from the trivial

case p = 1.
Therefore, if we introduce the space Hp

b,β(D) as the space of all holomorphic
functions f in D such that (when terms involved make sense)

‖f‖pHp
b,β

= sup
r<1

∫

S

∣∣∣(I + R)βp fp(rξ)
∣∣∣ dσ(ξ),

then for the analogue question of Carleson measures for H
p
b,β(D), with our

approach, we obtain the following theorem.
Theorem 4.1. Let µ be a positive Borel measure on D. Suppose that
m = n− βp > 0. Then the following are equivalent:

i) µ is a Carleson measure for H
p
b,β(D)

ii) There exists a constant C such that µ (Qδ(ξ)) ≤ Cδm

for any ξ ∈ S and δ > 0.

We note that our approach easily gives the following closed, computable and
sufficient condition.
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Proposition 4.2. Let µ be a positive Borel measure on D and assume that m =
n− βp > 0. If for some ǫ > 0, the measure µ satisfies

µ (Qδ(ξ)) ≤ Cδm+ǫ

for any ξ ∈ S and δ > 0, then µ is a Carleson measure for H
p
β.

Proof: In this case, we simply need to prove that

|f(z)|p ≤ C

∫

D

(1 − |w|2)m−1+ǫ

|1 − zw|2m+2ǫ
| (I + R)β f(w)|pdλ(w).

It is enough to we just use the same reproducing formula once more and Hölder’s
inequality.

2

Finally, the following result shows that when p > 1, the necessary condition
(14) is no longer sufficient. This means that we can not expect to remove ǫ in the
previous proposition. This result is proved here for p = 2 and β = n−1

2
. However,

it can be extended to other cases in the same manner.

Theorem 4.3. Suppose p = 2 and β = n−1
2

(n > 1). There exists a finite positive
measure µ in D such that µ satisfies the growth condition (14), but µ is not a
Carleson measure for H2

n−1

2

.

Before giving the proof of this theorem, let us note that the space H2
n−1

2

is

special. It is now known in the literature as the Arveson Hardy space. Arveson [3]
has studied extensively this space in connection with applications in multivariable
operator theory. We add a change on notations here to emphasize the dimension
of the space we are dealing with. So in this proof, we will denote the unit ball of
C
n by

Dn = {z ∈ C
n : |z| < 1} ,

and the Carleson boxes in Dn by

Qn
δ (ξ) =

{
z ∈ Dn : |1 − z.ξ| < δ

}
.

Proof of Theorem 4.3:
We will adapt the idea used in [1, p 34] to prove an analogue problem for

exceptional sets.
First assume n = 2 and consider functions of the form f(z, w) = g(2zw), where

g is holomorphic in the unit disk D1. By means of Taylor expansion and Stirling’s
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formula, one can show that f ∈ H2
1

2

(D2) if and only if g ∈ H2
1

4

(D1). Carleson

measures for H2
1

4

(D1) have been characterized by Stegenga using a capacity condi-

tion; see [9, Theorem 2.3]. The proof of this uses the fact that Carleson measures
for H2

1

4

(D1) coincide with Carleson measures for the space of Poisson transforms

of Bessel potentials of L2 functions. If we now use Proposition 2.1 in [5] by ap-
plying it to the function ϕ(x) =

√
x, we conclude that there exists a finite Borel

measure ν in D∗
1 (= D1\{0}) and a function g ∈ H2

1

4

(D1) such that

ν
(
Q1
δ(ξ)

)
≤ Cδ

1

2 ,

and ∫

D1

|g(z)|2dν = ∞.

Let T denote the unit circle (T = ∂D1) with its arclength measure dθ. Define
Ψ : D∗

1 × T → D2 by

Ψ(r2eis, eiθ) =

(
r

√
2

2
eiθ, r

√
2

2
ei(s−θ)

)
.

If we set D̃ =
{(
r
√

2
2
eiθ, r

√
2

2
ei(s−θ)

)
∈ D2 : 0 < r < 1; θ, s ∈ [0, 2π[

}
, then Ψ

is clearly an homeomorphism from D∗
1 × T to D̃. Let µ be the measure on D̃

obtained by transporting dν × dθ on D∗
1 × T to D̃. We still call µ the extension

of this to D2 (µ = 0 in D2\D̃ ).
Thus we have a function f(z, w) = g(2zw) ∈ H2

1

2

(D2) and a measure µ ∈ D2

so that ∫

D2

|f(z, w)|2dµ =

∫

D̃

|f(z, w)|2dµ

=

∫

D∗
1
×T

|g(r2eis|2dν × dθ

= 2π

∫

D1

|g(z)|2dν = ∞.

The theorem will be proved in this case if we show that µ satisfies (14). We

proceed to prove this. It is enough to prove (14) for ξ ∈ ∂D̃. Moreover, by

invariance under rotation, we may assume that ξ =
(√

2
2
,
√

2
2

)
. It is then enough
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to show that ∣∣∣∣1 − r
eiθ

2
− r

eis

2
e−iθ

∣∣∣∣ < δ(20)

implies that |1 − r2eis| < cδ and |1 − eiθ| < Cδ
1

2 . First observe that (20) implies
that 1 − r < δ. On the other hand, (20) is the same as

∣∣∣e−i s
2 − r

2

(
ei(θ−

s
2) + ei(

s
2
−θ)
)∣∣∣ < δ,

that is (
sin

s

2

)2

+
(
cos

s

2
− r cos

(s
2
− θ
))2

< δ2.

Thus

sin
s

2
< δ and

∣∣∣cos
s

2
− r cos

(s
2
− θ
)∣∣∣ < δ.

Since we may also assume δ small enough, the first of these inequalities implies
that s <

√
2δ; it also implies that

|1 − r2eis| =
∣∣1 − r2 + r2

(
1 − eis

)∣∣
< 2δ + |1 − eis|
= 2δ + 2sin

s

2
< 4δ.

The second inequality implies that

r
∣∣∣1 − cos

(s
2
− θ
)∣∣∣ < δ +

∣∣∣r − cos
s

2

∣∣∣

< δ + δ +
∣∣∣1 − cos

s

2

∣∣∣ < 3δ.

Consequently, since δ small implies r large, we get
∣∣∣1 − cos

(s
2
− θ
)∣∣∣ = 2 sin2

(
s

4
− θ

2

)
< 6δ.

So
∣∣ s
2
− θ
∣∣ < Cδ

1

2 and then θ < Cδ
1

2 . This leads to

|1 − eiθ| = 2sin
θ

2
< Cδ

1

2 .

This finishes the case n = 2. The case n > 2 follows in the following way. We

identify the following subset D̃2 = {z ∈ Dn : zj = 0, j ≥ 3} of the unit ball of
C
n with the unit ball D2 of C

2. We then consider the measure µ̃ in Dn obtained
by transporting the measure µ in D2 we have just constructed. The extension
of this measure to Dn satisfies the growth condition (14). For the functions



16 EDGAR TCHOUNDJA

f(z) = F (z1, z2) we have that, f ∈ H2
n−1

2

(Dn) if and only if F ∈ H2
1

2

(D2). We

then obtain from the previous construction a function f ∈ H2
n−1

2

(Dn) such that∫
Dn

|f |2dµ̃ = ∞. This finishes the proof of the theorem.
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Abstract. In this paper, we give a new characterization of Carleson mea-
sures on the Generalized Bergman spaces. We show first that this problem is
equivalent to a T(1)-Theorem problem type. Using Verdera idea (see [V]), we
introduce a sort of curvature in the unit ball adapted to our kernel and we
establish a good λ inequality which then yields to the solution of this T(1)-
Theorem problem.
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1. Introduction

Let n be a positive integer and let

Cn = C × · · · × C

denote the n dimensional complex Euclidean space.
For z = (z1, · · · , zn) and w = (w1, · · · , wn) in Cn, we write

zw = 〈z, w〉 = z1w1 + · · · + znwn

and

|z| =
√
|z1|2 + · · · + |zn|2.

The open unit ball in Cn is the set

D = {z ∈ Cn : |z| < 1} .

We use H (D) to denote the space of all holomorphic functions in D. Let
S = ∂D be the boundary of D. For α ∈ R, α > −n−1, we define the Generalized
Bergman spaces A2

α [ZZ] to consist of all holomorphic functions f in the unit ball
D with the property that

‖f‖2
α =

∑

m∈Nn

|c(m)|2 Γ(n + 1 + α)m!

Γ(n + 1 + |m| + α)
< ∞,

where f(z) =
∑

m∈Nn

c(m)zm is the Taylor expansion of f .

For β ∈ R, we define the fractional radial derivative of order β by

(I + R)β
f(z) :=

∑

m

(1 + |m|)β
c(m)zm.

One then easily observes, by means of Taylor expansion and Stirling’s formula,
that

(1) ‖f‖2
α
∼=
∫

D

|(I + R)mf(z)|2 (1 − |z|2)2m+αdλ(z)

where 2m+α > −1. One also observes that the right hand side of (1) is indepen-
dent of the choice of m. If we let 2σ = α+n+1 then we see by (1) that A2

α = Bσ
2 ,

where Bσ
2 is the analytic Besov-Sobolev spaces defined in [ARS]. Thus this scale

of spaces includes the Drury-Arveson Hardy space A2
−n, the usual Hardy space

H2(D) = A2
−1 and the weighted Bergman spaces when α > −1.

An interesting question about these spaces is to find their Carleson measures,
that is
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characterize positive measures µ on D such that

(2)

∫

D

|f |2dµ ≤ C(µ)‖f‖2
α, f ∈ A2

α.

(A measure µ which satisfies (2) is called a Carleson measure for A2
α or simply

an A2
α Carleson measure.)

Viewing the space A2
α as defined by the relation (1), we see that the literature

is now rich with solutions of this question for various values of α. Indeed the first
case of interest was the case α = −1 (the usual Hardy space). In [CA], Carleson
gave the result when n = 1 and later in 1967, Hörmander [H] gave a solution
for n > 1. Stegenga [ST] (when n = 1), Cima and Wogen [CW] (when n > 1)
characterized Carleson measures for α > −1.

The range α ∈ (−n− 1,−1) was unsolved until 2006, when Arcozzi, Rochberg
and Sawyer [ARS], obtained results for the range α ∈ (−n−1,−n]. Their results
use certain tree conditions and seem difficult to handle.

The purpose of this note is to present an alternative characterization of Car-
leson measures in the same range α ∈ (−n − 1,−n] as in [ARS]. We obtain a
result which seems simple in the sense of applications.

To obtain our characterization, we show first that this problem is equivalent
to a kind of T(1)-Theorem problem associated with a Calderón-Zygmund type
kernel and then we solve the T(1)-Theorem problem type which occurs. To be
precise, recall that for a topological space X with a pseudo distance d, a kernel
K(x, y) is called an n Calderón-Zygmund kernel (or simply a Calderón-Zygmund
kernel) with respect to the pseudo distance d if

a) |K(x, y)| ≤ C1

d(x,y)n , and

b) There exists 0 < δ ≤ 1 such that

|K(x, y) − K(x′, y)| + |K(y, x) − K(y, x′)| ≤ C2
d(x, x′)δ

d(x, y)n+δ

if d(x, x′) ≤ C3d(x, y), x, x′, y ∈ X.

Given a Calderón-Zygmund kernel K, we can define (at least formally) a
Calderón-Zygmund operator (CZO) associated with this kernel by

Tf(x) =

∫

X

K(x, y)f(y)dµ(y).

One important question in the Calderón-Zygmund theory is to find a criterion
for boundedness of a CZO in L2(µ). (We will call such a problem a T(1)-Theorem
problem)
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Many authors studied this problem. When X = Rm, µ = dx (the usual
Lebesgue measure) and d is the Euclidean distance, a famous criterion called
”T(1)-Theorem” was obtained by Journé and G. David [DJ]. This criterion states
that a CZO is bounded in L2(dµ) if and only if it is weakly bounded (in some
sense), and the operator and its adjoint send the function 1 in BMO. This result
was extended to space of homogeneous type in an unpublished work by R. Coif-
man. Later it was an interesting question to extend this T(1)-Theorem in the
case where the space is not of homogeneous type (This essentially means that
the measure µ does not satisfy the doubling condition). Several authors such as
Tolsa, Nazarov, Treil, Volberg and Verdera [T1, NTV, V] treated this situation
in the setting of Rm with the Euclidean distance. One good example of such
an operator is the Cauchy integral operator. We say that the Cauchy integral
operator is bounded in L2(dµ) whenever for some positive constant C, one has
for every ǫ > 0,

∫
|Cǫ(fµ)|2dµ ≤ C

∫
|f |2dµ, f ∈ L2(dµ),

where

Cǫ(fµ)(z) =

∫

|ζ−z|>ǫ

f(ζ)

ζ − z
dµ(ζ), z ∈ C.

Their result is that the Cauchy integral operator is bounded in L2(dµ) if and
only if

i) µ(D) ≤ Cr(D), for each disc D with radius r(D);
ii)
∫

D
|Cǫ(χDµ)|2dµ ≤ Cµ(D), for each disc D, ǫ > 0.

We now return back to the problem (2). We consider the kernel Kα defined by

Kα(z, w) = ℜ
{

1

(1 − zw)n+1+α

}
.

For a positive Borel measure µ in D, we consider the operator Tα associated
with this kernel defined by

Tαf(z) =

∫

D

f(w)Kα(z, w)dµ(w), z ∈ D.

We will prove that if on D we consider as in [B] the pseudo distance d defined
by

d(z, w) = ||z| − |w|| +
∣∣∣∣1 − z

|z|
w

|w|

∣∣∣∣ ,

the kernel Kα is an (n+1+α) Calderón-Zygmund kernel in the unit ball D with
respect to the pseudo distance d. Let B = B(z, r) = {w ∈ D; d(z, w) < r} be



CARLESON MEASURES AND T(1)-THEOREM 5

a ”pseudo ball” or simply a ball of center z and radius r. We are now ready to
state our result.

Theorem 1.1 (Main theorem). Suppose α ∈]− n− 1,−n] and µ be a positive
Borel measure in D. Then the following conditions are equivalent.

a) µ is a Carleson measure for A2
α ;

b) Tα is bounded in L2(µ);
c) There exists a constant C such that

i) µ(B(z, r)) ≤ Crn+1+α,
ii)
∫

B
|Tα(χB)|2dµ ≤ Cµ(B),

for each ball B = B(z, r) which touches the boundary of D.

This theorem is a T(1)-Theorem type result with respect to the CZO Tα (b ⇔
c) and it shows the equivalency of this T(1)-Theorem problem with Carleson
measures for A2

α (a ⇔ b). Observe that the equivalency a ⇔ b is proved in [ARS,
Lemma 24, p 42] in a more general situation. Nevertheless we have included the
proof here for the sake of completeness. Thus to prove Theorem 1.1 , we will
essentially prove the hard part b ⇔ c. To prove the hard part, we will adapt to
the unit ball the idea used by J. Verdera [V] to give an alternative proof of the
T(1)-Theorem for the Cauchy integral operator.

The paper is organized as follows. In section 2 we gather some preliminaries
including a key covering lemma, terminology and background. Section 3 is de-
voted to the study of the generalized Bergman spaces A2

α and the proof of a ⇔ b.
Section 4 contains the proof of the hard part of the main theorem. Section 5
deals with some extensions, comments and opens questions.

2. Preliminary results

We collect in this section few results which will be useful to our purpose. These
concern results on general homogeneous spaces and results for the special case of
the unit ball D.
2.1. Definition and Properties of a space of homogeneous type.

Definition 2.1. A pseudo distance on a set X is a map ρ from X × X to R+

such that

1) ρ(x, y) = 0 ⇔ x = y

2) ρ(x, y) = ρ(y, x)
3) there exists a positive constant K (K ≥ 1) such that, for all x, y, z ∈ X

ρ(x, y) ≤ K(ρ(x, z) + ρ(z, y)). (Quasi triangular inequality)
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For x ∈ X and r > 0, the set B(z, r) = {y ∈ X : ρ(x, y) < r} is called a
pseudo ball or simply a ball of center x and radius r.

Definition 2.2. A space of homogeneous type is a topological space X with a
pseudo distance ρ and a positive Borel measure µ on X such that:

1) The balls B(x, r) form a basis of open neighborhoods of x.
2) (Doubling property) There exists a constant A > 0 such that, for all

x ∈ X and r > 0, we have

0 < µ(B(x, 2r)) ≤ Aµ(B(x, r)) < ∞.

The triplet (X, ρ, µ) is called a space of homogeneous type or simply a homo-
geneous space. We will often abuse by calling X a homogeneous space instead of
(X, ρ, µ).

Homogeneous spaces have been treated by several authors such as Coifman and
Weiss [CWe], Stein [S]. We refer to them for further details.

We will use the following lemma to prove a key type of covering lemma, Lemma
2.4 below. It will be crucial in our argument later.

Lemma 2.3. There exists a constant C1 such that if B(x1, r1) and B(x2, r2) are
two non disjoint balls and if r1 ≤ r2 then

B(x1, r1) ⊂ B(x2, C1r2).

Proof: Let y ∈ B(x1, r1) ∩ B(x2, r2). We have for x ∈ B(x1, r1)

ρ(x, x2) ≤ K(ρ(x, y) + ρ(y, x2))

≤ K(K(ρ(x, x1) + ρ(x1, y)) + ρ(y, x2))

< K(2Kr1 + r2)

< K(2K + 1)r2.

We obtain the desired result if we set C1 = K(2K + 1).

2

Lemma 2.4. Let (X, d, µ) be an homogeneous space. There exists positive con-
stants K1, K2, K3 with K3 > K2 > K(C1 + 1)K1 such that:
for an open set O of X (O ( X), there exists a collection of balls Bk := B(xk, ρk)
so that, if B∗

k = B(xk, K1ρk), B∗∗
k = B(xk, K2ρk) and B∗∗∗

k = B(xk, K3ρk),

a) the balls Bk are pairwise disjoint
b) O = ∪

k
B∗

k

c) O = ∪
k
B∗∗

k

d) for each k, B∗∗∗
k ∩ Oc 6= ∅
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e) a point x ∈ O belongs to at most M balls B∗∗
k (bounded overlap property).

Moreover, the constant M depends only on constants K1, K2, A and K.

Proof: Let O be an open set of X (O ( X). Let ǫ = 1
16K2C2

1
(1+C1)

where C1

is the constant defined in Lemma 2.3. Consider the covering of O by the balls
B(x, ǫδ(x)) where δ(x) = d(x,Oc), x ∈ O.

We have d(x,Oc) > 0 since Oc is a closed set. d(x,Oc) > 0 is finite. We now
select a maximal disjoint subcollection of {B(x, ǫδ(x))}x∈O; for this subcollection
B1, B2, . . . , Bk, . . . with Bk

.
= B(xk, ǫδ(xk)) = B(xk, ρk), we shall prove assertions

a), b), c), d), and e) above. We set

K1 =
1

4K2(C1 + 1)ǫ
, K2 =

1

2ǫK
and K3 =

2

ǫ
.

Observe that our choice makes these constants satisfy our hypothesis. Observe
that a) and d) hold automatically by our choice of Bk. It is also clear that

B∗
k = B

(
xk,

δ(xk)
4K2(C1+1)

)
⊂ B

(
xk,

δ(xk)
2K

)
= B∗∗

k ⊂ O;

what remains to be shown is that O ⊂ ∪
k
B∗

k (in this case b) and c) will be valid)

and that e) is true.
Let us prove that O ⊂ ∪

k
B∗

k.

Let x ∈ O; by the maximality of the collection Bk,

B(xk, ǫδ(xk)) ∩ B(x, ǫδ(x)) 6= ∅ for some k.

We claim that δ(xk) ≥ δ(x)
4C1

. If not, since ǫ < 1
2C1

< 1, we have

B(xk, 2δ(xk)) ∩ B

(
x,

δ(x)

2C1

)
6= ∅.

Since 2δ(xk) <
δ(x)
2C1

, by the Lemma 2.3, B(xk, 2δ(xk)) ⊂ B
(
x,

δ(x)
2

)
, which gives

a contradiction since B(xk, 2δ(xk)) meets Oc, while B
(
x,

δ(x)
2

)
⊂ O. Using the

fact that 4C1ǫδ(xk) ≥ ǫδ(x), Lemma 2.3 gives

x ∈ B(x, ǫδ(x)) ⊂ B(xk, 4ǫC
2
1δ(xk)) = B∗

k.

This proves b) and c).
We proceed to prove e).

Assume that x ∈ M∩
k=1

B∗∗
k =

M∩
k=1

B(xk, K2ρk). We have

d(xk, O
c) ≤ K(d(x,Oc) + d(x, xk)) ≤ K(d(x,Oc) + K2ρk);
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this implies that d(x,Oc) ≥ 1
K

(d(xk, O
c) − KK2ρk). But

KK2ρk = KK2ǫd(xk, O
c) =

d(xk, O
c)

2

and thus d(x,Oc) ≥ d(xk,Oc)
2K

= ρk

2Kǫ
. Hence ρk ≤ 2Kǫd(x,Oc).

On the other hand,

d(x,Oc) ≤ K(d(xk, O
c) + d(x, xk))

≤ K
(
K2ρk +

ρk

ǫ

)
= K(K2 + ǫ−1)ρk.

So if x ∈ B∗∗
k , the radius ρk satisfies

d(x,Oc)

K(K2 + ǫ−1)
≤ ρk ≤ 2Kǫd(x,Oc).

From this, we have

B(xk, ρk) ⊂ B(x,C2d(x,Oc))

where C2 = 2K2(K2 + 1)ǫ. We also have, for each k

B(x,C2d(x,Oc)) ⊂ B(xk, C3ρk)

where C3 = K(C2K(K2 + ǫ−1) + K2). Thus

∪
k
B(xk, ρk) ⊂ B(x,C2d(x,Oc))

and

B(x,C2d(x,Oc)) ⊂ B(xk, C3ρk) for each k.

Therefore, by the doubling property and the disjointness of Bk, we have

M∑

k=1

µ(B(xk, ρk)) ≤ µ(B(x,C2d(x,Oc)))

≤ µ(B(xk, C3ρk))

≤ Cµ(B(xk, ρk)).

Thus M ≤ C and we are done.

2

One key result in the real variable theory is that, by means of Besicovitch cov-
ering Lemma, the usual central Hardy-Littlewood maximal function is bounded
in Lp(Rm, dµ) (1 < p < ∞) where the measure µ is not assumed to be doubling.
Since Besicovitch covering Lemma is no longer true in general homogeneous spaces
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[KR], we will obtain the same Lp estimates for a certain ”contractive” central
Hardy-Littlewood maximal function to be defined later, via the following lemma

Lemma 2.5 (ǫ-Besicovitch). Let (X, d, µ) be an homogeneous space. Let E be
a bounded set, fix a positive number M and denote by F the family of balls B(a, r)
with center a ∈ E and radius r ≤ M . Then there exists a countable subfamily
{B(ak, rk)}∞k=1 of F with the following properties.

i) E ⊂ ∞∪
k=1

B(ak, rk)

ii) the family {B(ak,
rk

α
)}∞k=1 is disjoint, where α = 7K

3
, and K is the constant

in the quasi triangle inequality for d;
iii) for all 0 < ǫ < 1, the family Fǫ = {B(ak, (1 − ǫ)rk)}∞k=1 has bounded

overlaps, namely

∞∑

k=1

χB(ak,(1−ǫ)rk)(x) ≤ C log
1

ǫ
,

where C depends only on constants of X and χA denotes the characteristic
function of the set A.

Proof: See [FGL, Lemma 3.1].

2

We now turn our attention to the special domain of interest, the unit ball

D = {z ∈ Cn : |z| < 1}.
In [B] it is defined a map d on D × D by

d(z, w) =

{
||z| − |w|| +

∣∣∣1 − z
|z|

w
|w|

∣∣∣ if z, w ∈ D∗,

|z| + |w| otherwise ,

where D∗ = D\{0}.

2.2. Properties of the pseudo distance d.

Lemma 2.6. The following assertions hold:

i) d is a pseudo distance on D

ii) d is invariant under rotation.

Proof:
Assertion i) will follow essentially from the fact that the map (ξ, ζ) 7−→ |1−ξζ| 12

is a distance in ∂D (see [R, Proposition 5.1.2] ).



10 EDGAR TCHOUNDJA

Indeed, the first property of a pseudo distance follows easily from this assump-
tion; the second property is obvious. For the third property, let z, w and ζ ∈ D.
We have

d(z, w) = ||z| − |w|| +
∣∣∣∣1 − w

|w|
z

|z|

∣∣∣∣

≤ ||z| − |ζ|| + ||ζ| − |w|| + 2

(∣∣∣∣1 − w

|w|
ζ

|ζ|

∣∣∣∣+
∣∣∣∣1 − ζ

|ζ|
z

|z|

∣∣∣∣
)

(by the triangular inequality for the distance in the boundary).
So

d(z, w) ≤ 2(d(z, ζ) + d(ζ, w)).

Assertion ii) follows from the fact that the inner product zw is invariant under
rotation.

2

The pseudo balls associated with this pseudo distance satisfy this important
observation.

Lemma 2.7. The pseudo ball B(z, r) = {w ∈ D : d(z, w) < r} touches the
boundary of D if and only if r > 1 − |z|.

Proof: Fix a pseudo ball B(z, r). Let ǫ = r−(1−|z|). Since we are interested in

points which touch the boundary, we have to find conditions on points w ∈ B(z, r)

such that |w| > |z|. For such w, we have d(z, w) = |w| − |z| +
∣∣∣1 − z

|z|
w
|w|

∣∣∣. So

(3) d(z, w) < r ⇔
∣∣∣∣1 − z

|z|
w

|w|

∣∣∣∣ < ǫ + 1 − |z| − |w| + |z| = ǫ + 1 − |w|.

From this we have our result. In fact, (3) shows that B(z, r) touches the boundary
of D if and only if ǫ > 0.

2

These pseudo balls have close relations with the so called Korányi balls. Pre-
cisely, for ξ ∈ ∂D = S and δ > 0, if we set

Qδ(ξ) := Q(ξ, δ) = {z ∈ D : |1 − zξ| < δ},
then we have the following proposition.
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Proposition 2.8. There exists positive constants a1 and a2 such that, for every
pseudo ball B(z, r) which touches the boundary of D,

Q

(
z

|z| , r
)

⊂ B(z, a1r),

and

B(z, r) ⊂ Q

(
z

|z| , a2r

)
.

Proof: Let B(z, r) be a pseudo ball which touches the boundary of D. Let
w ∈ B(z, r). Since ||z| − |w|| < r we have for |w| ≤ |z|,

|z| − |w| < r ⇒ 1 − |w| < 2r

and for |w| > |z|
1 − |w| < 1 − |z| < r.

So if w ∈ B(z, r), 1 − |w| < 2r. Therefore for w ∈ B(z, r),

∣∣∣∣1 − w
z

|z|

∣∣∣∣ =

∣∣∣∣1 − |w| + |w| − w
z

|z|

∣∣∣∣

≤ 1 − |w| + |w|
∣∣∣∣1 − w

|w|
z

|z|

∣∣∣∣

< 2r +

∣∣∣∣1 − w

|w|
z

|z|

∣∣∣∣ < 3r.

So B(z, r) ⊂ Q
(

z
|z|

, 3r
)
. Take a2 = 3.

For the first inclusion, we can suppose that 0 < r < 1
2
. In fact, for r ≥ 1

2
,

Q
(

z
|z|

, r
)
⊂ B(z, 6r). Let w ∈ Q

(
z
|z|

, r
)
. We have

∣∣∣∣1 − w

|w|
z

|z|

∣∣∣∣ ≤
∣∣∣∣1 − 1

|w|

∣∣∣∣+
1

|w|

∣∣∣∣1 − w
z

|z|

∣∣∣∣

=
1 − |w| +

∣∣∣1 − w z
|z|

∣∣∣
|w|

<
2r

|w| <
2r

1 − r
< 4r.

On the other hand, if |z| > |w|, then

||z| − |w|| = |z| − |w| < ||z| − wz| < r|z| < r.



12 EDGAR TCHOUNDJA

If |z| ≤ |w|, then |w| − |z| < 1 − |z| < r. So Q
(

z
|z|

, r
)
⊂ B(z, 5r). Take a1 = 6.

2

For α > −1, let dλα(z) = (1 − |z|2)αdλ(z) where dλ(z) is the usual Lebesgue
measure of Cn ∼ R2n. We then have the following result.

Lemma 2.9. For each fixed α > −1, the triplet (D, d, dλα) is an homogeneous
space.

Proof: Since d is already a pseudo distance on D, we need only to prove that
dλα is a doubling measure. One can prove that for 0 < R < 3, ζ = (r, 0, · · · , 0),
0 < r < 1

(4) λα(B(ζ, R)) ∼= Rn+1{max(R, 1 − r)}α.

This ends the proof of the lemma.

2

Remark 2.10. This lemma shows that we can apply Lemmas 2.4 and 2.5 in the
unit ball D.

We will make use of these others properties of d.

Lemma 2.11. For every z ∈ D and r0, 0 < r0 < 1, if we denote by
z0 = (r0, 0, · · · , 0) we have

1) |1 − z1r0| ≥ 1
3
d(z, z0)

2) |z1 − r0| ≤ d(z, z0)

3)
n∑

k=2

|zk|2 ≤ 2d(z, z0)

4) |1 − zz0| ≤ 1 − r2
0 + d(z, z0).

Proof:
1) We have

∣∣∣∣1 − z1

|z|

∣∣∣∣ ≤ |1 − z1r0| +
∣∣∣∣z1r0 −

z1

|z|

∣∣∣∣
≤ |1 − z1r0| + 1 − r0|z|
≤ 2 |1 − z1r0| .

If |z| ≤ r0 then

||z| − r0| = r0 − |z| ≤ 1 − |z1| ≤ |1 − z1r0|.
If |z| > r0 then

||z| − r0| = |z| − r0 ≤ 1 − r0 ≤ |1 − z1r0|.
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Hence d(z, z0) =
∣∣∣1 − z1

|z|

∣∣∣+ ||z| − r0| ≤ 3|1 − z1r0|.
2) We have

|z1 − r0| ≤ |z1 − |z|| + ||z| − r0|

≤ |z|
∣∣∣∣1 − z1

|z|

∣∣∣∣+ ||z| − r0| ≤ d(z, z0).

3) We have

n∑

k=2

|zk|2 = |z|2 − |z1|2 ≤ 2||z| − |z1||

≤ 2|z1 − |z|| ≤ 2

∣∣∣∣1 − z1

|z|

∣∣∣∣ ≤ 2d(z, z0).

4) We have

|1 − zz0| = |1 − z1r0| ≤ 1 − r2
0 + |r2

0 − z1r0|
≤ 1 − r2

0 + |r0 − z1| ≤
2)

1 − r2
0 + d(z, z0).

2

For α > −n − 1 fixed, set k = n + 1 + α. We consider the following kernel

Kα(z, w) = ℜ
{

1

(1 − zw)k

}

and obtain the following this important result about this kernel.

Proposition 2.12. 1) There exists a constant C3 such that for all z, w ∈ D,

|Kα(z, w)| ≤ C3

d(z, w)k
.

2) There exists two constants C1, C2 such that for all z, w, ζ ∈ D satisfying

d(z, ζ) > C1d(w, ζ),

we have

|Kα(z, w) − Kα(z, ζ)| ≤ C2
d(w, ζ)

1

2

d(z, ζ)k+ 1

2

.
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Proof:
Assertion 1) follows from Lemma 2.11 and the invariance under rotation. In-

deed for z, w ∈ D, if ∆ is the rotation such that ∆(w) = (|w|, 0, · · · , 0) then we
have

(5) d(z, w) = d(∆(z), ∆(w)) ≤ 3|1 − ∆(z)∆(w)| ≤ 3|1 − zw|.
So d(z, w)k ≤ 3k|1 − zw|k. Take C3 = 3k.

Let us prove 2). By the invariance under rotation, we can suppose ζ =
(r0, 0, · · · , 0). We use the identity

Kα(z, w) − Kα(z, ζ) =

∫ 1

0

ℜ
(

kz(w − ζ)

(1 − zw − tz(ζ − w))k+1

)
dt

to obtain

(6) |Kα(z, w) − Kα(z, ζ)| ≤
∫ 1

0

k|z(w − ζ)|
|1 − zw − tz(ζ − w)|k+1

dt.

We have

|z(w − ζ)| ≤ |z1(w1 − r0)| +
(

n∑

k=2

|zk|2
) 1

2
(

n∑

k=2

|wk|2
) 1

2

≤ |w1 − r0| +
(

n∑

k=2

|zk|2
) 1

2
(

n∑

k=2

|wk|2
) 1

2

.

So by Lemma 2.11 and (5), we have

|z(w − ζ)| ≤ 2d(w, ζ)
1

2

(
d(w, ζ)

1

2 + d(z, ζ)
1

2

)

≤ 4√
C1

d(w, ζ)
1

2 d(z, ζ)
1

2

≤ C√
C1

d(w, ζ)
1

2 |1 − zζ| 12 .(7)

This shows that for C1 large enough, we have |z(w − ζ)| ≤ 1
2
|1 − zζ|. On the

other hand, observe that

|1 − zw − tz(ζ − w)| = |1 − zη|
where η = (1 − t)w + tζ. Since

|(1 − zζ) − (1 − zη)| = |z(η − ζ)|
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and
|(1 − zζ) − (1 − zη)| = (1 − t)|z(w − ζ)| ≤ |z(w − ζ)|,

we conclude that for large C1, |1 − zη| > 1
2
|1 − zζ|.

Therefore, from (6), (7) and (5), we have

|Kα(z, w) − Kα(z, ζ)| ≤ 2k+1k
C√
C1

|1 − zζ| 12 d(w, ζ)
1

2

|1 − zζ|k+1

≤ C2
d(w, ζ)

1

2

d(z, ζ)k+ 1

2

.

2

Remarks 1. This Proposition shows that the kernel Kα is a k Calderón-Zygmund
kernel with respect to the pseudo distance d.

We can observe from the proof of Proposition 2.12 that the assertions are still
true if we replace the kernel Kα by the kernel 1

(1−zw)k .

3. Bergman-Sobolev type space A2
α.

In this section, we define the space A2
α. We give some properties of this space.

Finally we show that the Carleson measures problem for these space is equivalent
to the T(1)-Theorem problem associated with the Calderón-Zygmund kernel Kα.
Definition 3.1. Let α ∈ R, α > −n − 1. We denote by A2

α the space of all
holomorphic functions f in the unit ball D with the property that

‖f‖2
α =

∑

m∈Nn

|c(m)|2 Γ(n + 1 + α)m!

Γ(n + 1 + |m| + α)
< ∞,

where f(z) =
∑

m∈Nn

c(m)zm is the Taylor expansion of f .

Theorem 3.2. The space A2
α is equipped with an inner product such that the

associated reproducing kernel is given by

Bα(z, w) =
1

(1 − zw)n+1+α
.

Proof:
For f(z) =

∑
m

c(m)zm and g(z) =
∑
m

d(m)zm, define the product by

〈f, g〉α =
∑

m

c(m)d(m)
Γ(n + 1 + α)m!

Γ(n + 1 + |m| + α)
.



16 EDGAR TCHOUNDJA

This clearly defines an inner product in A2
α. Let f ∈ A2

α with f(z) =
∑
m

c(m)zm.

Since

Bα(z, w) =
∑

m

Γ(n + 1 + |m| + α)

Γ(n + 1 + α)m!
zmwm,

we have for w ∈ D,

〈f,Bα(., w)〉α =
∑

m

c(m)
Γ(n + 1 + |m| + α)

Γ(n + 1 + α)m!
wm Γ(n + 1 + α)m!

Γ(n + 1 + |m| + α)

=
∑

m

c(m)wm = f(w).

We are done.

2

Remark 3.3. The space A2
α is a Hilbert space with the Hilbert norm ‖.‖α.

Proposition 3.4. Let w ∈ Bn and set f(z) = 1
(1−zw)s . If 2s > n + 1 + α then

f ∈ A2
α. Moreover,

‖f‖2
α
∼= 1

(1 − |w|2)2s−n−1−α
.

Proof: It is enough to verify the last assertion of the proposition. Let

f(z) =
1

(1 − zw)s
=
∑

m∈Nn

Γ(|m| + s)

Γ(s)m!
zmwm.
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we have by Stirling’s formula,

‖f‖2
α

∼=
∑

m

Γ2(|m| + s)

Γ2(s)(m!)2
|wm|2 Γ(n + 1 + α)m!

Γ(n + 1 + |m| + α)

=
∑

k

Γ2(k + s)Γ(n + 1 + α)

Γ2(s)Γ(n + 1 + k + α)Γ(k + 1)

∑

|m|=k

Γ(k + 1)

m!
|wm|2

=
∑

k

Γ2(k + s)Γ(n + 1 + α)

Γ2(s)Γ(n + 1 + k + α)Γ(k + 1)
|w|2k

∼=
∑

k

(1 + k)2s−2−α−n|w|2k

∼=
∑

k

Γ(2s − n − 1 − α + k)

Γ(2s − n − α − 1)Γ(k + 1)
|w|2k

=
1

(1 − |w|2)2s−n−1−α
.

2

For β ∈ R, we define the fractional radial derivative of order β by

(I + R)β
f(z) :=

∑

m

(1 + |m|)β
c(m)zm,

where f(z) =
∑

m∈Nn

c(m)zm is the Taylor expansion of f .

The following lemma follows by the use of Taylor’s expansion and Stirling’s
formula.

Lemma 3.5.

(8) ‖f‖2
α
∼=
∫

D

|(I + R)mf(z)|2 (1 − |z|2)2m+αdλ(z)

where 2m + α > −1.

We also observe that the right hand side of (8) is independent of the choice of
m.

Remarks 2.

• The space Ap
α are introduced in [ZZ] for general values of p, we refer there

for further details about this space.
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• For α = −1, the space A2
α is the usual Hardy space

H2(D) =

{
f ∈ H(D) : ‖f‖2

H2(D) = sup
r<1

∫

S

|f(rξ)|2dσ(ξ) < ∞
}

.

• For α > −1, the space A2
α is the usual weighted Bergman space. When

α = −n, A2
α is the so called Arveson’s Hardy space; for other values of α,

we obtain analytic Besov-Sobolev spaces.

We recall that we want to characterize positive Borel measures µ on D such
that

(9)

∫

D

|f |2dµ ≤ C(µ)‖f‖2
α, f ∈ A2

α.

(A measure µ which satisfies (9) is called a Carleson measure for A2
α or simply

an A2
α Carleson measure.)

As we have mentioned in the introduction the solution of this question is well
known for α ≥ −1. The result from these cases is the following theorem.

Theorem 3.6 (Carleson, Hörmander, Stegenga, Cima and Wogen). Let
α ≥ −1 and µ be a positive Borel measure on D. The following conditions are
equivalent.

a) There exists a positive constant C such that

(10) µ(Qδ(ξ)) ≤ Cδn+1+α

for all ξ ∈ S and all δ > 0.
b) The measure µ is an A2

α Carleson measure.

The range α ∈ (−n− 1,−1) is difficult. In this note our approach yields a new
characterization for Carleson measures for this space in the range
α ∈ (−n−1,−n]. A characterization of Carleson measures in this range has been
previously obtained by Arcozzi, Rochberg and Sawyer [ARS]. It seems likely that
our characterization could be extended to the remaining range α ∈ (−n,−1).
However, we have not yet succeeded to do this.

Nevertheless, observe that for α > −n− 1, condition (10) remains a necessary
condition for Carleson measures for A2

α. This can be seen by using Proposition
3.4, (9) and the following result [ZZ, Theorem 45].

Theorem 3.7. Let α be a real such that n + 1 + α and µ be a positive Borel
measure on D . Then the following conditions are equivalent.

a) There exists a positive constant C such that

µ(Qδ(ξ)) ≤ Cδn+1+α
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for all ξ ∈ S and all δ > 0.
b) For each s > 0 there exists a positive constant C such that

(11) sup
z∈D

∫

D

(1 − |z|2)s

|1 − zw|n+1+α+s
≤ C < ∞.

c) For some s > 0 there exists a positive constant C such that the inequality
in (11) holds.

We end this section by proving, in a general setting, the equivalence a ⇔ b of
Theorem 1.1. Recall that the CZO Tα is defined by

Tαf(z) =

∫

D

f(w)Kα(z, w)dµ(w), z ∈ D,

where the kernel Kα is defined by

Kα(z, w) = ℜ
{

1

(1 − zw)n+1+α

}
.

Proposition 3.8 (cf [ARS]). Suppose n+1+α > 0 and let µ be a positive Borel
measure on D. Then the following conditions are equivalent.

a) The measure µ is an A2
α Carleson measure.

b) The operator Tα is bounded in L2(µ).

Proof: Let I be the linear map defined by:

I : A2
α → L2(µ)

f 7→ f
.

The adjoint of I is given by

I∗f(z) =

∫

D

f(w)dµ(w)

(1 − zw)n+1+α
.

Indeed for f ∈ L2(µ) with I∗f ∈ A2
α we have, by the reproducing property,

I∗f(z) = 〈I∗f,Bα(., z)〉α
= 〈f, I(Bα(., z))〉µ

= 〈f, (Bα(., z))〉µ =

∫

D

f(w)dµ(w)

(1 − zw)n+1+α
.

On the other hand, observe that I is bounded if and only if the measure µ is
an A2

α Carleson measure. It is well known that

I is bounded ⇔ I∗ is bounded.
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Note that I∗ is bounded means that

(12) ‖I∗f‖2
α = 〈I∗f, I∗f〉α ≤ C‖f‖2

µ.

Then

‖I∗f‖2
α = 〈I∗f, I∗f〉α

=

〈∫
Bα(., w)f(w)dµ(w),

∫
Bα(., z)f(z)dµ(z)

〉

α

=

∫ ∫
〈Bα(., w), Bα(., z)〉α f(w)dµ(w)f(z)dµ(z)

=

∫ ∫
Bα(z, w)f(w)dµ(w)f(z)dµ(z).

Having (12) for general f is equivalent to having it for real f . We now suppose
f is real. In this case we continue with

‖I∗f‖2
α =

∫ ∫
ℜ{Bα(z, w)}f(w)dµ(w)f(z)dµ(z)

= 〈Tαf, f〉L2(µ) .

The last quantity satisfies the required estimates exactly if Tα is bounded. The
proof is complete.

2

4. Proof of the equivalence (b) ⇔ (c) of Theorem 1.1

This section is devoted to the proof of the T(1)-Theorem. That is the charac-
terization of positive Borel measures µ on D such that the operator Tα is bounded
in L2(µ). To get the equivalence (b) ⇔ (c) in Theorem 1.1, it suffices to prove
the following theorem.

Theorem 4.1. Let k = n+1+α and µ be a positive Borel measure on D. Then
the following conditions are equivalent.

1) The operator Tα is bounded in L2(µ).
2) The operator Tα is bounded in Lp(µ) for some p > 2.
3) i) There exists a constant C > 0 such that

(13) µ(B(z, r)) ≤ Crk

for all pseudo balls B(z, r) which touch the boundary, and
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ii) There exists a constant C > 0 such that
∫

B

(∫

B

ℜ
{

1

(1 − zw)k

}
dµ(w)

)2

dµ(z) ≤ Cµ(B)

for all pseudo balls B which touch the boundary.

4.1. Proof of 1) ⇒ 3). Assertion i) follows from the discussion after Theorem

3.6 and the fact that the sets B(z, r) and Qr

(
z
|z|

)
are comparable when B(z, r)

touches the boundary (in the sense of Proposition 2.8), and also by Proposition
3.8. Assertion ii) is easily obtained by testing the boundedness on the character-
istic function f = χB.

2

4.2. Related maximal functions.

Definition 4.2. We say that a measure µ satisfies the growth condition
when µ satisfies inequality (13).

We proceed now to prove that i) and ii) are sufficient for the boundedness of
Tα for some p > 2 that is the proof of the implication 3) ⇒ 2). We focus our
attention first to the special case α = −n. We then set T = T−n and K = K−n.

As we have mentioned in the introduction, we follow the same idea as in [V].
Indeed, we first introduce a sort of curvature which plays the role of the Menger
curvature. This curvature is adapted to our domain and has a close relation with
our operator. Next, we proceed to construct for every ball which touches the
boundary, a ”big piece” associated with this ball. This is the first crucial step
of our proof. Finally, the next crucial step is to prove an appropriate good λ

inequality without resorting to a doubling property on µ. Lemma 2.4 is used in
those steps.

We suppose that a measure µ satisfies the growth condition. In our estimates
we use two variants of the central Hardy-Littlewood maximal operator acting on
a complex Radon measure ν, namely,

Mν(z) = sup
r>1−|z|

|ν|(B(z, r))

r
,

and for a positive constant ρ ≥ 1

Mρ
µν(z) = sup

r>1−|z|

|ν|(B(z, r))

µ(B(z, ρr))
z ∈ supp µ ,
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where B(z, r) is the pseudo ball centered at z of radius r which touches the
boundary and supp µ is the closed support of µ.

Proposition 4.3. Let µ be a positive Borel measure which satisfies the growth
condition. For every ρ > 1 , there exists a positive constant C(ρ) such that for
any f ∈ Lp(µ),

∫

D

Mρ
µ(fµ)pdµ ≤ C

∫
|f |pdµ, 1 < p < ∞.(14)

Proof: Fix ρ > 1. Let E
ρ
λ = {z ∈ D : Mρ

µ(fµ)(z) > λ}. Observe first that, for
each z ∈ E

ρ
λ, there exists a pseudo ball B(z, rz) such that

(15) µ(B(z, ρrz)) ≤
1

λ

∫

B(z,rz)

|f |dµ.

Consider the family F = {B(z, ρrz)}z∈E
ρ
λ
. Applying Lemma 2.5 to this family

with ǫ = 1 − 1
ρ
, we obtain a subfamily {B(zk, ρrk)} of F such that

E
ρ
λ ⊂ ∪

k
B(zk, ρrk), and the family {B(zk, rk)} has bounded overlaps. Therefore,

from (15) and this bounded overlap property, we have

µ(Eρ
λ) ≤

∑

k

µ(B(zk, ρrk))

≤ 1

λ

∑

k

∫

B(zk,rk)

|f |dµ

≤ C(ρ)

λ

∫

D

|f |dµ.

Hence, Mρ
µ is of weak type (1, 1). We obtain the desired result from the obvious

L∞ estimate and the Marcinkiewicz interpolation.

2

Remarks 3.

• Observe that for some constant C(ρ) > 0, we have

Mν(z) ≤ C(ρ)Mρ
µν(z), z ∈ supp µ.(16)

So (14) remains true if we replace Mρ
µ by M .

• The weak estimate is valid if one replaces fµ by any finite measure ν.

Lemma 4.4. Let µ be a positive Borel measure which satisfies the growth condi-
tion. There exists a constant C such that, for all β > 0, z0, R > 1 − |z0| and a
positive function f :
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Rβ

∫

d(z0,w)>R

f(w)dµ(w)

d(z0, w)1+β
≤ CM(fµ)(z)

for all z ∈ B(z0, R). In particular, we have

µβ(B(z0, R))

∫

d(z0,w)>R

dµ(w)

|1 − z0w|1+β
≤ C.

Proof: Fix β > 0, z0, R > 1− |z0| and a positive function f . Let z ∈ B(z0, R).
We have

∫

d(z0,w)>R

f(w)dµ(w)

d(z0, w)1+β
≤

∑

k=0

∫

2kR<d(z0,w)≤2k+1R

f(w)dµ(w)

d(z0, w)1+β

≤
∑

k=0

1

(2kR)1+β

∫

d(z0,w)<2k+1R

f(w)dµ(w)

≤
∑

k=0

1

(2kR)1+β

∫

d(z,w)<2K2k+1R

f(w)dµ(w)

≤ CM(fµ)(z)
∑

k=0

2kR

(2kR)1+β

≤ CR−βM(fµ)(z).

The particular case follows from the fact that

µβ(B(z0, R)) ≤ CRβ,
1

|1 − z0w|1+β
≤ C

d(z0, w)1+β
, and M(fµ)(z0) ≤ 1 for f ≡ 1.

2

For a Radon measure ν, set, for z ∈ D,

T ∗ν(z) =

∫

D

d|ν|(w)

|1 − zw| .

Lemma 4.5. Let Ω be an open pseudo ball which touches the boundary and let µ

be a positive Borel measure on D satisfying the growth condition.
If we set ν = χΩcµ, then

∫

Ω

T ∗(fν)2dµ ≤ C

∫
|f |2dν, f ∈ L2(ν).
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Proof: It is enough to prove that for some η > 0, there exists ρ > 1, γ > 0 and
C > 0 such that

(17) µ({z ∈ Ω : T ∗(fν)(z) > (1 + η)t}) ≤ µ({z ∈ Ω : Mρ
µ(fν)(z) > γt}).

Indeed if (17) is true, then

∫

Ω

T ∗(fν)2dµ =

∫ +∞

0

µ({z ∈ Ω : T ∗(fν)(z) > t})2tdt

= (1 + η)2

∫ +∞

0

µ({z ∈ Ω : T ∗(fν)(z) > (1 + η)t})2tdt

≤ C

∫ +∞

0

µ({z ∈ Ω : Mρ
µ(fν)(z) > γt})2tdt

≤ C

∫

Ω

Mρ
µ(fν)2(z)dµ(z)

≤ C

∫
|f |2dν, by (14).

We prove (17) using Lemma 2.4 applied to the open set

Et = {z ∈ Ω : T ∗(fν)(z) > t}.

We obtain (17) once we prove that for each j

(18) µ({z ∈ B∗
j : T ∗(fν)(z) > (1 + η)t, Mρ

µ(fν)(z) ≤ γt}) = 0,

where B∗
j is a term of the first decomposition of the open set Et with respect to

Lemma 2.4.
In fact we will have
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µ({z ∈ Ω : T ∗(fν)(z) > (1 + η)t})
≤
∑

j

µ({z ∈ B∗
j : T ∗(fν)(z) > (1 + η)t})

≤
∑

j

(
µ({z ∈ B∗

j : T ∗(fν)(z) > (1 + η)t, Mρ
µ(fν)(z) ≤ γt})

)

+
∑

j

(
µ({z ∈ B∗

j : Mρ
µ(fν)(z) > γt})

)

≤
∑

j

µ({z ∈ B∗
j : Mρ

µ(fν)(z) > γt})

≤ Cµ({z ∈ Ω : Mρ
µ(fν)(z) > γt}).

by the bounded overlap property.
So it remains to prove (18).
Set B = B

(
zB, K1̺

)
= B∗

j and B′ = B
(
zB, K2̺

)
= B∗∗

j .

Suppose without loss of generality that there exists ξ0 ∈ B such that

Mρ
µ(fν)(ξ0) ≤ γt.

Let z0 be a point in Ec
t ∩ B

(
zB, K3̺

)
. Set B to be a ball centered at z0 whose

radius is equal to max (2(1 − |z0|), C̺), where C is a constant greater than or
equal to K3 to be precised later. Then B touches the boundary of D.

Let f1 = fχB and f2 = f − f1 = fχB
c . There exists a constant A1 such that

(19) T ∗(fν)(z) ≤ T ∗ (fνχB) (z) + (1 + A1γ)t, z ∈ B.

To prove (19), let z ∈ B. Then

T ∗ (fνχB
c) (z) =

∫

B
c

|f(w)|dν(w)

|1 − zw|

≤
∫

B
c

|f(w)|dν(w)

|1 − z0w| +

∫

B
c
|f(w)|dν(w)

∣∣∣∣
1

1 − zw
− 1

1 − z0w

∣∣∣∣

≤ t +

∫

B
c
|f(w)|dν(w)

d(z, z0)
1

2

d(w, z0)
3

2

provided that C is chosen large enough so that we can use Proposition 2.12.
Hence by Lemma 4.4 we have

T ∗ (fνχB
c) (z) ≤ (1 + A1γ)t.
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This proves (19).

Set B̃ = B(ξ0, C1K1̺) and observe that B ⊂ B̃ ⊂ B′ ⊂ Et.
Now, if C̺ ≥ 2(1 − |z0|), there exists a constant A2 > 0 such that for z ∈ B

(20) T ∗ (fνχB) (z) ≤ T ∗
(
fνχB̃

)
(z) + A2γt.

To prove (20), we have

T ∗ (fνχB) (z) ≤ T ∗
(
fνχB̃

)
(z) +

∫

B\B̃

|f(w)|dν(w)

|1 − zw

= T ∗
(
fνχB̃

)
(z) + I,

where I =
∫

B\B̃
|f(w)|dν(w)

|1−zw
.

By (5), 1
|1−zw|

≤ C
d(z,w)

, and on the other hand, for w ∈ B\B̃ we have

C1K1̺ ≤ d(ξ0, w) ≤ K(d(zB, ξ0) + d(zB, w)) < K(K1̺ + K(d(zB, z) + d(z, w))).

Thus
K2d(z, w) > C1K1̺ − KK1̺(K + 1) = K1K

2̺.

Therefore
I ≤ CM(fν)(ξ0) ≤ A2γt.

This proves (20). Since B̃ ⊂ Ω, we have T ∗
(
fνχB̃

)
(z) = 0.

For the case C̺ < 2(1 − |z0|), we have for z ∈ B and w ∈ B,

|1 − zw| > 1 − |z| > C ′(1 − |z0|).
Hence

T ∗ (fνχB) (z) ≤ C

1 − |z0|

∫

B

|f |dν ≤ CMρ
µ(fν)(ξ0) ≤ C”γt.

So we finally conclude that there exists a constant A > 0 such that

T ∗(fν)(z) ≤ (1 + Aγ)t, z ∈ B.

From this we have

µ({z ∈ B : T ∗(fν)(z) > (1 + η)t, Mρ
µ(fν)(z) ≤ γt})

≤ µ({z ∈ B : (1 + Aγ)t > (1 + η)t, Mρ
µ(fν)(z) ≤ γt});

so if we choose 0 < γ ≤ η

2A
, we obtain (18). This ends the proof of the Lemma.

2
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4.3. Curvature in the unit ball.

Definition 4.6. Given three points z1, z2, z3 ∈ D, we define their curvature
c(z1, z2, z3) by

c2(z1, z2, z3) =
∑

σ

K
(
zσ(2), zσ(1)

)
K
(
zσ(3), zσ(1)

)

where the sum is taken over the six permutations of 1, 2, 3.

For a positive Borel measure ν the quantity

c2(ν) =

∫∫∫
c2(z1, z2, z3)dν(z1)dν(z2)dν(z3)

is called the Total curvature of ν. One important fact about this curvature is
that c2(z1, z2, z3) > 0. Indeed for z and w in D

K(z, w) =
ℜ(1 − zw)

|1 − zw|2 =
1 −ℜ(zw)

|1 − zw|2 > 0

since ℜ(zw) < 1.
The next Lemma gives a relation between this curvature and our operator T .

Lemma 4.7. Let νj, j = 1, 2, 3 be three Borel measures. Then

∑

σ

∫
T
(
νσ(1)

)
T
(
νσ(2)

)
dνσ(3) =

∫∫∫
c2(z1, z2, z3)dν1(z1)dν2(z2)dν3(z3).

Proof: We have
∫

T
(
νσ(1)

)
T
(
νσ(2)

)
dνσ(3)

=

∫∫∫
K
(
zσ(3), zσ(1)

)
K
(
zσ(3), zσ(2)

)
dνσ(1)

(
zσ(1)

)
dνσ(2)

(
zσ(2)

)
dνσ(3)

(
zσ(3)

)
.

Since for each σ

dνσ(1)

(
zσ(1)

)
dνσ(2)

(
zσ(2)

)
dνσ(3)

(
zσ(3)

)
= dν1(z1)dν2(z2)dν3(z3),

summing over the six permutations we obtain

∑

σ

∫
T
(
νσ(1)

)
T
(
νσ(2)

)
dνσ(3) =

∫∫∫
c2(z1, z2, z3)dν1(z1)dν2(z2)dν3(z3).

2



28 EDGAR TCHOUNDJA

We apply Lemma 4.7 to ν1 = ν2 = fµ with f (a real function) in L2(µ) and
ν3 = χBµ with B a fixed pseudo ball which touches the boundary. We then have

2

∫

B

|T (fµ)|2dµ + 4

∫
T (fµ)T (χBµ) fdµ(21)

=

∫∫∫
c2(z, w, ζ)f(z)f(w)χB(ζ)dµ(z)dµ(w)dµ(ζ).

In particular taking f = χB, one gets

6

∫

B

|T (fµ)|2dµ =

∫∫∫

B3

c2(z, w, ζ)dµ(z)dµ(w)dµ(ζ),

and thus
∫∫∫

B3

c2(z, w, ζ)dµ(z)dµ(w)dµ(ζ) ≤ Cµ(B),(22)

provided µ satisfies condition ii) of 3) in Theorem 4.1 (case k = 1).
We are now ready to produce a ”big piece” inside a given pseudo ball B which

touches the boundary. As in [V], set

c2
B(z) =

∫∫

B2

c2(z, w, ζ)dµ(w)dµ(ζ), z ∈ B.

By Chebyschev’s inequality, condition ii) of 3) in Theorem 4.1 and (22)

µ({z ∈ B : cB(z) > t or |T (χBµ)(z)| > t})

≤ 1

t2

(∫

B

c2
B(z)dµ(z)+

∫

B

|T (χBµ)(z)|2dµ(z)

)

≤ C
µ(B)

t2
.(23)

From this we have the following lemma.

Lemma 4.8. Given 0 < θ < 1, there exists a set E ⊂ B such that

c2
B(z) ≤ C

θ
and |T (χBµ)(z)|2 ≤ C

θ
, z ∈ E

and

µ(B\E) ≤ θ(µ(B)).
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Proof: Fix 0 < θ < 1. If µ(B) = 0, there is nothing to do. If µ(B) 6= 0, set

E =

{
z ∈ B : c2

B(z) ≤ C

θ
and |T (χBµ)(z)|2 ≤ C

θ

}
.

It is then easy to verify that this set satisfies our requirements.

2

We set k(z, w) =
∫

B
c2(z, w, ζ)dµ(ζ) so that

∫

E

k(z, w)dµ(w) = c2
B(z) ≤ C

θ
(z ∈ E).(24)

Since k(z, w) = k(w, z) we obtain the following lemma.

Lemma 4.9. There exists a constant C = C(θ) which does not depend on B such
that

∫∫∫
c2(z, w, ζ)f(z)f(w)χB(ζ)dµ(z)dµ(w)dµ(ζ) ≤ C

∫
f 2dµ,

where f ∈ L2(E) = L2(E, µ), with f real.

Proof: The result follows from Schur’s test since∫

E

k(z, w)dµ(w) ≤ C

θ
(z ∈ E).

2

Therefore from (21), Lemma 4.8 and Lemma 4.9, for any f ∈ L2(E), we get
∫

B

|T (fµ)|2dµ ≤ C

(∫

B

|T (fµ)|2dµ

) 1

2
(∫

f 2dµ

) 1

2

+ C

∫
f 2dµ

and consequently∫

B

|T (fµ)|2dµ ≤ C

∫

E

f 2dµ, f ∈ L2(E).

By duality this implies

∫

E

|T (gµ)|2dµ ≤ C

∫

B

g2dµ, g ∈ L2(B).

So by Chebyshev’s inequality

µ({z ∈ E : |T (gµ)(z)| > t}) ≤ C

t2

∫

B

g2dµ, g ∈ L2(B).(25)
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Now, for every h ∈ L2(D, µ), Lemma 4.5 and (25) give

µ({z ∈ E : |T (hµ)(z)| > t})

≤ µ

({
z ∈ E : |T (hχBµ)(z)| >

t

2

})

+µ

({
z ∈ E : |T (hχBcµ)(z)| >

t

2

})

≤ C

t2

∫

B

h2dµ +
C

t2

∫

B

|T (hχBcµ)(z)|2dµ

≤ C

t2

∫

B

h2dµ +
C

t2

∫

Bc

h2dµ

≤ C

t2

∫

D

h2dµ.(26)

4.4. A good λ inequality. We will establish in this section the next crucial
argument in the proof of the implication 3) ⇒ 2) of Theorem 4.1. The result is
the following theorem.

Theorem 4.10. Let µ be a positive Borel measure on D with satisfies i) and ii).
Then for each η > 0, there exists γ = γ(η) > 0 small enough so that

µ
({

z ∈ D : |T (fµ)(z)| > (1 + η)t and Mρ
µ(f 2µ)

1

2 (z) ≤ γt
})

≤ 1

2
µ ({z ∈ D : |T (fµ)(z)| > t}) .

Proof: Let Ω = {z ∈ D : |T (fµ)(z)| > t}. The set Ω is open. By Lemma 2.4
applied to this set, the theorem will follow if we can prove the following lemma.

Lemma 4.11. Let η > 0 and 0 < α < 1. There exists γ = γ(η, α) > 0 such that

µ
({

z ∈ B∗
j : |T (fµ)(z)| > (1 + η)t and Mρ

µ(f 2µ)
1

2 (z) ≤ γt
})

(27)

≤ αµ
(
B∗∗

j

)
,

where B∗
j and B∗∗

j are respectively the first and the second decompositions of the
open set Ω with respect to Lemma 2.4.
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Indeed, if the lemma is true, then

µ
({

z ∈ D : |T (fµ)(z)| > (1 + η)t and Mρ
µ(f 2µ)

1

2 (z) ≤ γt
})

= µ
({

z ∈ Ω : |T (fµ)(z)| > (1 + η)t and Mρ
µ(f 2µ)

1

2 (z) ≤ γt
})

≤
∑

j

µ
({

z ∈ B∗
j : |T (fµ)(z)| > (1 + η)t and Mρ

µ(f 2µ)
1

2 (z) ≤ γt
})

≤ α
∑

j

µ
(
B∗∗

j

)

≤ αMµ(Ω) (by the bounded overlap property).

We then have to choose α so that αM = 1
2
. We obtain the result.

Let us turn our attention to the proof of the Lemma.

Set B = B
(
zB, K1̺

)
= B∗

j and B′ = B
(
zB, K2̺

)
= B∗∗

j .
We follow with a little change, the proof of the Lemma 4.5.
Suppose without loss of generality that there exists ξ0 ∈ B such that

Mρ
µ(f 2µ)

1

2 (ξ0) ≤ γt.

Let z0 be a point in Ωc ∩ B
(
zB, K3̺

)
. Let B be a ball centered at z0 whose

radius is equal to max (2(1 − |z0|), C̺), where C is a constant greater than or
equal to K3 to be precised later. Then B touches the boundary of D.

Let f1 = fχB and f2 = f − f1 = fχB
c . As in the proof of (19) there exists a

constant A1 such that

(28) |T (fµ)(z)| ≤ |T (fµχB) (z)| + (1 + A1γ)t, z ∈ B.

On the other hand, if we set B̃ = B(ξ0, C1K1̺), we observe that

B ⊂ ρB̃ ⊂ B′ ⊂ Ω

for some ρ > 1.
Now, if C̺ ≥ 2(1 − |z0|), there exists a constant A2 > 0 such that for z ∈ B,

(29) |T (fµχB) (z)| ≤ |T
(
fµχB̃

)
(z)| + A2γt.

We obtain (29) as in the proof of (20).
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From (28), we have

µ
({

z ∈ B : |T (fµ)(z)| > (1 + η)t and Mρ
µ(f 2µ)

1

2 (z) ≤ γt
})

≤ µ
({

z ∈ B : |T (fµχB)(z)| > (η − A1γ)t and Mρ
µ(f 2µ)

1

2 (z) ≤ γt
})

.

If C̺ < 2(1 − |z0|), then as in the proof of the Lemma 4.5 we have

|T (fµχB) (z)| ≤ C”γt

so that for γ small enough

{
z ∈ B : |T (fµχB)(z)| > (η − A1γ)t and Mρ

µ(f 2µ)
1

2 (z) ≤ γt
}

= ∅.

Thus (27) is satisfied in this case. If C̺ ≥ 2(1 − |z0|), then from (29), we have

µ
({

z ∈ B : |T (fµ)(z)| > (1 + η)t and Mρ
µ(f 2µ)

1

2 (z) ≤ γt
})

≤ µ
({

z ∈ B : |T (fµχB)(z)| > (η − (A1 + A2)γ)t and Mρ
µ(f 2µ)

1

2 (z) ≤ γt
})

.

If we choose γ small enough (0 < γ ≤ η

2(A1+A2)
will do), we finally have

µ
({

z ∈ B : |T (fµ)(z)| > (1 + η)t and Mρ
µ(f 2µ)

1

2 (z) ≤ γt
})

(30)

≤ µ
({

z ∈ B : |T (fµχB̃)(z)| >
η

2
t and Mρ

µ(f 2µ)
1

2 (z) ≤ γt
})

.

We distinguish two cases.
If B does not touch the boundary then we easily obtain,

|T (fµχB̃)(z)| ≤ C∗Mf(ξ0) ≤ Cγt,

such that for γ small enough (0 < γ ≤ η

4C
), (27) is satisfied.

Finally, suppose that B touches the boundary. Let E be a ”big piece” associ-
ated with the ball B and the number θ. From (30) and (26) we have
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µ
({

z ∈ B : |T (fµ)(z)| > (1 + η)t and Mρ
µ(f 2µ)

1

2 (z) ≤ γt
})

≤ µ
({

z ∈ B : |T (fµχB̃)(z)| >
η

2
t and Mρ

µ(f 2µ)
1

2 (z) ≤ γt
})

≤ µ(B\E) + µ
({

z ∈ E : |T (fµχB̃)(z)| >
η

2
t
})

≤ θµ(B) +
C

η2t2

∫

B̃

|f |2dµ

≤ θµ(B) +
C

η2t2
µ
(
ρB̃
)

Mρ
µ(f 2µ)(ξ0)

≤ θµ(B) +
C

η2t2
µ
(
ρB̃
)

γ2t2

≤
(
θ + Cη−2γ2

)
µ
(
ρB̃
)

≤ αµ(B′),

provided θ and γ are chosen small enough so that (θ + Cη−2γ2) ≤ α. This
completes the proof of the lemma and consequently the proof of the theorem.

2

4.5. Proof of the implication 3) ⇒ 2) of Theorem 4.1. Let f ∈ Lp(µ),
p > 2. We have
∫

|T (fµ)|pdµ

=

∫ +∞

0

µ ({z ∈ D : |T (fµ)(z)| > t}) dtp

= (1 + η)p

∫ +∞

0

µ ({z ∈ D : |T (fµ)(z)| > (1 + η)t}) dtp

≤ (1 + η)p

∫ +∞

0

µ
({

z ∈ D : |T (fµ)(z)| > (1 + η)t; Mρ
µ(f 2µ)

1

2 (z) ≤ γt
})

dtp

+(1 + η)p

∫ +∞

0

µ
({

z ∈ D : Mρ
µ(f 2µ)

1

2 (z) ≥ γt
})

dtp

≤ (1 + η)p

2

∫ +∞

0

µ ({z ∈ D : |T (fµ)(z)| > t}) dtp

+
(1 + η)p

γp

∫ (
Mρ

µ(f 2µ)
1

2 (z)
)p

dµ
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by Theorem 4.10. We then choose η small and use Proposition 4.3 to obtain

∫
|T (fµ)|pdµ ≤ C

∫
|f |pdµ.(31)

2

4.6. Proof of the implication 2) ⇒ 1) in Theorem 4.1. Since Tα is self
adjoint, then by duality, for 1 < p < 2 the inequality (31) holds, and so for p = 2
by interpolation. This finishes the proof.

2

We have proved the result for the case α = −n. The same argument holds with
minor changes for −n − 1 < α < −n. In fact one just has to use the following
maximal operator

Mν(z) = sup
r>1−|z|

|ν|(B(z, r))

rk

and the following curvature

c2(z1, z2, z3) =
∑

σ

Kα

(
zσ(2), zσ(1)

)
Kα

(
zσ(3), zσ(1)

)
.

5. Comments

• One reason why we could not carry out our argument in the remaining
range −n < α < −1 is that the curvature we have defined is no longer
strictly positive in this range. Nevertheless, we conjecture that conditions
3) in Theorem 4.1 are sufficient for boundedness in the remaining range.

• Since Tα is a self adjoint CZO, one classical result on the Calderón-
Zygmund theory is that a CZO which is bounded in L2(µ) is weakly
bounded. So a natural question comes:

is it true that conditions 3) in Theorem 4.1 imply that Tα is weakly
bounded?, that is

µ({z ∈ D : |Tαf(z)| > λ}) ≤ C
‖f‖L1(µ)

λ
, for all f ∈ L1(µ).
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