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Abstract

This investigation is devoted to the study of welding and its effect on the work-
piece, focusing on the thermo and fluid dynamical phenomena occuring during a
autogenous or non-autogenous arc fusion welding process. Its aim is to simulate
the behaviour of the weld pool and analyze the consequence of the solid-liquid
phase change, thus obtaining a methodology for predicting the appearance of
weld defects related to solidification and cooling. In order to accomplish this, we
solve equations governing a number of continuum mechanical and electromag-
netical quantities, as well as consider the motion of the freely moving boundary
of the weld pool. Since the state of these quantities is strongly influenced by
phenomena such as arc and droplet impingement, non-isothermal phase change,
surface tension, Marangoni forces and Lorentz forces, much effort is necessar-
ily devoted to the modelling of the corresponding fluxes and sources, as well
as to the implementation of computationally efficient techniques for simulating
the geometrical deformation of the workpiece, which in our setting is entirely
determined by the motion of the weld pool surface.

Common to all arc fusion welding processes is the employment of a welding
arc. Many techniques rely on the arc to clean and shield the workpiece during
the process, however in this study we consider it to be its main purpose to cause
the local increase of thermal energy that is required for the establishment of the
weld pool, and also to exert the mechanical forces that provoke the subsequent
fluid flow which enhances heat transfer and facilitates weld penetration. The
physics of the welding arc itself is quite intricate, and although the modelling of
the arc is not the prime objective of this research project, we conclude that arc
forces act on the pool surface, and that the investigation of the arc behaviour
is important insofar that it provides input to the pool model and thus enables
a more accurate prediction of the quality of the weldment that is created once
the pool has solidified.

Keywords: Arc Welding, Weld Pool, Multiphysics Simulations,
Moving Boundaries, Free Surfaces, Mesh Motion, Two-Phase Flow,
Incompressible Flow, Electromagnetics, Finite Element Methods
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1 Foreword and Acknowledgements

The work performed during the creation of a simulations tool consists in mod-
elling the process one wishes to simulate, solving a set of equations, validating
and in a fair way presenting the result. The purpose of this treatise is to cre-
ate a tool for simulating the appearance of cold laps in arc fusion welding (see
section 4), a tool that will increase our understanding the underlying physics
and the passage in the weld process that cause these faults. In order to accom-
plish this purpose, the author has undertaken a journey through the study of
relativistic continuum mechanics, hands-on welding sessions, analytic solutions
of Maxwells equations, and extensive bug checking of computer code for finite
element analysis.

Since the prime objective of this research project is to understand why and
when weld defects appear, and employ this knowledge when designing high
performance welding sequences, it has been necessary to perform experiments
and measurements on joints produced using such fusion processes. The results
and analyses of these experiments are reported in [28, 29, 30, 31, 32]. In addition
to this monograph, the theoretical work on the simulation of weld pools has also
been reported in [22, 23, 24].

Marcus Edstorp is a Master of Science in Mathematics with orientation to-
wards Industrial Mathematics from the University of Gothenburg. His Master
Thesis work [21] in the field of Materials Science is on the simulation of fatigue
micro-cracks, and was performed at the Chalmers University of Technology de-
partment of Computational Mathematics and in cooperation with The Swedish
National Testing and Research Institute. His interest in weld pool simulations
was aroused by the several research projects concerning the simulation and con-
trol of manufacturing processes incited and carried out at the University West.

The author would like to express his gratitude towards colleagues at Univer-
sity West as well as towards project participators at the supporting companies
(see section 4).

’assumption is the mother of all fuck-ups’1

Production Technology Centre, Trollhättan, September 5, 2008

1Quoted from the movie Under Siege 2
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2 The Arc Fusion Welding Process

Messler (c.f. [60]) attempts a definition of welding, describing it as a process
in which materials of the same fundamental type or class are brought together
and caused to join (and become one) through the formation of primary (and,
occasionally, secondary) chemical bonds under the combined action of heat and
pressure. The reader may also refer to this work for different types of classifica-
tions of welding techniques. We shall now brief upon the fundamental principles
common to the set of processes that we consider in this study. These include
the gas tungsten arc welding (GTAW) technique (a.k.a. TIG) when performed
autogenously, plasma arc welding (PAW) in conduction mode, and gas metal
arc welding (GMAW) techniques in spray transfer mode, including MIG and
MAG and their tandem versions. In addition to the mentioned electrode arc
fusion welding processes, our results apply to some extent also to the high en-
ergy density beam welding techniques including electron-beam welding (EBW)
and laser-beam welding (LBW), in cases when they are not operated in key-hole
mode.

2.1 The workpiece

The material body subject to welding is known as the workpiece. The workpiece
will at every time instant t in the simulation interval [0, tend], via its current
configuration, be identified with a subset Ω(t) of three-dimensional Euclidean
(x, y, z)-space. When simulating square butt joints (as well as bead-on-plate
welds), it is implicitly assumed that the weld plane, i.e. the surface on which
the arc impinges, is a subset of the plane y = 0 prior to the welding sequence,
and that its outwards normal points in the direction of increasing y.

The material of the unprocessed workpiece is known as the base material or
base metal. This terminology is employed in order to distinguish the base ma-
terial from the material that is added to the workpiece during non-autogenous
welding processes, i.e. the filler material (filler metal). The mechanical prop-
erties of the filler material often differs from those of the base material, since
the characteristics of the former are chosen in such a fashion that the quality
of the joint is optimized. However, the tracking of the different species in a
heterogenous weld implies a complication that we do not attempt to resolve
within the scope of this project, and so we treat all welds as homogenous; That
is, the base and filler metals are the one and same, and in many of the cases
we consider it consists in an alloyed steel or a titanium alloy. At this stage, it
should be pointed out that we consider every material as a continuum, com-
pletely characterized by its density, conductivity, viscosity, latent heat content,
melt interval and surface tension, defined as pointwise functions on Ω(t). We
abandon the continuum view only when trying to capture the occurence of outer
lack of fusion (see section 2.4), and preclude the possibility of lack of fusion in
the interior of the weld. Thus heterogenous welds can actually be simulated,
if the components can be approximated by the same values for those material
properties.
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2.2 The welding arc

In this text we refer to as the arc any means by which energy is transported
from the solid welding equipment to the workpiece. The energy can for example
be transported as kinetic energy carried by thermally emitted electrons, as heat
via a plasma or a filler metal droplet, or it can be carried by the photons of a
laser beam. The manner in which the arc transports the energy is determined
by the type of welding process that is employed. However, it is unambiguously
so, that the arc affects the workpiece not only by the generating heat at the weld
surface and/or in the pool, but also by transferring to it a considerable amount
of momentum, sometimes in the form of droplets and grosse sets of particles
impinging en masse.

The analysis of the welding arc behaviour is a seperate research field. For
a survey on the subject, see [81]. At the present we are interested primarily in
the weld pool, so the results elsewhere obtained for arcs are important to us
only in that they give expressions for sources and input boundary conditions to
the weld pool model. However, there is mutual influence between arc and weld
pool, so an ultimate goal is to couple their respective models.

2.3 The influence of the arc on the workpiece

The influence of the arc on the workpiece is sometimes characterized by numbers
such as the transfer efficiency, the transferred power and the net heat input
(c.f. [60]). These are rough measures, there is sometimes ambiguity in their
definitions, and they do not uncloak the details of the influence of the welding
arc on the workpiece. Since we will differentiate between the manners in which
energy is introduced in, and transferred away from, the workpiece, we will not
indulge in the definitions of these concepts (although we sometimes refer to
them without further ado!). An exception is when we hypothesize the shape
of the inwards heat flux distribution on the weld surface (usually Gaussian in
the distance from a given point), and choose its size such that if no heat is
lost from the workpiece during the process, the total flux through the surface
is equal to a number referred to as the transferred power. In these cases we
define the transferred power as the total power W(t) delivered by the source,
i.e. the source power, multiplied by the transfer efficiency η, which is a process
specific number between 0 and 1. We also make use of a source distribution
coefficient a(t) (the spot radius), which is related to the dispersion of the heat
flux around the source center P (t). The purpose of the transfer efficiency is
to take into account energy losses such as the ones due to electric resistance
in the welding equipment and heat losses from the arc. It can also model heat
losses from the workpiece, which is usually the type of transfer efficiency that is
physically measured, using for example a calorimeter (see [50]). Since we model
heat losses seperately, our transfer efficiency will be higher than such. For a
more detailed discussion of arc (and melting) efficiencies, and measurements
thereof, see [20]. For an example of an application of inverse techniques for
estimating these quantities for a GTAW process, see [33].



4 2 THE ARC FUSION WELDING PROCESS

For welding processes employing electric energy sources, we take W(t) to be
the product of the voltage and amperage as displayed at the welding terminal.
This view of the source power is stringent with our strive to have simulations
approach real life applications. However, it impacts on the value of the transfer
efficiency, since measuring the voltage between a TIG electrode and the base
plate would not give the same value as when measuring at the terminal. Taking
a global view of welding simulation, we would like to model also the electric
circuit, but this step has not been incorporated in this treatise.

Inherent to the fusion welding process is the melting of the base material.
Except for cleaning and shielding the workpiece, we consider it to be the major
purpose of the source and arc to establish the weld pool (melt pool, liquid pool).
Since the workpiece is considered homogenous, the weld pool is at every time
instant t constituted by the part Ωw(t) of the workpiece the temperature of
which is above the liquidus point of the base material. It is this melting, and
the subsequent cooling that makes feasible the epitaxial growth of the metallic
crystal structure which upon solidification implies material continuity between
the joint surfaces, and thus the weld itself. For GTAW, the heating is accom-
plished mainly by a transformation into thermal energy of the kinetic energy of
the welding arc electrons (or ions). For PAW, it is a consequence also of the ther-
mal conduction through the workpiece surfaces caused by the hot plasma. Since
the major part of the thermal energy is generated at, or conducted through, the
surface, the actual melting of the base material is accomplished by thermal dif-
fusion and the subsequent convective transport of thermal energy that occurs as
the latent heat barrier is overcome. EBW and LBW techniques are frequently
operated in keyhole mode, i.e. the mode during which the depth of the pool
cavitation is much greater than its width and burn-through may even appear,
and during such processes other phenomena play important roles in the ad-
vancement of the pool. During LBW, the recoil pressure due to the evaporation
of the base material prevents the keyhole from collapsing, and during EBW a
relatively large part of the transferred energy can be generated inside the work-
piece. This makes keyhole welding essentially different from the conduction
mode techniques we foremost consider in this treatise.

When welding alloys, the base material does not melt, nor does it solidify, at
a specific temperature, but over a temperature range. This is why we employ the
terminology liquidus point and solidus point, and write Tm and Ts respectively.
This range is usually called the melting interval, and material at temperature in
the melting interval is called mushy. Likewise, at every time instant t, the part
Ωmz(t) of the workpiece the temperature of which is above the solidus point but
below the liquidus point of the base material, is termed the mushy zone.

The experimental study of welds is often performed after the welding process
is terminated, as is also the case in our project. One can then divide the
weldment into four distinct zones; these are the Fusion Zone (FZ), the Partially
Melted Zone (PMZ), the Heat Affected Zone (HAZ) and the unaffected base
material. The FZ is the part of the workpiece the temperature of which during
welding was ever above the liquidus point, i.e. was ever a part of the weld
pool. The PMZ is the part that was ever mushy but never completely liquid.
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During welding, heat is conducted away from the PMZ, where it affects the
material properties of the base material. The HAZ is the part of the workpiece
the microstructure (or mesostructure2) of which was significantly influenced by
the heat input but at all times was at temperatures below the solidus point.

The arc exerts pressure and drag forces on the surface of the weld pool. This
causes the shape of the workpiece to change during welding. Specifically, there
is created an arc cavity. This cavity is of considerable depth during keyhole
welding, but also appears when using GMAW and TIG equipment. Due to the
limited compressibility of the liquid metal it follows that peripheral parts of the
weld pool surface rise above their original levels, unless substantial evaporation
of the base metal occurs such as in keyhole laser welding; It even happens that
the molten metal overflows the boundaries of the weld pool and flows onto the
solid base material. This may give rise to one of the unwanted phenomena that
we will try to investigate in more detail. However we note that the arc forces
can also have positive effects on the pool in that the cavitation provokes weld
penetration and that they can aid in keeping the pool in place when welding
out of position.

2.4 Cold laps

A cold lap occurs when, upon solidification, the workpiece experiences self con-
tact without enough fusion across the interface, the result thus being the for-
mation of a crack. Due to stress intensification at the crack tip, the resistance
of the weldment towards fatigue and other sources of structural failure is low-
ered. Typically, the defect originates as the weld pool overflows or spatters on
to the solid base plate and solidifies without carrying enough energy to estab-
lish the heat transfer required to partially melt the base plate and enable the
recrystallization process the result of which is material continuity. These de-
fects can sometimes be treated by mechanically postprocessing the weld, but
this is costly and time consuming, so it is preferable to have them not appear at
all. Investigations and cathegorisations of cold laps appearing at the weld toe
during tandem GMA welding can be found in [28, 30]. In [32] their appearance
is shown to derive mainly from the mentioned spatter and overlap. See also [2]
for an investigation of the appearance of cold laps in cruciform joints.

2By microstructure we mean the crystalline structure at the length scale of one Burgers
vector, and by mesostructure we designate the pattern of the grains, each of which is made
up from a (nearly) perfect lattice.
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3 A Brief History of Weld Pool Simulations

We now brief upon the recent history of welding simulations. Inlining with
the aim of our project, we focus on attempts to simulate the vicinity of the
fusion zone, and hence do not discuss further the results of computational weld
mechanics (CWM) simulations in which the mechanical state of the entire weld-
ment is sought. In the CWM simulations, the weld pool is often represented
simply as a heat source and fluid flow is ignored, even though convective effects
are sometimes taken into account by employing effective values for the thermal
properties of the weld and base metal. In [74, 73] there was presented solutions
for a coupling of fluid dynamics and solid mechanics in the same simulation,
but else such investigations are not very common.

The article [44] surveys in a comprehensive manner the efforts within the
field of weld pool, welding arc and welding electrode simulations performed
until the year 1990. Also, the article [89] assessed the state of weld phenomena
modelling in the year 1995. In the present monograph we highlight only a small
yet significant part of these contributions to the early development of weld pool
simulations.

[51] claims to be the first investigation in which the location of the solid-
liquid boundary is a priori unknown. Instead it is calculated as a steady solution
of the Boussinesq approximation for the laminar Navier-Stokes equations in
combination with an enthalpy method and the effective-viscosity formulation,
much in the vein of the approach employed in the present thesis. [51] also
presents an analytical expression for the Lorentz force, which is due to the
electric current flowing through the workpiece during an electric arc welding
process. This expression has since been subject to extensive use in weld pool
simulations, see section 5.3. The work was carried on in [52].

In the earlier history of weld pool simulations, the investigation [87] focused
on the effects of a surface tension coefficient that varied with the concentrations
of a surface active element and temperature. It was found that for the GTAW
process, the concentration of sulphur had an appreciable effect on the weld pool
development, however this effect of the minor elements on the weld pool flow
and shape had been experimentally investigated and documented much earlier
(see for example [36, 37] and likewise [38] for high-density beam techniques). In
[86], the model was expanded to incorporate a more detailed modelling of the
evaporative flux. It is now known that the surface tension variation significantly
impacts on the weld pool fluid flow and thus the penetration depth.

Since convection was seen to exercise a considerable effect on the shape and
depth of the weld pool (see for example [86] and [45]) and the chemical com-
position of the weld metal (see for example [15]), and the Lorentz force was
appreciated as a major force driving the fluid flow, one has sought ways of eval-
uating this force in an efficient and accurate way. In the early days of weld pool
simulations, this was done using analytical solutions of the Maxwell equations
(again c.f. section 5.3). In addition to [51] and [52], the work presented in [76]
has often been referred to in the literature. This study also took into account
transient effects in the pool as well as the heat transferred to the pool via filler
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droplets. More recently, refined expressions have been suggested ([53]). There
is of course yet the problem concerning the lack of certainty in the boundary
conditions. The uncertainty in boundary conditions for the weld pool can be
reduced if the pool simulation is coupled to a welding arc simulation. Such mul-
tiphysics simulations have begun to emerge during the last decade (see below),
and the work seems promising.

Despite their popularity, the validity of the analytical expressions for the
Lorentz force are very limited when dealing with moving weld pool surfaces
and complex configurations. In order to approximate these forces in a detailed
way, not only are accurate boundary conditions of importance, but one is also
required to solve yet another set of equations. This certainly is a complex and
time-consuming matter, and this is the reason why analytic expressions are often
used instead, and also why it has long been many a researchers effort to develop
an efficient algorithm that is capable of finding the Lorentz force through the
solution of the equations governing the electromagnetic field. In connection to
this it is worth noting that the articles [48] and [35] contains simulations in which
the Lorentz force is calculated from a potential function for which an equation
is solved on a domain that changes shape with time due to the deformation of
the pool surface.

The first simulations of GTA weld pools considering the dynamic behaviour
of the surface of a convection-conduction weld pool, as well as the impingement
forces of filler metal droplets driven by the arc plasma drag force and electro-
magnetic force (see for example [79]), were developed in the late 90’s. Until
then, one had often considered the pool and arc separately. As mentioned, this
implied that the reliability and usefulness of simulations aimed at predicting
the behaviour of the surface and interior geometry of the weld pool, were often
limited by the lack of certainty in the input boundary conditions and parameter
values (c.f. [12]). Specifically, the arc efficiency and radii produced by the weld-
ing process, as well as heat transfer coefficients at clamped, cooled and weld
surfaces are inherently difficult to experimentally determine. Moreover, values
of the thermophysical quantities of the base material are not always known at
high temperatures. This is a drawback, since it has been known for a long time
that the way in which, for example, the surface tension gradient is taken to
depend upon temperature and the activity of surface active species certainly
has an impact on the weld pool fluid flow and thus on the predicted shape of
the pool (c.f. [86, 15]). One may thus be required to employ an optimization
process in order to obtain approximate values for some parameters. The matter
is further complicated by the fact that the values of the thermophysical quanti-
ties obtained by such an optimization are ”effective values”, which consequently
are dependent on the specific welding method, and on the choice of quantities
the effective values were optimized with respect to. With these reservations,
different algorithms were employed in ([63, 54, 56]) in order recreate GMA and
GTA weld geometries.

Many investigations assume a flat weld pool surface, even though the pres-
ence of a pool cavity due to the arc force, may significantly influence penetration
depth and pool geometry. When simulating autogeneous GTA pools or conduc-
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tion mode laser weld pools, c.f. [93] and [65] respectively, this approach is
under many circumstances adequate. When simulating non-autogenous fusion
weld pools with the aim of predicting reinforcement shape, such an assump-
tion of a flat weld pool surface is not even feasible. In the late 90’s, pools
with surfaces depressed by the influence of arc pressure were simulated in [49],
and the depressing action of filler metal droplets impinging on the surface was
also considered in [7], however a somewhat simpler model employing the Lan-
dau transformation (c.f. section 6.2) had much earlier been used to simulate
deformed surfaces in [75]. Within our project, a model for moving weld pool
surfaces was developed [24, 22, 23], taking into account the influence of filler
metal spray transfer, but not the coupled behaviour of the arc. This model
allows for an arbitrary motion of the pool, except that it in its present state
does not automatically detect self contact. Many other researchers that consider
the motion of the weld pool surface does so in order to accurately predict the
bead shape and weld penetration. In such cases, a simpler representation of the
motion is possible (see section 6.2), and the surface shape is often calculated
by minimising a surface energy functional, c.f. [84, 90]. In [26, 27] (c.f. also
[79] and [42]) there was implemented two-dimensional models for calculating
globular mass transfer and electrical potential in the arc and workpiece. The
authors were thus able to consider electromagnetic effects in a weld pool with a
moving surface. Their results agreed reasonably well with measurements of bead
geometries, and thus showed a promising future for fusion welding simulations
in which the two-way coupling between the arc and pool is considered.

Worth mentioning is also the article [58] which claims to be the first study in
which the finger penetration pool shape generated by the impingement of molten
metal droplets on a GMA weld pool surface was modeled using a volumetric heat
source applied in the workpiece interior.

In [40] there was simulated a steady incompressible weld pool during a sta-
tionary GTAW process. Having noticed earlier that laminar models tend to
overestimate the depth of the weldpool ([39]), the authors used a k − ε turbu-
lent model for the fluid flow. They allowed for a deformed weld pool surface,
but ignored the effects of arc pressure and drag, as well as latent heat effects.
However, the heat flux at the surface was calculated taking into account convec-
tion, radiation and vaporisation and their model treated the effects of impurity
concentrations on surface tension. The results are interesting in that they sug-
gested that the fluid flow under the given circumstances was turbulent, since
the results of the turbulent model corresponded better with experimental results
than those of the laminar model.

A time-dependent axisymmetric model was implemented in [82]. They as-
sumed a flat weld pool surface and a vanishing mushy zone, but incorporated
convective, radiative and evaporative effects, and considered a coefficient of sur-
face tension that depended upon the activity of surface active species and the
surface temperature. This study is noticed since the authors implemented their
model using a finite element method, which contrasts with the otherwise com-
monly used finite volume and finite difference methods. Furthermore, a special
method for evolving the solid-liquid interface had to be used in order to capture
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the sharp pool boundary using a continuum approach. The numerical results
were shown to correspond well with the experimental results for GTAW that
were performed in the same study. This model was later extended in [19, 18],
where it was used to obtain time-dependent 3D simulations with moving sources.

To this day, the arc and pool are often simulated separately or with a simple
coupling, however increasingly often researchers find it useful to consider several
phenomena in a fully coupled way. This is part of taking a global view of
welding, that is, simulations in which the respective models for the welding
equipment, the welding arc, the weld pool, the solid mecahnics of the welded
structure, and the metallurgy of the joint, are coupled together. In addition to
discovering valuable facts about the nature of the welding process and finding
out how to incorporate these in the design stage, it is part of our vision, a vision
that is presumably shared by many other researchers in the field of welding, to
implement a system for online control of the process using feed-back based on
information from monitoring systems and possibly real-time simulations. This
vision is somewhat utopian, however the global view of the process is the view
that one should adhere to in order to work towards this end. An attempt at
this is presented in the article [72].
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4 Project Description

Considering the huge tonnage of weldments being produced every year within
the automotive industry, the aerospace industry and in the field of structural
engineering, one realizes that it is immensely advantageous to achieve high qual-
ity welds in a robust manner. To optimize weld resistance against failure (due
to fatigue for example), we need to minimize the occurrence of defects such as
porosity, liquation cracks, cold cracks, extreme grain coarsening, embrittlement
and the aforementioned cold laps, which is a special kind of defect that arises
when, upon solidification, two parts of the workpiece come in contact but is not
succeeded by proper bonding across their common interface (see section 2.4).
Focusing on cold laps, the aim of our current project is the following: Produce a
methodology/tool for simulating the weld pool created during an arbitrary con-
figured arc fusion welding process, and employ it in order to predict, and thus
understand, the appearance of cold laps. This involves the development and im-
plementation of a continuum mechanical model for the weld pool behaviour, and
investigations of the bonding and heat transfer across surface discontinuities.

Since the task of simulating the appearance of cold laps is a great one, a
partial goal has been to simulate the behaviour of the workpiece with respect to
the distribution of heat, the interior weld geometry and the motion of the weld
pool surface. If this goal is reached, we have at hand a tool that outputs data
that is valuable as input to welding simulations with respect to metallurgy and
solid mechanics. In addition to this monograph, the theoretical work performed
on the simulation of weld pools within this project, has also been reported in
[24, 22, 23].

The work on weld pool simulations which is reported in this monograph
was originally carried out as one of two parts of the project “Formation and
detection of weld defects related to solidification and cooling”, the other part
being focused on welding experiments and detection. The work within both
project parts was supported and guided by the competence of the following
supporting companies;

Volvo Aero Corporation (VAC)
Volvo Construction Equipment (VCE)
ESAB AB
SSAB Tunnpl̊at AB

For the project “Formation and detection of weld defects related to solidi-
fication and cooling”, funding was received by 50 percent from the Knowledge
Foundation3, and by 50 percent from the supporting companies. The work has
since then been carried on mainly as a part of the project “INNSide”, which is
supported in part by VAC.

3Stiftelsen för Kunskaps- och Kompetensutveckling
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5 Mathematical Modelling of Weld Pools

This chapter is devoted to the mathematical modelling of weld pools, which
by necessity also includes modelling the heat transfer in the solid part of the
workpiece, as well as modelling the heat, mass and momentum fluxes induced by
the welding arc. Many of the important phenomena may be incorporated when
employing a continuum mechanical approach, and we therefore commence by
deriving the corresponding equations. Altough a continuum mechanical model
can describe macroscopic phenomena such as deformation and fluid flow, it
does not give any information about the micro and meso structural properties
of the joint. In order to investigate and simulate the bonding, adhesion and
the possible lack of fusion that strongly affects the weld quality, some other
modelling strategy is required, primarily one based on kinetic theory. Kinetic
theory is commonly employed when modelling the solidification front and grain
growth in steel welds, and [66] applied a kinetic model for the dissolution of
gas into the liquid pool. Also promising are the phase-field models considering
the free energy of the system, such as in [77]. This type of analysis we however
postpone indefinitely.

The electromagnetics of the arc and weld pool deserves a separate treatment.
The theory we require for our immediate purposes is developed in section 5.3.

5.1 Nomenclature

We frequently employ the notation X to designate an arbitrary physical quantity
such as mass, momentum or energy. In this section, the unit of X is written [X ].
In what follows, we summarize a substantial part of the nomenclature employed
in this treatise, together with short descriptions and references to the sections
in which the respective quantities are introduced and properly defined. We have
excluded the notation introduced in section 6.8, since it is a stand-alone section
of minor impact.
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Section 2

Notation Unit Description

t ∈ <+ s Time parameter
tend ∈ <+ s Simulation end time
Ω(t) ⊂ <3 Spatial domain for the model equations at

time t ∈ [0, tend], also refered to as the workpiece
W(t) ∈ <+ W Source power at time t ∈ [0, tend]
a(t) ∈ <+ m Spot radius at time t ∈ [0, tend]
P (t) = [P1(t), P2(t), P3(t)]T

m Source center at time t ∈ [0, tend]
η ∈ [0, 1] 1 Transfer efficiency of welding process
Ωw(t) ⊂ Ω(t) Weld pool at time t
Tm ∈ <+ K Liquidus point of base material
Ts ∈ <+ K Solidus point of base material
Ωmz(t) ⊂ Ω(t) Mushy zone at time t
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Section 5.2.1

Notation Unit Description

X t : Ω(t) → < [X ]/m3 Spatial representation of the density
distribution of the arbitrary
quantity X at time t

V (X t) Weighting space for X t

φt : Ω(t) → < 1 Weighting function, a member of V (X t)
qt

tot : Ω(t) → <3 [X ]/m2s Spatial representation of total flux density
for X t at time t

F t : Ω(t) → < [X ]/m3s Spatial representation of total source
density for X t at time t

W ∈ <3 Control volume in Ω(t)
nt : ∂Ω(t) → <3 1 Outwards unit normal to Ω(t)
D
Dt Differential operator for derivative

following the fluid
qt : Ω(t) → <3 [X ]/m2s Spatial representation of non-advective

flux density for X t at time t
Ω0 ⊂ <3 Referential domain for the model equations
{ωt}t∈[0,tend] m Workpiece motion
ω(·, t) : Ω0 3 X ∼−→ ωt|Ω0(X) ∈ Ω(t)

m Simplified notation for workpiece motion
X̂ : Ω0 × [0, tend] → <

[X ]/m3 Material representation of X t

φ̂ : Ω0 × [0, tend] → <
1 Material representation of weighting function

Jω = Jω(·; t) : Ω0 → <i×i, i = 2 or 3
1 Jacobian matrix of the current

configuration at time t
|Jω| : Ω0 → < 1 Jacobian determinant of the current

configuration at time t
X = [X, Y, Z]T m Independent Cartesian coordinates on

the referential domain
x = [x, y, z]T m Independent Cartesian coordinates on

the spatial domain
∇x Nabla operator acting on

spatial representations
∇X Nabla operator acting on

material representations
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q̂ : Ω0 × [0, tend] 3 (X, t) → [q̂1(X, t), q̂2(X, t), q̂3(X, t)] ∈ <3

[X ]/m2s Material representation of non-advective
flux density for X t

F̂ : Ω0 × [0, tend] → <
[X ]/m3s Material representation of total source

density for X t

D ⊂ <2 Domain of definition for r
(s1, s2) m Independent Cartesian coordinates in D
r : D → ∂Ω0 m Parametrization of ∂Ω0

ω̇t : Ω(t) → <3 m/s Spatial representation of motion velocity
v ∈ <3 m/s Velocity of source center
v ∈ <+ m/s Speed of source center
Z? ∈ < m Referential z-coordinate for

space-time material motion
∇(x,t) Nabla operator acting on

space-time material representations
ω? : Ω0 × [0, tend] → <4

Space-time material motion
Jω? ∈ <4×4 Jacobian of current space-time configuration
A ∈ <2×2 1 Matrix for artificial convection

in space-time material formulations
t̂ : ΩZ? × [0, tend] →∈ <2

1 Positively oriented unit tangent to ∂ΩZ?

ΩZ? ⊂ <2 Z-slice of Ω0, for Z? = 0 it is
refered to as the computational domain

∇(X,Y ) Nabla operator acting on
two-dimensional material representations

t? ∈ < s Referential time in stationary model
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Section 5.2.2

Notation Unit Description

V (t) ∈ <3 Moving control volume in Ω(t)
ρt : Ω(t) → < kg/m3 Spatial representation of

mass density at time t
M t : V (pt) −→ < kg/s Deposition rate at time t
qt

m : Γw(t) 3 x → [qt
m,1(x), qt

m,2(x), qt
m,3(x)] ∈ <3

kg/m2s Spatial representation of boundary
mass flux density at time t

ρref ∈ <+ kg/m3 Constant referential mass density
Γw

0 ⊂ ∂Ω0 Welding surface in the
computational domain

Γw(t) ⊂ ∂Ω(t) Welding surface in the spatial domain
Γ0

w ⊂ ∂Ω0 Welding surface in the referential domain
q̂m : Γ0

w × [0, tend] 3 (X, t) → [q̂m,1(X, t), q̂m,2(X, t), q̂m,3(X, t)] ∈ <3

kg/m2s Material representation of boundary
mass flux density

Dw ⊂ <3 Projection of welding surface
b(t) ∈ <+ m Spray radius at time t
M(t) ∈ <+ kg/s Total deposistion rate at time t

M̂ kg/s Material formulation of M t

ˆ̄p : ∂Ω0 × [0, tend] 3 (X, Y, t) → p̄ ◦ ω(X, Y, t) ∈ <
1 Material representation of test function

for pressure in two dimensions
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Section 5.2.3

Notation Unit Description

Ft : Ω(t) → <3 N/m3 Spatial representation of force density
at time t

Ft
em : Ω(t) → <3 N/m3 Spatial representation of electromotive

force density at time t
g = [g1, g2, g3]T ∈ <3 m/s2 Gravitational acceleration
β ∈ <+ 1/K Thermal expansion coefficient
Tsm ∈ < K Mean melting temperature
ut : Ω(t) 3 x → [u1, u2, u3]T ∈ <3

m/s Spatial representation of mass averaged
fluid velocity at time t

σt : Ω(t) → <3×3 N/m2 Spatial representation of
Cauchy stress at time t

Γt : V (u) → < N Surface force at time t
γt : ∂Ω(t) → < N/m Spatial representation of surface

tension at time t
∇S Surface gradient operator
Parc(t) ∈ < N Arc force at time t
parc(t) ∈ < m Arc impingement radius at time t
γm ∈ < N/m Surface tension at liquidus point
−A ∈ < N/mK Temperature coefficient of surface tension
R ∈ < Gas constant
Γsol ∈ < Surface excess at saturation
K◦ ∈ < Adsorption coefficient
ai ∈ < Activity of species
k1 ∈ < Entropy factor
4H◦ ∈ < Standard heat of adsorption

pt : Ω(t) → < N/m2 Spatial representation of
pressure at time t

µ̂ : < → < Ns/m2 Effective dynamic viscosity
µm ∈ <+ Ns/m2 Dynamic viscosity of liquid base material
û : Ω0 × [0, tend] 3 (x, t) → [û1(t), û2(t), û3(t)]T ∈ <3

m/s Material representation of mass
averaged fluid velocity

p̂ : Ω0 × [0, tend] → < N/m2 Material representation of pressure
β̂ : < → < 1/K Effective thermal expansion coefficient
F̂em : Ω0 × [0, tend] → <3

N/m3 Material representation of
electromotive force density

Γ̂ N Material formulation of Γt
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Section 5.2.4

Notation Unit Description

ht : Ω(t) → < J/m3 Spatial representation of sensible
enthalpy density at time t

4Ht : Ω(t) → < J/m3 Spatial representation of latent
enthalpy density at time t

T0 ∈ < K Initial temperature
c : < → < J/kgK Heat capacity
L ∈ <+ J/kg Latent heat coefficient
f : < → < 1 Local liquid fraction
kt
∞ : ∂Ω(t) → < W/m2K Combined heat transfer

coefficient at time t
Qt : V (T t) → < W Transferred power
k : < → < W/mK Thermal conductivity
T t : Ω(t) → < K Spatial representation of

temperature at time t
ĉ : < → < J/kgK Effective heat capacity
T̂ : Ω0 × [0, tend] → <

K Material representation of temperature
σ̂ : Ω0 × [0, tend] → <2×2

N/m2 Two dimensional material representation
of Cauchy stress at time t

k̂∞ : ∂Ω0 × [0, tend] → <
W/m2K Material representation of

combined heat transfer coefficient
σ W/m2K4 Stefan-Boltzmann constant
ε̂ : ∂Ω0 × [0, tend] → < 1 Material representation of

workpiece emissivity
Q̂ W Material representation of Qt

T̂∞ : ∂Ω0 × [0, tend] → < K Material representation of
ambient temperature
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Section 5.2.5

Notation Unit Description

λt : ∂Ωt → < Spatial representation of Lagrange multiplier
for kinematic constraint

L : V (ω̇t)× V (λt) → < Lagrangean for constrained mesh velocity
µmesh Ns/m2 Mesh viscosity
Γ̂ω : V (∂ω

∂t ) → < N Material formulation of
force on pseudo-fluid surface

Section 5.3

Notation Unit Description

µB ∈ <+ H/m Effective magnetic permeability
r m Radial distance from arc center

in reference domain
r1 m Distance from projected arc center

in reference domain
h0 ∈ <+ m Thickness of undeformed base plate
σ(t) ∈ <+ m Incident current spot radius at time t
j : < → < A/m2 Incident current strength on weld surface

Section 5.4

Notation Unit Description

Hmelt 1 Melting efficiency

Section 6

Notation Unit Description

ε t Relaxation parameter
h m Mesh size function
h8 m Height function in method of spines
hε m Local element size at the fillet
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Notation Unit Description

∇̂S Material representation of surface gradient operator
ηv 1 Efficiency of applied volumetric heat source
ηs 1 Efficiency of applied surface heat source

5.2 Continuum mechanics

Previous studies ([28, 30, 32]) indicate that cold laps appear due to unfavorable
combinations of the dynamic behaviour of the workpiece surface and the pool
solidification circumstances. The prediction of these characteristics requires in-
sight into a number of different physical phenomena and their effect on the
thermodynamical and mechanical state of the material body. In particular, the
flow of liquid metal determines the dynamical behaviour of the pool surface. It
is also known that the interior shape and size of many a weld pool is markedly
influenced by the convective heat transfer induced by such gross motion of par-
ticles (c.f. for example [39]). We therefore begin this section by deriving a
generic balance equation which is then instantiated for the mass density ρt, the
fluid momentum density ρtut and the energy density Ht. Much effort is put
into modelling fluxes and sources for these quantites. Since the geometrical
deformation of the workpiece is of immence importance to us, we also propose
an equation for the workpiece motion {ωt}t. However, the design of such an
equation is actually a matter of computational modelling, and will thus not be
discussed in detail until chapter 6.

We state from the outset, that we do consider the material of the continuum
to be homogeneous with respect to chemical composition (see for example [10]
for a study in which the composition of the base material is simulated using a
mixture model). This implies that we do not model the distribution of different
species in the weld pool, and that macrosegregation and the evaporation rates
of different alloying elements are not considered separately, although this could
very well affect the mechanical properties of the joint. Liquation cracking, for
example, can be predicted using a model including solute transport (see [62]),
and consequently we cannot simulate the appearance of such defects in that
manner.

Unless they are of particular interest, boundary and initial conditions are not
presented in this section. The full system of equations, together with conditions,
is written down in section 6.7.

5.2.1 A generic semi-weak balance equation

We now derive a generic semi-weak balance equation for an arbitrary physical
quantity X , the density distribution of which at time t is represented spatially
by the function X t : Ω(t) → <. We denote by V (X t) the weighting space for
X t, but postpone the discussion concerning the specific properties of this space
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until chapter 6. For now we assume only that φt ∈ V (X t) is smooth enough to
allow the necessary operations.

A pointwise equation for a of the family {X t}t∈[0,tend] posed on the sequence
of spatial domains {Ω(t)}t∈[0,tend] is obtained by first considering that, for every
t ∈ [0, tend], the conservation of X in any open control volume W fixed in the
interior of Ω(t) can be expressed with the use of the flux qt

tot and the source
density F t:

d

dt

∫

W

X t = −
∫

∂W

qt
tot · nt +

∫

W

F t (1)

For any useful definition of flux and source, X t is determined by relation (1). In
reality, X t is a quantity that is measured during the calibration and validation
of a continuum mechanical model, so modelling is simply nothing more than
finding a flux qt

tot and source F t that fits into relation (1) given a function X t.
This process is simplified by the fact that a measurement would not output a
pointwise function, but perhaps rather samples of X t, which allows us to use
forms of the flux and source that are simpler than the ideal ones, yet being
able to accurately recreate and predict the outcome of experiments. It should
be pointed out at this stage that validation requires us to transform our mea-
surement results into mathematical quantities (a real representing temperature
or length for example) and correlate these with the samples of X t and hence
there is always a probabilistic element involved. One can therefore claim that
the mathematics and numerics upon which a simulation is built is “true” or
“correct” only if the simulation tool, with a certain probability, can produce
results that match any experimental result within a specified process window.
Having noted this, we invoke classical arguments and decades of experience, and
find it worthwhile to let every thermomechanical quantity X be subject to the
advective flux X tut (ut = [u1, u2, u3]T is the flow velocity, see section 5.2.3),
and we follow here the standard approach of seperating the advective flux from
the total flux and dividing it into a convective term and a compressibility term.
As we consider arbitrary fixed control volumes, and continuity of X t and qt

tot

is assumed, the partial differential equation follows:

D

Dt
X t = −X t∇ · ut −∇ · qt + F t (2)

where qt
tot = qt + X tut, and D

Dt = ∂
∂t + ut · ∇ is the derivative following the

fluid.
We now seek to formulate equation (2) weakly in space, and thus multiply

it by φt ∈ V (X t), and integrate over the spatial domain:

∫

Ω(t)

∂X t

∂t
φt +

∫

Ω(t)

∇ [X t
]
utφt = −

∫

Ω(t)

X t∇ · [ut
]
φt−

∫

Ω(t)

∇ · [qt
]
φt +

∫

Ω(t)

F tφt (3)

One-phase equations such as (3) are not adopted for numerical implemen-
tation, since the symmetric difference between the domains of definition of X t
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for two distinct values of t cannot be assumed null, and thus the left hand side
integral is undefined whenever the spatially represented time derivative ∂X t

∂t is
discretized. In order to derive a generic semi-weak formulation on a referential
domain Ω0 we turn instead to a material formulation, and hence introduce the
workpiece motion {ωt}t∈[0,tend]. Specifically, we consider general workpiece mo-
tions that generally do not coincide with the motion of the physical fluid that we
wish to model. In order to simplify our notation, we for now choose the reference
configuration as to coincide with the initial configuration, and hence the material
representation of the current configuration restricted to the referential domain,
i.e. ωt|Ω0 =: ω(·, t) : Ω0 ∼−→ Ω(t) is a bijection that possesses C1-continuity
with respect to the independent variable describing the initial location of an
arbitrary particle. This transformation is in our case not known a priori, but is
determined both by computational needs and as part of the solution. Denoting
material representations by adding a hat, i.e. X̂ (·, t) = X t ◦ ω(·, t), we have by
the chain rule that

∂

∂t

[X t
] ◦ ω(·, t) =

∂

∂t

[
X̂

]
(·, t)−∇ [X t

] ◦ ω(·, t)∂ω

∂t
(·, t)

Using this relation, we can transform the integral on left hand side of (3) to the
referential domain:

LHS(3) =
∫

Ω0

∂

∂t

[
X̂

]
φ̂|Jω|+

∫

Ω0
∇ [X t

] ◦ ω(·, t)(û− ∂ω

∂t
)φ̂|Jω|

where Jω = Jω(·; t) is the Jacobian of the map X = [X,Y, Z]T → ω(X; t).
As the derivatives with respect to the spatial coordinates x = [x, y, z]T are
transformed according to the rules ∇T

x = J−T
ω ∇T

X and ∇x· = J−T
ω : ∇X, we

arrive at a semi-weak material formulation:

∫

Ω0

[
∂

∂t
X̂ +∇XX̂Jω

−1(û− ∂ω

∂t
)
]

φ̂|Jω| = (4)

−
∫

Ω0
X̂∇Xû : Jω

−T φ̂|Jω| −
∫

Ω0
∇Xq̂ : Jω

−T φ̂|Jω|+
∫

Ω0
F̂ φ̂|Jω|,∀φt∈V (X t)

In order to avoid differentiation of the flux and incorporate natural bound-
ary conditions, we apply Greens formula to the corresponding integral. If
r : (s1, s2) ∈ D → ∂Ω0 is a parametrization of ∂Ω0, then ω(·, t) ◦ r is a parame-
trization of ∂Ω(t), and we have that

∫

Ω0
∇Xq̂ : Jω

−T φ̂|Jω| =

−
∫

Ω0
q̂ · ∇Xφ̂Jω

−1|Jω|+
∫

D

q̂ ◦ r · Jω◦r ∂r
∂s1

× Jω◦r ∂r
∂s2

φ̂ ◦ r (5)

It should be noted that the weighted counterpart of relation (1) can be
obtained using the geometric conservation law ∂

∂t |Jω(·; t)| = |Jω(·; t)|∇ · [ω̇t] ◦
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ω(·, t), where ω̇t ◦ ωt = ∂ω
∂t , and requiring the material representation of each

weighting function to be constant in time;

d
dt

∫

Ω(t)

X tφt +
∫

Ω(t)

(ut − ω̇t) · ∇X tφt =

−
∫

Ω(t)

X t∇ · [ut − ω̇t
]
φt +

∫

Ω(t)

qt · ∇φt

−
∫

∂Ω(t)

qt · ntφt +
∫

Ω(t)

F tφt, ∀φt∈V (X t) (6)

We have treated the flux X t [ut − ω̇t] in a special way. It is important to
analyze the influence that this flux has on the amount of X contained in the
control volume, i.e. we wish to see how the moving boundary affects the integral∫
Ω(t)

X t. This can be done by inserting the function φt ≡ 1 into equation (6).
When disregarding sources and other fluxes, we get

d
dt

∫

Ω(t)

X t = −
∫

Ω(t)

(ut − ω̇t) · ∇X t −
∫

Ω(t)

X t∇ · [ut − ω̇t
]
, (7)

and we see that the divergence of ω̇t acts as a source. If a partial integration of
the advective flux is allowed, the following version of equation (6) holds;

d
dt

∫

Ω(t)

X tφt = +
∫

Ω(t)

(
qt + X t

[
ut − ω̇t

]) · ∇φt

−
∫

∂Ω(t)

(qt + X t
[
ut − ω̇t

]
) · ntφt +

∫

Ω(t)

F tφt, ∀φt ∈ V (X t)

and the influence of the moving boundary could be studied via the equation;

d
dt

∫

Ω(t)

X t = −
∫

∂Ω(t)

X t
[
ut − ω̇t

] · nt (8)

We constrain the motion of the workpiece using the kinematic constraint ut·nt =
ω̇t · nt. Studying equation (8), it would thus seem that if the arbitrary motion
of the boundary is to influence X , either the advective field is not well behaved
enough to allow for the partial integration, or the kinematic condition is violated.
We have seen from case studies, that the kinematic constraint is actually not
violated, yet the thermal energy of the workpiece is increased as a consequence of
the added filler. It turns out that the incompressibility constraint is numerically
violated in the interior of the domain. We investigate this phenomena in more
detail in section 5.4.2.

We note also that in equations (7) and (8), the influence of ω̇t is a source
for X that is dependant upon X t itself. This is an inherent feature in arbitrary
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motions techniques; We cannot control the influence of a freely moving boundary
on X t without controlling X t. For example, the thermal energy contained in
a control domain increases as a result of a positive divergence of ω̇t, i.e. an
outwards moving boundary, but we cannot say in what way unless we know the
temperature distribution. However, in our applications, the magnitude of the
power transferred to the workpiece is of major interest, and it is reasonable to
assume that the power transferred by the filler metal increases and decreases
with the pool temperature, since these quantities depend in similar fashions on
the energy of the welding arc. This is another reason for the further discussion
on in section 5.4.2. We will see that we have the possibility of restricting the
influence of the moving boundary to the boundary itself, so it is enough to apply
essential boundary conditions on X in order to explicitly control this influence.

If the weld source center P : [0, tend] −→ <3 moves at the constant velocity
v in the joint plane x = 0, and at constant height over the weld surface, we
may further reduce the complexity of equation (4) by assuming that for every
physical quantity X , including fluxes and sources, it is valid that X t(x, y, z) =
X t− z−Z?

v (x, y, Z?) for any fixed Z? ∈ < and any (x, t) ∈ Ω(t)× [0, tend], where
v = |v|. These circumstances may apply for example to linear GMA butt-
welding when the arc height and contact tube to work distance is constant, and
the weld pass is long. In practice, oscillations in the applied welding current and
the pool cavitation depth, as well as small imperfections in the base material,
often implies that the pool never actually reaches a steady configuration no
matter how long the weld. Yet, we find it appropriate to invoke this simplifying
assumption in this first stage of modelling. The simplification is based on the
rewriting of equation (2) so that 0 = −∇(x,t) · [qt

tot(x),X t(x)] + F t(x) and on
the broadening of the concept of material motion to include also time. The
derivation of formulation (4) is still valid, but the time differentiations are now
part of the gradient operator. Considering motions on the form ω?(X, Y, Z, t̂) =
[ω1(X, Y, t̂), ω2(X,Y, t̂), Z, t̂ + Z−Z?

v ]T , we see that all material representations
are independent of Z. Hence it suffices to solve only for the plane Z = Z? where
transformed and physical time coincide. Specifically, we have that

Jω? =




Jω
0 ∂ω1

∂t̂

0 ∂ω2
∂t̂

0 0
0 0

1 0
1/v 1




and hence |Jω| = |Jω? |. Furthermore,

Jω?
−1 =




Jω
−1 A

0 0
0 0

1 0
−1/v 1




where A =
[

1/vJω
−1 ∂ω

∂t̂
−Jω

−1 ∂ω
∂t̂

]
, and ω now has only the two compo-

nents ω1 and ω2. If we temporarily leave out the advective flux, we thus see
that the balance equation can be written explicitly as
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∫
Ω0×[0,tend]




∂q̂1
∂X

∂q̂1
∂Y 0 ∂q̂1

∂t̂
∂q̂2
∂X

∂q̂2
∂Y 0 ∂q̂2

∂t̂
∂q̂3
∂X

∂q̂3
∂Y 0 ∂q̂3

∂t̂
∂X̂
∂X

∂X̂
∂Y 0 ∂X̂

∂t̂


 :



J−T

ω
0 0
0 0

AT 1 −1/v
0 1


 φ̂|Jω|

=
∫

Ω0×[0,tend]

F̂ φ̂|Jω|

which is equivalent to

∫

Ω0×[0,tend]

[
∂X̂
∂t̂

− 1
v

∂q̂3

∂t̂

]
φ̂|Jω|

−
∫

Ω0×[0,tend]

∂ω

∂t̂
· ∇(X,Y )

[
X̂ − 1

v
q̂3

]
J−1

ω φ̂|Jω| =

−
∫

Ω0×[0,tend]

∇(X,Y )

[
q̂1

q̂2

]
: J−T

ω φ̂|Jω|+
∫

Ω0×[0,tend]

F̂ φ̂|Jω|

It is close at hand now to consider a space-time finite element method. However,
the reason we employ the space-time material motion is to derive an equation
that can be solved using the method of lines, since this is the kind of formula-
tion our software is adopted for (see sections 6.7 and 6.5 and the comment on
equation (11)). Thus, we now omit the integrations with respect to Z and t̂,
apply Greens formula, and again incorporate the advective flux. This leaves us
with a two-dimensional material formulation:

∫

ΩZ?

∂

∂t̂

[
X̂ − q̂3 + X̂ û3

v

]
φ̂|Jω|+

∫

ΩZ?

∇(X,Y )X̂J−1
ω (

[
û1

û2

]
− ∂ω

∂t̂
)φ̂|Jω|

+
∫

ΩZ?

∂ω

∂t̂
· ∇(X,Y )

q̂3 + X̂ û3

v
J−1

ω φ̂|Jω| =

−
∫

ΩZ?

X̂∇(X,Y )

[
û1

û2

]
: Jω

−T φ̂|Jω|+
∫

ΩZ?

[q̂1, q̂2] · ∇(X,Y )φ̂J−1
ω |Jω|

−
∫

∂ΩZ?

[−q̂2, q̂1]Jω t̂φ̂ +
∫

ΩZ?

F̂ φ̂|Jω|, ∀φt ∈ V (X t) (9)

where t̂ is the positively oriented unit tangent to ∂ΩZ? , and ΩZ? = {[X, Y ] :
X ∈ Ω0, Z = Z?}. Equation (9) hints that we may disregard the total flux
in the z-direction if the arc speed is high enough. An attempt of quantifying
this critical arc speed is presented in section 5.4.1. Finally, let us note that
when disregarding the total flux in the z-direction, we obtain exactly the two-
dimensional version of equation (4). What more is, equation (9) is further
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simplified when incorporating not only the assumption that the flux q̂3 vanishes
at all points, but also the incompressibility constraint (see equation (13));

∫

ΩZ?

(1− û3

v
)

∂

∂t̂
X̂ φ̂|Jω|+

∫

ΩZ?

∇(X,Y )X̂J−1
ω (

[
û1

û2

]
− ∂ω

∂t̂
(1− û3

v
))φ̂|Jω| =

+
∫

ΩZ?

[q̂1, q̂2] · ∇(X,Y )φ̂J−1
ω |Jω|

−
∫

∂ΩZ?

[−q̂2, q̂1]Jω t̂φ̂ +
∫

ΩZ?

F̂ φ̂|Jω|,∀φt∈V (X t) (10)

When instantiating equation (10) we set Z? = 0 and ignore the fluid flow compo-
nent parallel to the weld line, i.e. u3 ≡ 0. Equation (10) is a very useful material
formulation of equation (6) since we have, unlike in equation (5), explicitly in-
corporated a parametrization of the domain boundaries, which is advantegous
when solving the equation using our choice of software. In the study presented
in [11], the authors employ an argument for reducing their problem from three
spatial dimenions to two spatial dimensions and time, which is akin to the pre-
sented here, other than that we have not seen this approach be used explicitly
anywhere else.

Hereafter we abuse our notation somewhat; The same notation is used for
three-dimensional material representations and those material representation
only two components of which are considered. This implies a slight blurring
of the distinction between the referential domain Ω0 and the computational
domain Ω0, although it should be clear from the context which definition is
intended. This is actually a conceptual advantage of our modelling approach,
since the governing equations are exactly the same in the three dimensional
time-dependent case, as when considering only two space dimensions and time.

Another way to model the steady-state weld pool is to let the moving coor-
dinate system travel at the same velocity as the source center, for example by
choosing ω(X,Y, Z, t) = [ω1(X, Y, Z, t?), ω2(X, Y, Z, t?), ω3(X, Y, Z, t?)]T + (t −
t?)v. The corresponding assumption on X t is that X t(x) = X t?

(x− (t− t?)v)
for any fixed t? ∈ <, and the material representations are thus independent of
time. The resulting equation is

∫

Ω0
∇XX̂Jω

−1(û− v)φ̂|Jω| = (11)

−
∫

Ω0
X̂∇Xû : Jω

−T φ̂|Jω| −
∫

Ω0
∇Xq̂ : Jω

−T φ̂|Jω|+
∫

Ω0
F̂ φ̂|Jω|, ∀φt∈V (X t)

Equation (11), is theoretically equivalent to a formulation in which time and two
spatial dimensions are considered. We have however found that when employing
the method of lines with our software, convergence is usually faster and memory
requirements not as substantial.
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5.2.2 Continuity of mass and incompressibility

In many standard textbooks and other treatises on continuum mechanics, a
pointwise equation expressing the continuity of mass is derived using the trans-
port theorem and an equality resimbling 0 = d

dt

∫
V (t)

ρ(x, t)dx. The transport
theorem is certainly mathematically correct, however the equality expressing
the conservation of mass is a matter of modelling, and as such cannot be said
to either true or false until the validation stage. In order to attach meaning to
the above equality one must first define the continuum mechanical quantities
of velocity, which determines the motion of the volume V , and the density of
the material body. Specifically, one implicitly in this modelling stage chooses
between a mass-averaged or a molar-averaged velocity, and assumes that the
material body fulfills the continuum assumption. However straightforward this
may seem, the standard definitions of velocity and density do not preclude the
possibility of mass diffusion, or rather mass density diffusion, which has implic-
itly been abandonded when assuming that 0 = d

dt

∫
V (t)

ρ(x, t)dx. As a matter
of fact, we shall see that for our purposes, this equality is not satisfactory. We
now turn to a more general approach instead based upon relation (1).

A semi-weak continuity equation on the spatial domain is obtained by taking
X t = ρt in equation (6). No interior sources of mass are present, and thus it
remains only to specify the non-advective mass density flux. Considering the
types of materials that is most commonly subject to fusion welding, it may
be assumed that the base material and filler metal used in the process are
similar and homogenous in such a fashion that the density may be evaluated
according to the Boussinesq approximation. This assumption is very common
in weld pool simulations, c.f. [51, 52, 76, 65, 82, 59, 1, 8, 19, 3, 41], which is
feasible since the value of the thermal expansion coefficient (∼10−5K−1) times
the temperature range in the pool (∼103K) is usually quite small. This implies
that mass density diffusion is negligible in the interior of the domain. The flux
through the workpiece boundaries however, may be non-vanishing (c.f. section
6.8) and defined in such a fashion that it models the addition of filler metal by
spray transfer (see sections 5.2.5 and 6.7 for alternative ways of incorporating
the effects of the additon of filler). By specifying the deposition rate M t :
V (pt) −→ < and choosing the smooth boundary mass flux qt

m such that M t [p̄] =
− ∫

∂Ω(t)
qt

m · nt p̄, we arrive at a modified incompressibility equation for the
Lagrange multiplier pt, that should hold for every t ∈ [0, tend]:

0 = −ρref

∫

Ω(t)

∇x · utp̄ + M t [p̄] ,∀p̄ ∈ V (pt)

where we write ρref for the constant referential (operating) density. If the weld
configuration is not very complex, the computational domain Ω0 can be taken
as a rectangle, and consequently Ω0 is an extension of this rectangle in the Z
direction. This simplifies the equations in many ways, and does not restrict the
scope of our simulations since we consider in this treatise only fillet joints and
butt joints. The part Γw

0 of the boundary ∂Ω0 that is mapped onto a subset of
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the welding surface Γw(t) is thus a subset of the Y = 0 line, since the referential
welding surface Γ0

w ⊂ ∂Ω0 is a subset of the Y = 0 plane. We can now take
D =

{
(s1, s2) ∈ <2|(s1, 0, s2) ∈ Γ0

w

}
and r(s1, s2) = [s1, 0, s2]T in equation (5)

so that

M t [p̄] =
− ∫

D
q̂m(s1, 0,−s2, t) ·

Jω(s1, 0,−s2; t)




1
0
0


× Jω(s1, 0,−s2; t)




0
0
−1


 p̄ ◦ ω(s1, 0,−s2, t)ds1ds2

Now, by assuming that the boundary flux is directed such that qt
m,1 ≡ qt

m,3 ≡ 0,
the above integral can be simplified;

M t [p̄] =
∫

D

−q̂m,2(s1, 0,−s2, t)
(

∂ω1

∂X

∂ω3

∂Z
− ∂ω1

∂Z

∂ω3

∂X

)
p̄ ◦ ω(s1, 0,−s2, t)

This simplification is important since we mean to explicitly find and control
M t [1], the total deposition rate. By assuming that the spray intensity −qt

m,2

is independent of the y-coordinate, and applying a change of coordinates, we
arrive at

M t [1] =
∫

Dw

−qt
m,2(ω1, 0, ω3, t)dω1dω3,

where Dw is the projection of Γw(t) on to the plane y = 0. The spray intensity is
assumed to be Gaussian in the distance from the line through the source center
P (t) which is parallel to the y-axis;

−qt
m,2(x, t) =

M(t)
πb2(t)

exp
(−||(x, z − P3(t))||2

b2(t)

)
,

where b(t) is the spray radius at time t. For b(t) ¿ 1, the factor M(t) is found
to be a good approximation of the total deposition rate;

M t [1] = M(t)
∫

Dw

1
πb2(t)

exp
(−||(x, z − P3(t))||2

b2(t)

)
≈ M(t)

We find from equation (10) that the material representation of the deposition
rate is written as

M̂
[
ˆ̄p
]

=
M(t)
πb2(t)

∫

Γw
0

f◦T̂ (X, 0, t) exp
(−||(ω1(X, 0, t), P3(t))||2

b2(t)

)
∂ω1

∂X
(X, 0, t)ˆ̄p dX,

where ˆ̄p is the material formulation of the test function, and the local liquid
fraction f (see section 5.2.4) has been incorporated in order to avoid adding
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material to the solid workpiece. If the weld pool is wider than b(t)
√
− ln(0.01),

the theoretical deposition rate does not deviate more than one percent from
M(t).

It should be noted that the filler metal carries also momentum and thermal
energy to the pool, as explained by equations (7) and (8). The validity of a
globular transfer simulation based on our current approach may be questioned,
since we are then for many purposes required to simulate individual droplets.
The computational advantage of our current approach, however, should not be
underestimated. This was partially verified in [14], where the present approach
was appreciated at high welding currents (≥ 150A).

To conclude, the equation we wish to solve is the following;

0 = −ρref

∫

Ω0

∇(X,Y )û : Jω
−T ˆ̄p|Jω|+ M̂ t

[
ˆ̄p
]
,∀p̄ ∈ V (pt) (12)

Although the above equation is a result of physical modelling, the incompress-
ibility equation should be considered a pointwise constraint that can be used to
simplify the equations for the other quantities of interest. We note thus that
the pointwise version of equation (9) can be written as

−1
v

∂

∂t̂
û3 = −∇(X,Y )

[
û1

û2

]
: Jω

−T − 1
v

∂ω

∂t̂
· ∇(X,Y )û3J−1

ω (13)

Let us note that employing a mass density flux that vanishes in the interior
and is discontinuous when approaching the boundary, does not allow for the
application of Greens formula, and is thus not necessarily “useful” in the sense
that X t can be determined from our governing equation. Yet it is the validation
of the model that will prove this to be useful or not. As a matter of fact, when
discretizing and solving equation (12), the incompressibility condition will be
violated close to the boundary in the interior of the domain, c.f. section 5.4.2.
This is why we take special measures when solving this equation, see section
6.1.

5.2.3 Balance of linear momentum

A semi-weak equation for the conservation of momentum is obtained upon in-
serting the densities of the axis-parallel (linear) momenta into (10) and using
the incompressibility constraint (not the continuity equation) to remove the
divergence term. The volumetric source of momentum, i.e. the force density
Ft, is given rise to mainly by electromagnetic effects and gravity. We have
Ft = Ft

em + ρtg, where Ft
em is the electromotive (Lorentz) force density (see

section 5.3) and g is the gravitational acceleration.
According to the Boussinesq approximation, the relative difference between

the buoyancy-inducing and operating densities depends linearly on the corre-
sponding temperature difference with a coefficient of proportionality equal to
the thermal expansion coefficient β, i.e Ft = Ft

em + ρref [1− β(T t − Tsm)]g,
where the reference temperature Tsm is taken as the mean of the solidus and
liquidus points of the material. One may argue about whether buoyant effects
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are important. In the absence of other driving forces, buoyancy has a consid-
erable effect on the distribution of heat within the pool via natural convection,
only if the Rayleigh number is above a critical value. According to Rayleigh’s
analysis of convective instability in a pool with a free upper surface (c.f. [13]),
this critical value is 1100. For the processes we encounter in this study, the
Rayleigh number is far below this value. This is mainly because the length
scale (plate thickness) and expansion coefficient are small for a typical process.
What more is, the Lorentz forces act to oppose the flow pattern provoked by
density gradients, see section 5.3. We incorporate the buoyancy effect for the
sake of theoretical completeness. Note however that, since we consider moving
boundaries, the gravitational source term cannot be entirely ignored.

In the case X t = ρrefut, which is the present, the unknown quantity has as
many components as the fluid flow velocity ut, and consequently the flux, which
is equal to the Cauchy stress σt, is a three times three matrix. The boundary
integral appearing in equation (6) is thus the total weighted force acting on the
boundary, and we represent this by the generalized function Γt : V (u) → <.
In this work we assume that the influence of the arc impingement is reduced
to a pressure on the weld pool surface, i.e. we ignore drag forces. This may
be subject to criticism, since it was found in [34] that for a simulated GTA
weld pool operated at 200A, it is the arc shear forces in combination with the
Marangoni forces that determine the weld pool flow. Yet we ignore arc shear at
this stage, and so the total force on the pool surface in the tangential direction
is simply the Marangoni force, and for the normal direction, the force is derived
using the arc pressure, the surface tension γt and the curvature of the surface.
Expanding the treatment presented by [71], we have for its spatial representation
that

Γt[ū] = −
∫

∂Ω(t)

[
γt∇S · nt

]
nt · ū +

∫

∂Ω(t)

[∇Sγt
] · ū

−
∫

Γw(t)

Parc(t)
πp2

arc(t)
exp

(−||(x, z − P3(t))||2
p2

arc(t)

)
nt · ū

where ∇S =
(
I− ntntT

)
∇T is the surface gradient operator, and the same

ansatz was used for the arc pressure as for the deposition rate. Hence, the
number parc(t) is the impingement radius of the source, and Parc(t) is the total
arc force acting on the weld surface. This force is during the different welding
processes exerted for example by the filler metal spray, the plasma, the shielding
gas, and impinging electrons. Applying the surface divergence theorem (c.f.
[78]) gives

Γt[ū] = −
∫

∂Ω(t)

γt∇S · ū +
∫

∂Ω(t)

[∇Sγt
] · ū

−
∫

Γw(t)

Parc(t)
πp2

arc(t)
exp

(−||(x, z − P3(t))||2
p2

arc(t)

)
nt · ū
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In the above equation, we do not incorporate the contact line integrals that
emerges when applying the surface divergence theorem, since the contact line is
a Dirichlet boundary on which the velocity vanishes. In some cases the formu-
lation of the problem is simplified by assuming symmetry with respect to the
joint plane, and in such cases the line integral vanish also, due to the fact that
the velocity is perpendicular to the binormal.

It has been shown (c.f. [87, 59, 92]) that the surface tension gradient ∇Sγt

exercises a dominating influence on the fluid flow in many GTA and laser weld
pools. A reasonable assumption is that the surface tension is dependent only
on temperature and the presence of surfactants. It has been observed that
the addition of an impurity concentration to the liquid pool may reverse the
direction of the surface flow (see for example [87]), hence it may be important
not to ignore solutocapillary effects. In for example [68, 87, 86, 16, 48, 59] the
following expression is employed when evaluating the surface tension:

γt(x) = γm −A(T t(x)− Tm)−RT t(x)Γsolln(1 + K◦(x)ai) (14)
K◦(x) = k1exp(−4H◦/RT t(x))

where γm is the surface tension at the liquidus point in the absence of surface
active elements, R is the gas constant, Γsol is the surface excess at saturation,
K◦ is the adsorption coefficient, ai is the activity of species, k1 is an entropy
factor and 4H◦ is the standard heat of adsorption. In the absense of surface
active elements, −A is simply the temperature coefficient of surface tension.
However important solutocapillary effects may be in some situations, one may
suspect that expression (14) involves paramaters that we cannot determine and
is slighthly more complicated that is actually required when simulating non-
autogenous weld pools. In this study, we therefore assume that the temperature
coefficient of surface tension is constant, and set the activity of all species equal
to zero.

It should be noted that whenever we speak of a value for the surface tension
of a metal, we signify an approximate expression for the liquid metal surface
free energy when opposing the adjacent medium which consist in a shielding
gas, a plasma, air, or a mix of the three.

The material is modeled as an incompressible Newtonian fluid, and σt is
hence decomposed into pressure and viscous stress;

σt = ptI− µ̂ ◦ T t
[∇ut + (∇ut)T

]
,

where the effective dynamic viscosity µ̂ is a function of temperature only. Since
the mechanical state in the interior of the solid phase is not sought, we may use
the same form of the stress tensor in the entire domain by letting the effective
dynamic viscosity increase with decreasing temperature. The essential charac-
teristics of the motion of solid phase fluid particles and interdendritic flow can
be captured by employing the relation µ̂(T ) = 1010

[
µm

1010

]f(T ), where µm is the
presumably constant viscosity of the completely molten phase and f : < → < is
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the local liquid fraction yet to be specified. It should be noted that a porosity
source term, for example the popular Darcy damping term with a permeability
function evaluated using the Carman-Kozeny equation (c.f. [59, 43]), cannot
instead be used since this would make solidifying overflow wave fronts come to
a sudden halt in mid-air.

Assuming that the flow in the weld pool is laminar (c.f. [14, 3, 41], see
also section 6.4), we arrive at the following equation by inserting the above
expression and the material representation û of the flow velocity into equation
(10):

ρref

∫

Ω0

[
∂û
∂t

+∇(X,Y )ûJω
−1(û− ∂ω

∂t
)
]
· ˆ̄u|Jω| = (15)

−
∫

Ω0

µ̂ ◦ T̂
[∇(X,Y )ûJω

−1 + Jω
−T (∇(X,Y )û)T

]
:
[∇(X,Y ) ˆ̄uJω

−1
] |Jω|

+
∫

Ω0

Ip̂ :
[∇(X,Y ) ˆ̄uJω

−1
] |Jω|+ ρref

∫

Ω0

[
1− β̂(T̂ − Tsm)

]
|Jω|g · ˆ̄u

+
∫

Ω0

F̂em · ˆ̄u|Jω|+ Γ̂[ˆ̄u], ∀ū ∈ V(ut)

where β̂ = fβ is the effective thermal expansion coefficient, and Γ̂ is the material
formulation of the surface force Γt.

5.2.4 Conservation of energy

The total energy is written as X t = ht +4Ht +ρt ut·ut

2 , where ht(·) :=
∫ T t(·)

T0
ρtc

is the sensible enthalpy, 4Ht := ρtLf ◦T t is the latent enthalpy, T0 denotes the
constant initial temperature of the workpiece, c is the temperature dependant
heat capacity, and L is the latent heat coefficient. The latent heat release rate
is given by the local liquid fraction f (since the density is constant, it does
not matter if f is a mass fraction or a volume fraction), which in this study
is a function of temperature only. At a more detailed modelling level, f could
be defined as depending also on the cooling rate, solidification speed and solute
concentration. Some investigations such as [88] even solve a differential equation
for the liquid fraction, in which the diffusion of the liquid state in the mushy
zone is considered. In the present case we employ a local liquid fraction which
is piecewise linear, and takes the values 0 and 1 for T t < Ts and T t > Tm

respectively. Not very often do investigators assume smoother shapes for f ,
since it turns out that simulations are insensitive to the particular ansatz (at
least as long as f is a continuous function of its arguments). In the case when
X t represents the total energy, the flux is composed from the flux of kinetic
energy, which is written σtut, and a number of different types of thermal energy
fluxes. Except for the advective flux, we consider only the conductive flux in the
interior, and it is modeled by Fourier’s law. The boundary flux is convective and
radiative. The convective boundary term includes evaporative heat losses using
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a combined heat transfer coefficient kt
∞. Arc heating, such as ohmic heating

and convection from a jet, is modelled by a boundary flux expressed using the
transferred power Qt : V (T t) −→ <, which is of the same form as the deposition
rate and the arc pressure. Since we ignore joule dissipation, no interior sources of
thermal energy are present. Furthermore, the interior source of kinetic energy is
the work Ft ·ut, Ft still denoting mechanical force per volume. Before inserting
these expressions into equation (10), it is worthwhile to simplify the pointwise
equation. Thus, using the incompressibility constraint and not yet considering
the boundary terms, equation (2) now reads

(
ρrefc + ρrefL

∂f

∂T
◦ T t

)
DT t

Dt
+ ρrefut · Dut

Dt
=

−∇ · [σtut]−∇ · [−k∇T t] + Ft · ut

where the thermal conductivity k is a function of the temperature T t only.
Rearranging we arrive at

(
ρrefc + ρrefL

∂f

∂T
◦ T t

)
DT t

Dt
+ ut ·

(
ρref

Dut

Dt
+∇ · σt − Ft

)
=

−σt : ∇ut −∇ · [−k∇T t]

The second paranthesized expression on the left hand side in the above
equation is the pointwise residual for the conservation of linear momentum.
Although we do not pointwise fulfil the constraint of conservation of balance of
linear momentum, we assume that this residual is small enough to be neglected.
Now, we can pose the equation in terms of the temperature T t, with the viscous
dissipation as a source term;

(
ρrefc + ρrefL

∂f

∂T
◦ T t

)
DT t

Dt
= −∇ · [−k∇T t]− σt : ∇ut

The above equation is an instance of equation (2) with X t = T t, qt = −k∇T t

and F t = −σt : ∇ut with the exception that the total derivative term has a
weighting coefficient, which is in contrast with the other popular approach in
which the effect of the latent heat is incorporated using a source term, as for
example in [18]. It can be seen that the derivation of equation (10) is valid even
with this coefficient, and so behold
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ρref

∫

Ω0

ĉ

[
∂T̂

∂t
+∇(X,Y )T̂Jω

−1(û− ∂ω

∂t
)

]
|Jω| ˆ̄T = (16)

−
∫

Ω0

k◦T̂ ∇(X,Y )T̂Jω
−1Jω

−T∇T
(X,Y )

ˆ̄T |Jω|

−
∫

Ω0

σ̂ :
[∇(X,Y )ûJω

−1
] |Jω| ˆ̄T

−
∫

∂Ω0

k̂∞(T̂ − T̂∞)||Jω t̂|| ˆ̄T −
∫

∂Ω0

σε̂(T̂ 4 − T̂ 4
∞)||Jω t̂|| ˆ̄T + Q̂[ ˆ̄T ],∀T̄ ∈ V (T t)

In the above equation, ĉ = c ◦ T̂ + L ∂f

∂T̂
◦ T̂ is the effective heat capacity, T̂

is the material representation of temperature, σ̂ is the material representation
of the stress, k̂∞ is the material representation of the combined heat transfer
coefficient, σ is the Stefan-Boltzmann constant, ε̂ is the material representation
of the emissivity of the workpiece surfaces, Q̂ is the material representation
of the transferred power, and the ambient temperature is denoted by T̂∞. In
applications we usually ignore the viscous dissipation (c.f. [51]).

In the above form of the equation for the conservation of energy, we have not
made explicit the dependence of ĉ on other phase transitions such as metallur-
gical transitions. This is because the latent heat of solid-solid transformations
can be neglected in applications such as those we consider, cf [46].

The total amount of transferred energy can be controlled using the Gaussian
form of the surface source, an approach that is almost universally adopted in
one form or another. Thus we let Qt be of the same form as the deposition rate
and the arc pressure:

Qt[T̄ ] = ηW(t)
∫

Γw(t)

1
πa2(t)

exp

(−||(x, z − P3(t))||2
a2(t)

)
T̄

The total power transferred by the mechanisms modeled by the above equa-
tion is equal to ηW(t). The arc efficiency, source power and spot radius a(t), are
assumed to be functions of the process parameters such as the voltage, amper-
age, polarity, arc height, type of shielding gas, and the contact tube to workpiece
distance. However, the above form of the surface source of energy, and the alike
for the surface pressure and mass density source, may very well be target for se-
rious criticism, since it does not take into account the actual Euclidean distance
from the surface to the the electrode tip. It may be argued that at a point on
the surface which is close to the tip the energy density should be higher than
at a point in a deep cavity directly below the tip. There has been proposed
expressions for the source more sophisticated than the above, that takes this
into account. For example, [80] successfully applied an expression which took
into account the reduction of resistance by the influence of ionistaion. However,
the more naive form that we have chosen to apply in our studies have proven
to be useful in many applications, and also simpler to work with, and therefore
we remain with the above.
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5.2.5 Pseudo-fluid workpiece motion

In general, no fluid flow, and thus no advective flux, is allowed through the
boundaries of the control domain. That is, we treat the bounding surfaces as
being ’impermeable’, c.f. section 6.8. The workpiece motion ω is hence re-
quired to satisfy the kinematic constraint ω̇t ·nt = ut ·nt. This way the current
configuration allows us to extract the shape of fluid surfaces. Specifically, we
can extract the outer geometry of the weld as it solidifies. No other condition
based on physical considerations can be imposed on ω, and equations for the
motion are instead defined such that they satisfy computational requirements.
It is well-known that solving the Laplace equation for the mesh velocity ω̇ gives
rise to a non-singular motion, i.e. a motion that satisfies the geometric con-
servation law (c.f. [6]). Since the kinematic constraint is a Dirichlet constraint
on an a priori unknown combination of the solution variables representing the
mesh velocities in two linear independent directions, it is in our current setting
implemented using a Lagrange multiplier λt : ∂Ωt → < (we will discuss this
approach extensively in section 6.6). Although the use of a Lagrange multiplier
is a computational issue, we find it appropriate to include it already in this
section, and so prepare ground for the further disussions in sections 6.8 and 6.2!
Thus, we wish to find the unique pair (ω̇t, λt) ∈ V (ω̇t)× V (λt) that makes the
following Lagrangean stationary;

L [ ¯̇ωt, λ̄t
]

= −1
2

∫

Ωt

µmesh∇x
¯̇ωt : ∇x

¯̇ωt +
∫

∂Ωt

λ̄t(ut − ¯̇ωt) · nt (17)

It should be noted that using this technique we effectively attach the workpiece
motion to the motion of an inertia-less fluid, the stress in which can be expressed
simply as the the gradient of the velocity of the motion times a factor µmesh.
This is why we refer to the mesh as a pseudo-fluid, and to the function µmesh as
the mesh viscosity. We note also that since the constraint is on the mesh velocity
and not on the configuration ω, it is not straightforward to implement a model
in which we instead calculate the deformation of what may be called a pseudo-
solid. By following the standard argument of introducing arbitrary multiples
of variations in equation (17), and differentiating with repsect to these, we find
that we must require that the relations

0 = −
∫

Ω0

µmesh

[
∇X

∂ω

∂t
Jω

−1

]
:
[∇X

¯̇ωJω
−1

] |Jω|+ Γ̂ω [¯̇ω] (18)

0 =
∫

∂Ω0

(û− ∂ω

∂t
) · n̂λ̄ (19)

hold for every (¯̇ω, λ̄) ∈ V (∂ω
∂t )×V (λ̂), where Γ̂ω : V (∂ω

∂t ) 3 ¯̇ω → − ∫
∂Ω0 λ̂ ¯̇ω·n̂ ∈ <

is the material formulation of the such force acting on the surface of the pseudo-
fluid that makes the solution ω̇ fulfill the kinematic constraint. The attentive
reader would by now have noticed that the absence of a surface Jacobian in
the equation for the multiplier implies that we actually constrain the material
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representation of the mesh velocity, and not the spatial representation. The
analysis is still valid, and we have experienced that this approach is efficient.

As an alternative to having the surface move as a result of adding mass in the
continuity equation, one may modify the velocity of the boundary in the expres-
sion for Γ̂ω, thus relaxing the kinematic constraint. This way, the motion of the
free surface is not a result of simulating the response of an incompressible mate-
rial to a mass source, but the motion of the moving surface is instead detached
form the physical fluid, thus allowing for a fluid flow that is, due to the action
of arc pressure and droplet momentum transfer, mainly directed towards the
bottom of the pool, even as the weld surface is elevating. The two approaches
will undoubtingly produce different outputs. So far we have experienced that
the approach we have described above and which we for now continue to follow
in this treatise, in a number of cases computationally outperforms the approach
employing a modified Γ̂ω. As an example, we noticed that the alternative ap-
proach does not converge for the case depicted by the rightmost circle in figure
4.

The mesh viscosity which can be used to improve the mesh deformation.
Generally, the mesh viscosity is taken to increase with decreasing element size,
so that small elements are less distorted. The workpiece motion will be discussed
further in section 6.2.

5.3 Electromagnetics

During many electric arc welding process, the magnitude of the Lorentz force
Ft

em acting in the liquid metal is great compared to buoyancy and surface ten-
sion forces. The magnitude of the Lorentz force typically increases with the
magnitude of the current that is passed thorough the workpiece, and above a
certain amperage, the electrodynamics of the process governs entirely the weld
pool flow. Ft

em can be determined from the electric field and magnetic field
present in the workpiece. For many electric arc weld pool flows the magnitudes
of the length scale and flow velocities are quite small in comparison to the mag-
netic diffusivity. In such cases, the influence of the weld pool flow field on the
magnetic field can safely be ignored, and the electric and magnetic fields can
be assumed to be governed by the Maxwell equations with the magnetohydro-
dynamic (MHD) approximation for flows at low magnetic Reynold numbers.
These equations are derived in explained in for example [13]. In essence, the
simplifications of the full Maxwell equations are possible because it is assumed
that magnetic field induced by the motion of the conducting liquid is small
in comparison to the imposed magnetic field, which is due to the flow of cur-
rent through the arc and workpiece, and it is in alignment with our modelling
strategy to assume that this imposed field is steady.

In [13] the major characteristics of electromagnetically driven flows in cavi-
ties, such as weld pools, are summarized. For a hemispherical pool and axisym-
metric fields, it is easy to derive a solution for the simplified MHD equations
that show that the Lorentz force, in cases when the applied current is directed
into the workpiece, is directed radially inwards and decreases in magnitude to-
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wards the base of the pool. Consequently, the flow field is directed towards the
bottom of the pool near the symmetry axis. We note that this field carries mass
and thermal energy from the hot impinging spot of the electrode, towards the
deepest part of the pool, and thus promotes penetration. The phenomena that
causes this type of flow field is known as the pinch effect. The pinch effect acts
in weld pools of arbitrary shapes, and the penetrating effect of electric current
is an established phenomena in all direct current electrode negative welding
processes. The digging effect of the electrons impinging on the pool surface
adds to this effect.

Under the restricting circumstances explained above, [51] presented analyti-
cal expressions for the Lorentz force considering a stationary arc, symmetrically
impinging on the flat weld surface of a semi-infinite workpiece. These expres-
sions have subject to extensive use in the history of weld pool simulations,
see for example [82, 59]. The work carried on in [52], in which a workpiece
of finite thickness was considered. The expressions for Ft

em involves the inte-
gration of exponentials and Bessel functions. However, under the assumption
that the incident current on the weld surface is concentrated to a single point,
the expression for the semi-infinite workpiece can be simplified into one that is
more straightforward to evaluate, see [51]. In order to account for moving weld
pool boundaries and arcs, this expression must be modified. If the deformation
is not great, this can be done simply by replacing the spatial coordinates by
material coordinates and transforming the force components into our cartesian
coordinate system. The force contribution is

Ft
em(ω(X, t), t) =

I2µB

4π2r3
1

(
1 +

Y

r1

)[
XY

r2
,−1,

Y (Z − P3(t))
r2

]T

where

r =
√

X2 + (Z − P3(t))2

r1 =
√

X2 + Y 2 + (Z − P3(t))2,

and µB is an effective magnetic permeability of the weld, which is assumed
constant. The above expression was applied by the author in [24], but the
results were not entirely satisfactory. It is believed that this is predominantly
due the idealized radius of the incident current spot, and that the geometrical
approximation inherent in the expression is not valid in applications such as
those, in which the weld surface underwent great deformation. What more is,
the motion of the pseudo-fluid has an impact on the force, which is not physical.

[76] proposed an expression (c.f. [53]) that takes into account the finite
thickness of the base plate (h0) and also allows for a strictly positive radius σ(t)
for the incident current j, which in a cylindrical (r, z, θ)-coordinate system is
assumed to be of the form

j(r) =
I

πσ(t)2
exp

(
− r2

σ(t)2

)
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The expression was derived under assumption that the through thickness cur-
rent density and the θ-component of the magnetic flux density varies linearly
with the distance from the weld surface. Furthermore, the r-component of the
current density was taken as an average value through the thickness of the
workpiece. Still, a flat weld surface was considered. In [22], the author applied
the expression in a deformed workpiece by replacing the spatial coordinates by
material coordinates. We get

Ft
em(ω(X, t), t) = F em

1 F em
3 F em

4

[
F em

2 F em
4 X,

I

2πh0
F em

3 , F em
2 F em

4 Z

]T

(20)

where

F em
1 = − µBI

2πr2

F em
2 = j(r)

F em
3 =

(
1− exp

(
− r2

σ(t)2

))

F em
4 =

(
1 +

Y

h0

)

It has since then been noticed that this expression for the force can be ex-
trapolated outside the rectangular domain without changing its characteristics.
Hence it is possible to use spatial coordinates instead of material coordinates.
This avoids attaching physical meaning to the mesh motion, but it also implies
another degree of approximation. Since we find mesh independence to be a very
important feature, and we often consider bead-on-plate simulations in which
deformations are small, the above expression with spatial coordinates inserted
is the one we have continued to employ throughout the studies presented in this
treatise.

However practical these expressions are, a more realistic approach is perhaps
to consider the effects of boundary layers in the weld pool. Referring again to
[13], we find that this makes the treatment of the flow more complicated. Fur-
thermore, the flow can ususally not be assumed steady, since the it becomes
unsteady at Reynolds numbers in the order of 10, and that it is also sensitive
to the behaviour of the the magnetic field imposed by the arc. Considering
this, we are content with the analytical expression until a coupling with an arc
model is provided. The next step in the refinement of the electromagnetical
force simualtion is to first calculate the potential from the steady-state electric
potential equation and then calculate the electric field and also obtain the mag-
netic field from the Biot-Savart law, as in [43]. In connection to this we note
that the article [48] presents simulations in which such a potential equation is
solved on a domain that changes shape with time due to the deformation of the
pool surface.
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5.4 Pre-studies

A number of issues were raised during the derivation of the mathematical model
for the weld pool. The purpose of this section is to resolve these issues by
investigating into the behaviour of the model in certain model cases, and so
hint on what to expect when applying the model in realistic simulations. The
computational model we employ during these investigations is as explained in
section 6.

5.4.1 2D time dependent vs. 3D steady state

It is natural to ask what impact the assumption that the flux vanishes in the
welding direction has on the result of a simulation of a typical weld pool, that is,
we would like to compare the formulations (10) and (11) with respect to pool size
and shape. This we do for a number of simplified cases, in which we calculate
only temperature and ignore dissipation, and thus assume that the workpiece is
undeformed and that the flow velocities vanish with respect to reference frame
fixed with respect to the workpiece. This reduces the convective field in the 3D
simulations to a single component in the opposite direction of the arc velocity,
and that compressible effects dissappear.

The cases we consider are equal except that we treat the arc speed as a
parameter, and they simulate a set of linear-bead-on-plate welding sequences
on 6mm thick 304 stainless steel plates. Figures 1 and 2 graph the depths and
lengths of the weld pools calculated using the 2D time dependent formulation
measured as percentages of the depths and lengths calculated using the 3D
steady state formulation. Equation (9) hints that the effects of the flux in the
direction of the weld, in this case heat conduction, decreases with increasing arc
speed. Since we apply the same heat input in the different simulations but in
the 2D formualtion remove a way for the energy to spread in the workpiece, we
expect the 2D pools to be shorter and more shallow than their counterparts.
We see that the simulations verify these trends. It is also worth noticing that
the maximum temperature in the pool is predicted quite well even for low arc
velocities, see figure 3.

Our conclusion is that, for this model case, we may trust the predictions
obtained using the 2D if the arc speed is greater than approximately 0.020m/s.
In simulation cases where the arc velocity is significantly slower, this study does
not assure that the pool geometry will not deviate significantly from the one
that would have been obtained using a model that considers three spatial di-
mensions. In preparing the model for such applications, we have tried adding
in the governing equations a conductive flux in the welding direction. In doing
so, the second time derivative of the temperature appears. This accelaration
completely changes the nature of the equations system, and in fact, the theory
we have developed is intended to avoid this behaviour. Accordingly, the imple-
mentation we have worked with during this project does not function well for
such a formulation, and none of the calculations based upon it have converged.
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Figure 1: Pool depth (percent) versus arc speed (mm/s). The solid line repre-
sents the solidification boundary of the pool, while the dashed line represents
the melting boundary.

5.4.2 The influence of filler metal heat transfer on the melting effi-
ciency

As explained by equation (6), our model employs an energy equation
the spatial representation of which contains the source term
− ∫

Ω(t)

(
ht +4Ht + ρut·ut

2

)
∇ · [ut − ω̇t]φt. If we thermally insulate the sur-

faces and ignore the viscous dissipation, the temperature field we calculate
should satisfy the following equation for the thermal energy ht +4Ht;

d
dt

∫
Ω(t)

(ht +4Ht)φt +
∫
Ω(t)

(ut − ω̇t) · ∇ (ht +4Ht)φt =

− ∫
Ω(t)

(ht +4Ht)∇ · [ut − ω̇t] φt − ∫
Ω(t)

k∇T t · ∇φt + Qt[φt]

As remarked in the discussion of equations (7) and (8), assuming that the in-
compressibility condition is not violated, adding mass to the workpiece would
not increase its thermal energy content. This implies that the temperature of
the workpiece must undergo a net decrease in temperature as mass is added.
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Figure 2: Pool length (percent) versus arc speed (mm/s). The solid line repre-
sents the solidification boundary of the pool, while the dashed line represents
the melting boundary.

This however does not happen, which is obvious from simulating a test case
in which the workpiece is initially fluid and in which we apply no heat source,
but add material. Hence the incompressibility condition was violated. Yet we
ignored the thermal energy sink which in compressible cases equilibrates the
source of thermal energy that is due to the expansion of the material, i.e. the
compressibility term

∫
Ω(t)

(ht +4Ht)∇·ut. Since the amount and distribution
of thermal energy is crucial in welding, it is important to know what influence
the compressibility source has on the outcome of a simulation. As mentioned,
the source is nonlinear in the thermal energy, but this has the effect that the
heat transfer by mass increases with the temperature of the pool, which at least
seems natural.

In order to quantify the influence of the heat input to the workpiece that
is due to the addition of filler metal, and compare it to the significance of
the boundary source term in the energy equation, we study the effect that
the heat input resulting from the presence of the nonlinear source term has
on the melting efficiency predicted by the simulation. We define the melting
efficiency Hmelt of a steady-state linear welding process as the ratio of the
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Figure 3: Maximum pool temperature (percent) versus arc speed (mm/s).

theoretical minimum amount of energy required to establish the weld pool and
mushy zone to the total amount of thermal energy contained in the workpiece.
Melting efficiency is sometimes defined in terms of cross-sectional areas and
heat input per unit length (c.f. [60]), but since we assume a mushy zone of
considerable size, this definition is ankward. Note however, that if we thermally
insulate the surfaces of the workpiece during the simulation, the total energy
contained in the workpiece is the same as the heat input to the workpiece, but
since our model precludes the possibility of having heat escape in the welding
direction, insulating the boundaries may increase the heat per unit length in
every cross-section indefinitely. Thus we choose not to insulate the surfaces.
This implies that we can expect Hmelt to depend upon kt

∞, however the heat
transfer coefficient is fixed throughout this study.

We have that

Hmelt =

∫
Ω(t)

Lf ◦ T t +
∫
Ωmz(t)

∫ T t

T0
c +

∫
Ωw(t)

∫ Tm

T0
c

∫
Ω(t)

[
Lf ◦ T t +

∫ T t

T0
c
] (21)

This ratio was calculated for a number of typical linear (steady state) bead-on-
plate welding processes (on steel 316 plates), the parameter settings of which



42 5 MATHEMATICAL MODELLING OF WELD POOLS

were the same, except that we beteween the runs modified the deposition rate.
This way we may study the dependence of the melting efficiency on the reinforce-
ment size, which we measure as the volume of reinforcement per length, i.e. its
cross-sectional area. We obtained nine data points in the range 0mm2− 4mm2,
see figure 4. An immediate result is that we may verify that our model behaves
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Figure 4: Obtained melting efficiencies (circles) and a quadratic least squares
fit plotted against the reinforcement cross-sectional area (mm2).

qualitatively correct in that the melting efficiency increases with the actual heat
input to the workpiece (c.f. [20]) which is strongly affected by the deposition
rate. By extrapolating a quadratic least squares fit, we find that the performed
parameter study predicts that, for a higher deposition rate, our model would
simulate a melting efficiency the size of which agrees with what is usually ex-
perienced during non-autogeneous arc welding (40-50 percent, see for example
[20]).

Lets return to the discussion following equation (8). The main question is
why assume a pointwise solenoidal velocity field, and use this property when
simplifying the equations, even though the velocity field approximated by the
computational model is expected to be at most merely discretely divergence-
free? In applications in which the incompressibility term is close to zero, this
assumption does not significantly influence the result, but in our setting the
incompressibility condition is severely violated. We have seen that the moving
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boundary itself does not influence the heat content of the workpiece, however
the divergence of the velocity that it causes was ignored. In order to verify that
the heating effect of the deposited material is actually an effect of the incorrect
assumption of a solenoidal velocity field, we compare two typical welding sim-
ulation cases which differ only in that one of them includes the compressibility
source. In these cases we insulate the workpiece surfaces, which implies that
the heat content (energy) in the computational slice should tend to the theoret-
ical energy input, if the model conserves energy globally. The heat content in
the computational slice calculated using the model ignoring the compressibility
source is plotted against time in figure 5. The heat content calculated using the
model taking into account the compressibility source is plotted against time in
figure 6. It is clear that it is the decompression of the material that gives rise to
the artificial heat source that we hitherto have chosen to ignore. As the source
passes at time t = 5, the workpiece slice that we observe experiences an increase
of energy due to the addition of mass and application of the heat source, and
when using the model with the compressibility source we see that the energy
content remains above 99% of the theoretical heat input after the source has
passed.

Figure 5: Heat content (measured as the ratio of the heat content in the com-
putational slice to the theoretical total heat input) against time (s), ignoring
compressible effects.
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Figure 6: Heat content (measured as the ratio of the heat content in the com-
putational slice to the theoretical total heat input) against time (s), taking into
account compressible effects.

The results presented in this and the previous sections are important for
appreciating the behaviour of the model, and what more is we can now bring
closure to the question we have posed several times before; What is the mo-
mentum and energy of the material added to the simulated weld pool? The
answer is that we cannot know this beforehand. It is difficult to get around
this when insisting on employing a one-phase model such as the one we have
proposed. However, it is, as we have seen, simple to neutralize the effect of
the decompression on the energy input that follows upon a mass deposition in
the pool. We simply include the compressibility source in the energy equation.
Since it is often so that an experiment we seek to mimic, or a specification for
a simulation, gives a quantity such as the path energy or the net total heat
input, it is much more straightforward to use the model if compressible effects
are taken into account. Hence we decide for now to continue using the modi-
fied model that includes the compressibility source in the energy equation. The
momentum source given rise to by the metal spray is yet to be analyzed.

A real-life case in which this modified model displays its impeccable global
energy conservation property was considered in a related project on metal de-
position.
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6 Computational Modeling of Weld Pools

In this section we develop a computational model for the governing equations,
and discuss a number of alternative approaches to the problem. The discretiza-
tion is performed using a finite element method.

6.1 Pseudocompressibility

It can be realized that the compressibility condition will be violated in the
interior of the domain and cause a loss of or increase in mass. Since our
computational model is partly meant to aid in predicting reinforcement size
and geometry, the conservation of mass is essential. We therefore implement a
pseudo-compressibility method by adding to the continuity equation a Petrov-
Galerkin regularization term, i.e. a small artificial flux in the direction of the
negative pressure gradient. Also, in order to obtain further relaxation of the
incompressibility condition, a penalization term is added to the spatially repre-
sented continuity equation, resulting in the following computational version of
equation (12):

0 = −ρref

∫

Ω0

∇(X,Y )û : Jω
−T ˆ̄p|Jω| (22)

−ε

∫

Ω0

∇(X,Y )p̂Jω
−1Jω

−T∇T
(X,Y )

ˆ̄p|Jω| − ε2
∫

Ω0

p̂ ˆ̄p|Jω|+ M̂ t
[
ˆ̄p
]
,∀p̄ ∈ V (pt)

where ε is the constant relaxation parameter. It is reasonable to let the value
of this parameter be dependent upon the mass added per unit length and unit
time as the source passes over the computational slice, i.e. it is dependent upon
the mass density, the deposition rate, and the interaction time for a pool sur-
face particle in the joint plane. Thus we assume ε = ε(ρref ,M, v, b). We note
that this assumption is in constrast with the standard approach of having the
relaxation vanish with decreasing mesh size. By interpreting the pressure flux
in a physical way, we see that in order to render the Petrov-Galerkin regular-
ization term dimensionally consistent, the relaxation parameter must have the
dimension of time. By dimensional analysis we find that an appropriate ansatz
is ε = Cε

M
ρref v2b , where Cε is a dimensionless constant. The value of Cε will be

calibrated in section 7.1. As is apparent from equation (22), the value of the
factor in front of the penalization term is assumed to be the square of ε.

A reason for employing the penalization method is usually that the pressure
variable does not need to be calculated. However, our model does not exploit this
opportunity since the deposition of mass requires that we solve the continuity
equation for the pressure. There is a theoretical possibility of inserting the
weighted integral of the pressure from the continuity equation into the equations
for the fluid flow velocity, thus incorporating the boundary source. We have tried
this option, but it does not work very well, the fluid remains incompressible and
no material can consequently be added. The reason for this is thought be that
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the penalization is too rigorous for the boundary source to have an effect on the
divergence of the flow field.

6.2 Mesh moving techniques

We must decide upon what equations to solve for the motion. Chosing û =
∂ω
∂t , as in the the classical Lagrange approach, eliminates the convection term
in equation (4). This approach is often a good choice for solid mechanical
simulations, but it is rarely successfully applied within the field of CFD. The
other extreme is the Euler approach, in which the motion vanishes. Since in the
Eulerian approach the mesh is not at all distorted, this approach cannot be used
to track moving surfaces unless we employ a CSF formulation. Attempting to
exploit the good characteristics of either two of the above extremes, we choose
to employ a pseudo-fluid mesh moving technique with mesh size dependent
viscosity, i.e. we solve equation (18) with µmesh = µmesh(h), where h is a
measure of the local element size. Specifically, we set

µmesh(h) = 1− h

We also tried using an exponentially increasing mesh viscosity, but for a number
of test cases we obtained shorter simulation times using the above formula. This
is probably due to the extreme viscosity gradients that appear when employing
the former approach.

It is well worth mentioning another mesh moving technique that we also
tried. If the location of the moving surface can be represented as the graph of
a single-valued function h8 giving the displacement of the surface in a specified
direction measured from a reference plane or point, then the method of spines
(c.f. [70]), also known as the height function method, is applicable. This method
reduce the complexity of the system of equations, since the motion of the entire
workpiece can be expressed via the single unknown h8, which is defined only on
the free surface. For example, if the the workpiece consists of a plate of thick-
ness h0, and the surface is spatially described by Γw(t) = {(x, h8(x, z, t), z) :
(x, 0, z) ∈ Γw

0 }, then

ω(x, t) =




1 0 0
0 1 + h(x,z,t)

h0
0

0 0 1


x +




0
h(x, z, t)

0


 .

and in two dimensions we have a formula for Jw involving only a derivative of h8.
If one wishes to simultaneously perform tracking of two differtent boundaries
such as the liquid-solid and liquid-gaseous or root side workpiece boundaries
of a nicely behaving weld pool, the akin Landau transformation (c.f. [75, 83])
is appropriate. The method of spines reduces system complexity, but even
for small deformations we have experienced that the convergence is very slow,
probably due to the severe deformation of the elements. What more is, it cannot
be used to represent an extremely deformed surface such as the weld pool surface
during overflow.
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6.3 Dimensional analysis

During electric arc welding it is in general so that the relative importance of
the forces driving the fluid flow is such that the electromagnetic force exercises
the dominating effect, followed in decreasing order by Marangoni and gravita-
tional forces. It would be a great advantage to know beforehand if any of these
forces can be neglected and thus ignored during a simulation. Likewise is it
advantageous to know whether heat transfer occurs predominantly by conduc-
tion or convection. Our modelling strategy compells us to calculate the fluid
flow and convection, and conduction must also always be considered else the
base material would not melt, but simulation results can aid in understanding
the phenomena occurring in the real weld pool. For example, during LBW the
Marangoni force is the main driving force, and the direction of this force can
be modified by adding a surface-active element which causes the gradient of
surface tension to change direction. This method can thus be used in order to
achieve higher penetration (c.f. [17]), however only when the Peclet number is
large, which signifies that the heat transfer that determines the interior pool
shape occurs predominantly by convection. Simulations can be used in order
to approximate the fluid flow velocity in the pool and thus verify or falsify that
this is in fact the case. Although the Peclet and other dimensionless numbers
would preferably be known beforehand, it is difficult to calculate such without
enough information about the thermodynamical state of the workpiece during
the welding sequence. Since we do not have this information a priori, we let our
simulation tool output the important quantities, and these can be used for ap-
proximating the values of the dimensionless numbers during similar simulations,
for example those subsequent in a parameter study.

The calculation of the weld pool flow Reynolds numbers and turbulence
modelling is discussed in section 6.4.

6.4 Laminar vs. turbulent modelling

Both experimental, numerical and theoretical attempts have been made to ap-
proximate the Reynolds number for different weld pool flows. The prediction
of course depend on the welding process and parameters, but even for similar
situations the results diverge. Since it has proven difficult to establish a critical
Reynolds number for a weld pool flow, it generally remains an open question
whether a flow should be treated as laminar or turbulent. There have though
been performed studies that compare simulations using laminar models to simu-
lations using turbulent models, and the results indicate what modelling strategy
should be pursued.

In [40] it was noticed that laminar models tend to overestimate the depth of
the actual weld pool. There was conveyed a comparison between the measured
and predicted weld pool shapes using a laminar and a k − ε turbulent model.
It was found that, for the specific case, turbulent models are more accurate.
However, when approaching the solid-liquid interface, the level of turbulence was
seen to decrease to a size that predicts laminar flow. It can thus be suspected
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that ignoring turbulent effects in the center of the pool may result in a laminar
model that overestimate the pool depth. This can be explained by the fact that
the thermal energy density in the fluid is high close to the center of the pool
surface, i.e. directly under the center of the arc, and the flow pattern induced by
Lorentz forces transport this thermal energy towards the root side and provokes
weld penetration. This effect is not as emphasized when turbulence is present,
since in a such flow the diffusion of thermal energy away from the center is more
enhanced, and the temperature of the fluid that is transported to the bottom
center of the weld pool is thus reduced (c.f. [85] where it was found that “the
dissipation of heat and momentum in the weld pool is significantly aided by
turbulence”). This effect is verified by the isotherms presented in [40].

In [8, 9] it is on the other hand argued that turbulent thermal diffusion may
increase the depth of the pool. This effect is however limited by the enhanced
diffusion of momentum which reduces the flow velocities, and thus the convective
transport of heat, towards the root side.

There is no definite advantage of employing a turbulent modelling approach
in our present work, and hence we choose for now to continue using the laminar
model.

6.5 The DASPK algorithm and implementation details

We employ the DASPK algorithm ([4, 5]) for solving the differential-algebraic
systems obtained from the finite element discretization of the equations. The
numerical method was implemented using the software COMSOL Script. The
input to the software consists in a source file, which primarily contains the spec-
ification of the weak form of the governing equations and of the corresponding
elements. Also, the choice of linear system solver and corresponding settings are
specified in the source file. Due to limited computing power, the computational
models considered in this treatise are all of moderate size, and we have experi-
enced that the direct linear solver outperforms the iterative solvers supplied by
COMSOL script. We use the linear solver UMFPACK.

The DASPK algorithm requires the user to supply the value of the weights
that define the weigthed norm which is used to determine convergence. The
relative tolerance and the absolute tolerance are discussed in section 6.6. Their
values are generally set some magnitudes lower than those values recommended
in [4] as the starting guesses in the process of finding an application specific
optimization of the code performance.

Some intricate issues have taken up much of the authors time. For example,
tangential derivatives are analytically and numerically equivalent to the projec-
tion of the gradient on the tangential direction. However there seems to be a
difference in the implementation of the two since the latter gives rise to highly
irregular surfaces when employed in the formulation of the partially integrated
surface tension term, while the former does not. We have also tried normalizing
the equations with respect to ρ, but we have found that the built-in scaling
performed by the code is generally more efficient.
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6.6 A GMA fillet weld case study

We now apply the developed tool to the simulation of a GMA fillet weld pool.
The purpose is to extract important information about the behaviour of the
tool, before proceeding to its calibration. [91] (as well as [47] and [57] in a simi-
lar fashion) gives a specification of a three dimensional steady state GMA fillet
weld simulation, although lacking in the value for the latent heat coefficient of
the A-36 mild steel, the workpiece and spatial domain dimensions, and the in-
cident current radius. What more is, the [91] model predicts the surface shape
by minimizing a surface energy functional under mass conservation conditions,
and hence does not make use of a mass source. Hence we must choose b. This
we do by restricting the mass source radius to the weld pool, so that no mass
is deposited onto the solid workpiece. The value b = 0.2a is assumed to suffice.
We calculate the total deposition rate from wire dimensions and feed rate. By
setting L to the value of the latent heat coefficient for pure iron, approximating
the workpiece dimensions from the figures in [91], and setting the incident cur-
rent radius σ = b, we may specify all input values required in order to obtain a
corresponding simulation using our tool. We note that the arc current is high
enough (362A) to enable the assumption of spray transfer (c.f. [85] and [50]).

Furthermore, our tool does not apply a Dirichlet condition for the tempera-
ture at the butt sides of the workpiece, but instead applies the convective heat
transfer condition using the value 1010 for the effective heat transfer coefficient.
Finally, the model for the electromotive force in [91] is as in [52], which, as
previously explained, differs from the expression we apply in this study.

According to the results obtained in section 5.4.1, it is possible that our
model will underestimate the size of the pool, since the arc speed is only
0.0042m/s. In preliminary simulations, we have experienced that the melting
is not initiated in the fillet but rather at a distance from the fillet, which causes
molten material to overflow the solid fillet and cause the calculations to break
down (due to the severe deformation of the elements in the mushy zone close
the workpiece surface). This is behaviour is not unphysical, however it does not
appear in [91]. Considering the results obtained in section 5.4.1, we figure that
it might be the lack of heat transfer in the welding direction that delays the
melting of the fillet, and thus improperly causes the overflow. Hence this is a
limitation of our model. It is remedied by specifying a strictly positive radius of
the fillet so that the surface source alone is enough to melt the fillet first. The
fillet radius is coupled to the mesh size hε at the fillet, so that the effect of the
modified geoemtry vanishes with decreasing mesh size, see discussion below.

Our computational domain is an undeformed rectangle. So far we have for
simplicity and brevity assumed that the initial and referential configurations are
the same. This is no longer the case, but the exact same analysis is valid even
though we must now define an appropriate transformation ω0 : Ω0

∼−→ Ω0 that
maps the computational rectangle onto the initial configuration of the work-
piece. This can be done in several ways. The a priori idea is to minimize the
deformation of the element domains. We have tried a different initial configu-
rations, and have found that the following mapping is a good one;
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ω0(X, Y ) = [X, Y + X +
h0 + Y

h0
hε(exp(−X/hε)− 1)]T

where hε is a measure of the local element size at the fillet. We notice that the
previously employed boundary condition ∂ω2

∂X = 0 for the workpiece configura-
tion at the symmetry line is more restrictive than necessary since the symmetry
line is not a physical boundary of the workpiece. We require only that corners
in the fluid surface are avoided, and thus it is necessary to ensure ∂ω2

∂X = 0 along
the fillet only, which in our case is represented by a point. This point condition
is fulfilled by the above initial configuration.

It is a vital part of this study to compare the prediction of the shape of the
interior and exterior weld that our simulation tool provide, to the computational
results obtained using the different approach of [91]. Since the results obtained
in the latter are verified against experimental results, this case study is also an
indirect verification of former. However, the [91] model differs from our model
not only in that it is steady state and predicts the surface shape by a mini-
mization algorithm, it also applies a volumetric heat source of a certain depth
and width, that models the heat transfer from the filler metal droplets which at
high speed strike the pool. As in [85], the volumetric source is calculated from
cavitation depth, droplet radii and frequency. However the experiments against
which the simulations are verified were conducted in spray transfer mode, which
implies that the frequency of the droplets is not so easily approximated. As a
matter of fact, when simulating a GMA process operated at a high current such
as the one at hand, we would very much like to avoid the need for considering
individual droplets. We take therefore the opportunity to investigate the im-
portance of where the heat is supplied, by employing in similar simulations also
only an equivalent surface source efficiency.

Having run the case for the first time, we find that it doesn’t work very well
since the compressibility term overcompensates and material partly solidifies in
the arc cavity as the source passes, see figure 7. This is unphysical, and further
calculation becomes tedious. This phenomena was not visible in earlier test
cases using this model, however under realistic conditions such as those at hand
(that has now become feasible to consider since our project has gotten access
to a more powerful workstation), the arc pressure and the mass deposition rate
are higher, and cause more severe violations of the incompressibility condition.
More specifically, the energy sinks applied in order to eliminate the effect of the
violations of the incompressibility condition on the global energy conservation,
are highly localized to the elements near the weld pool boundary. Thus we
wish to get rid of the compressibility term, but without disturbing the global
energy conservation. We turn therefore again to a method that was previously
rejected; Adding material by specifying the motion of the weld pool boundary
via the artificial force on the pseudofluid, anticipating that this method behaves
better than the hitherto used method when applied to the present realistic
simulation case. The surface force on the pseudo-fluid includes now a weak term
for the deposited volume per second. Since the incorporation of the action of the
filler is now done via the the action of the Lagrange multiplier, the kinematic
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Figure 7: The pointwise compressibility sink makes the pool mushy as the source
passes.

constraint is automatically relaxed so that the flow velocity at the pool surface,
as affected by the arc pressure and Lorentz force, can be directed mainly towards
the bottom of the pool even as the pool surface is under elevation. What more
is, the problem with the violation of the incompressibility condition is perhaps
no longer an issue. Hopefully we avoid the need for applying the compressibility
term, however global energy conservation is now maintained using a surface sink
which is coupled to the energy density at the surface, as explained by equation
(8). Test runs show that this approach does not solve the problem, since the
surface sink now overcompensates, and instead of having material solidify in the
interior of the pool as the source passes, it now solidifies from the pool surface.
Apparently, the rate of energy transfer by mass is much higher than the rate of
energy transfer by the Joule heating as modelled by the boundary source in the
energy equation.

In order to remedy the situation, we propose a new heat source model that
is both volumetric and acting as a surface source. The volumetric part of the
source is meant to keep the material from solidifying in the interior of the pool.
The user specifies the arc efficiencies for each source term, and their sum cannot
be greater than 1. The drawback is one we have encountered many times before
when dealing with mesh motion techniques, and it is that we cannot control the
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amount of energy transferred to the deforming workpiece without modifying
the shape of the source. By expressing volumetric sources and sinks in material
coordinates we would gain control of the size of integrals that determine the total
energy of the source, but it also has the effect of attaching physical meaning
to the mesh motion, which is something that we wish to avoid. However, if
the fraction of the total arc efficiency that is used for modelling interior energy
deposition is not great (it is 31 percent of the source power in this case study),
the error in total energy input can be neglected. We let the volumetric source
be of Gaussian shape, and thus three numbers are used to specify its decay
in the three spatial directions. Since the volumetric source is meant to model
heat transfer from metal droplets, it is natural that its dispersion in the plane
orthogonal to the arc axis is the same as for the mass source. Thus it remains
to specify its depth d. This can be calculated in a fashion similar to the one
employed in [91], however it is not apparent what value is used in that study.
We set d = 0.008, and leave this parameter for future calibration. As the fillet
case was run with the new source, we found that the problem with the solid
(mushy) chunks of metal in pool, had not been solved. However, before the
calculations stalled, we saw that the interior pool had begun to take on the
finger penetration shape, as in [91]. It seems thus that the volumetric source
term should be kept in order to better recreate and predict the geometry of
GMA weld pools.

Having failed at solving the main problem by modifying the source, we now
instead aim at its heart. We wish to spread out the effect of the highly localized
compressibility variations on a larger part of the workpiece. Thus we try the
following; We calculate the total artificial effect input, and add an artificial
energy sink in the interior of the computational domain, shaped not much unlike
the volumetric source. There is now a coupling of the weight on the artificial
sink to the integral of the energy density and velocity derivatives over the entire
domain. We must hypothesize the distribution of the sink. At first attempt,
we try the same length of the semi-axes as for the source. Test runs show
that no artificial solidification occurs, and the computational method conserves
the energy globally. We also see that the artificial sink destroys the finger
penetration shape of the weld pool directly below the arc, however we have had
good agreement with the results of [91] considering the pool profile in the rear
of the pool (c.f. figure 8). One should note however, that the results presented
in [91] are verified against fusion zone shapes only, and therefore we cannot
determine what pool shape is correct. Since the incorporation of a volumetric
sink into the model involves introducing yet another unknown parameter, i.e.
the sink shape, we decide not to continue working along these lines.

Yet another disturbing phenomena is that kinks in the surface configuration
appear in the solid phase close to the mushy zone, se figure 9. For one partic-
ular mesh, we have seen that these are due to an unphysical mesh motion that
violates the kinematic constraint. Since the kinks always appear close to the
fusion boundary, it seems that they are related to the physics of the problem. If
the kinematic bondary condition is not fulfilled, the only connection the mesh
motion has to the physics of the problem is via the shape of the domain on
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Figure 8: Pool profile 8mm behind the arc.

which the governing Laplace equation is solved. It seems thus that the problem
is inherent in the Laplace equation, and the behaviour of its solution near a
concavity in the domain such as the one that appears at the triple point. One
of the reasons for choosing the Laplace equation for determining the mesh ve-
locity was that its solutions are usually well-behaved on two dimensional convex
domains, but as filler material due to the action of the arc pressure is pushed to-
wards the fusion boundary, it elevates over the weld plane, and the pool surface
strives to attach to the solid plate at an angle, thus creating an inwards corner
in the domain. It can be suggested that this build-up of material towards the
fusion boundary is more severe when considered as a phenomena occuring in
the plane perpendicular to the weld line only, since we have then removed the
possibility of having mass escape from the cavity by building up in the welding
direction (the direction in which overlaps do not compromise the weld quality).
This suggestion is supported by the fact that in our simulations we find that
more mass per length is contained in the transversal slice directly below the
arc than is contained in the corresponding slice simulated using the three di-
mensional model to which we compare our results. Furthermore we have, to a
minor extent, verified that the kinking behaviour is actually a consequence of
the irregularity in domain boundary, by solving the Laplace equation on the
rectangular material domain instead. This approach though, seems to cause
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Figure 9: Kinks in the solid workpiece surface are visible near the mushy zone.
The section of the workpiece visualized in this figure has its weld plane to the
left, partially facing the viewer.

unfavourable deformations of the element domains not only at the triple point,
since the calculation was slow and finally came to a stall. However, the kink-
ing behaviour had reduced in severity, but had not entirely vanished, which
is probably due to the remaining unregularity in the kinematic boundary con-
dition. The unregularity in the kinematic boundary condition appears since
the multiplier technique abruptly switches from restricting the horizontal mesh
velocity to restricting the vertical mesh velocity at the triple point. This is
also the reason why it is difficult to implement the kinematic condition as a
Dirichlet condition; The degrees of freedom to remove from the approximation
space changes dynamically between different solution variables and boundary
segments. What more is, the constraint is a coupling between the different solu-
tion variables, which is a further complication. We will later explore a method
that avoids these difficulties; By transforming the dependent coordinates of the
mesh velocity, so that one single component determines the normal velocity at
the boundary, the kinematic constraint can be implemented as a homogenous
Dirichlet condition on a single scalar unknown function representing the differ-
ence in the normal flow of the pseudo-fluid and the physical fluid. First we make
a few other remarks concering the mesh motion equation.
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When defining the equation for the workpiece motion, we did not take into
account the effect of the mesh viscosity, which happens to be discontinuous.
When specifying instead a constant mesh viscosity, the simulation based on the
model in which mass is added in the incompressibility equation finishes quickly,
and the kinks have decreased in size. However when trying to add mass in the
modifed way, the simulation does not converge in the same amount of time. This
is an argument for sticking to the model we have hitherto developed. For one
particular test problem in which kinking has previously appeared when using a
mesh viscosity identically equal to 1, we have also run a number of simulations
in which the mesh viscosity was set to orders of magnitudes larger and smaller,
but none of these latter simulations were any more successfull than the former.

Even though removing the mesh-dependence from the mesh viscosity de-
creased computational times, the issue with the surface kinks is not yet com-
pletely solved. In simulation cases closely related to the present, we have experi-
enced that the problem still appears, but now the kinematic constraint is not as
severely violated. Further investigation reveals an inaccuracy in the solution of
the ordinary differential equation that extracts the current configuration from
the mesh velocity. This contributes to the error in the workpiece motion, but
is not easily circumvented. The best we can do is to further refine the mesh.
Since the kinks appear on the scale of the element domains, their severity will
decrease with decreasing mesh size.

We recall now a problem that appeared early in the process of implementing
our model; The low level implementation of the coordinate derivatives are not
suitable for use on the domain boundaries. As we switch to expressions for
tangential derivatives, the simulation tool works mush better. We continue now
to replace the expressions for the surface tension forces with new ones utilizing
only tangential derivatives. After having done so, convergence is faster and
better, but still kinks appear.

It seems to be the mesh velocity in the surface adjacent element the domain
of which is part solid and part fluid (and thus contains a lot of mush) that causes
the kink. Its fluid part strives to flatten out, and this causes its solid part to
follow this motion, thus creating a kink at its solid boundary, see figure 10. Since
there is a small but not negligable physical deformation of the solid, i.e. a non-
vanishing fluid flow gradient, we perform a minor investigation of the sensitivity
of the simulation with respect to the parameter that determines the viscosity
of the solid state workpiece. Having done so we find a much better value (105),
for which the calculations are much faster, i.e. the DASPK algorithm converges
in fewer iterations. This value is lower than the previously used, and a higher
value did not reduce the kinks. Modifying the arc pressure so that it acts only
on the fluid surface and not on the solid workpiece surface on which it should
exercise no influence but apparently does, reveals yet another speed-up. In spite
of these favourable efforts, the kinks remain.

It remains to investigate the effects of the equation for the mesh motion. So
far we have used an equation that we claimed mimiced the one for an inertia-less
fluid, however the pure Laplace equation we solve is not quite the same as the
one for a Stokes flow, in which the stress tensor contains the transpose of the



56 6 COMPUTATIONAL MODELING OF WELD POOLS

Figure 10: Kinking element extending across the mushy zone. The gray line
is the mushy zone, molten material is to the left. In this picture, a linearized
version of the piecewise quadratic deformation is plotted.

velocity gradients. There is also the possibility of adding inertia to the mesh.
We have tried different combinations of these ideas, but it is not obvious from
the test cases we have run which choice is the best. In some cases a pseudofluid
with inertia improves mass conservation, and in some cases the modified stress
tensor gives rise to very distorted meshes, and vice versa.

Since nothing else seems to do the trick, we now use brute force. A so called
porosity term was added as a boundary source for the mesh velocity, and this
term counteracts any mesh motion normal to a solid surface, thus inhibiting
unphysical workpiece deformations. This is a restriction of our model, since
solid surfaces were previously allowed to move (a solidified overflow wavefront
for examlpe), but not deform. Now we force all solid surfaces to remain at rest.
Hopefully, cases in which solid parts of the workpiece are separated from the
solid that is adjacent to a Dirichlet boundary for the fluid flow and workpiece
motion, are not in abundance. The behaviour of the solution is dependent upon
the value of the factor multiplying the porosity term, however we have not found
value that inhibits the knking behaviour.

All in all, the kinking behaviour is due to an unphysical mesh motion that
appears due to the fact that our computational model does not take into ac-
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count the appropriate physical phenomena. A boundary adjacent element in
the mushy zone experience a force from the surface tension, but its solid part
resists any velocity gradients. It seems that as an increasingly large part of the
element is melted, the high viscosity in its solid part cannot resist the surface
tension force, and the element deforms, thus forcing the adjacent element in the
solid phase to follow this motion in order to achieve continuity of the material
configuration, even though no fluid flow occurs in that element. A configu-
ration with a concavity of small radius results, and the solution of the mesh
moving equation oscillates along the surface. Actually the kinking behaviour
these oscillations provoke appears also in the liquid part of the workpiece, but
there the surface tension force quickly smooths them out, and all we see are
small and rapidly diminishing surface waves travelling towards the joint plane.
It is important to note that the severity of the kinking behaviour is dependent
upon the mesh size, and smaller elements will decrease the size of the kinks,
but tnot necessarily their impact on the computational performance. We have
also experienced that a larger surface tension gradient has a smoothing effect
on the surface configuration, i.e. Marangoni forces decrease the severity of the
kinks. This effect was not obvious to us when studying only the undiscretized
equations.

Having tried modifying the equations modelling the physics of the problem,
it remains now to investigate the computational model and its effect on the sim-
ulation. The choice of elements is discussed in section 6.7. We now try adapting
the mesh so that mesh elements are clustered in the region where strong gradi-
ents in the coefficients appear, i.e. in the mushy zone. The time derivative of
the Jacobian determinant of the configuration is a measure of the increase in the
local mesh density. If we base our mesh moving strategy upon a specification
of the Jacobian and its derivative in time, we would thus be able to monitor
the motion of the element domains more closely than we have so far, and so
obtain an adaptive method. A mesh velocity distribution that renders a regular
mesh automatically satisfies the geometrical conservation law, and this law can
be used as the starting point for the development of an adaptive mesh moving
method. If we add the reasonable condition that the mesh velocity field is irro-
tational, we can use a potential formulation for the flow of the pseudofluid, and
thus reduce the number of dependent variables. What more is, the kinematic
constraint enters the equation for the flow potential in the form of a natural
boundary condition, and it is worth investigating if an implementation based
on this new method can more accurately handle the phenomena that provoke the
kinking behaviour of the mesh surface. The methods we have tried are inspired
by those explained in [6]. However, our pseudofluid is not incompressible, and
also undergiong a net expansion. Therefore the compatibility condition for the
divergence of the mesh velocity field is somewhat more complicated, and it turns
out that a potential formulation based on the GCL is difficult to implement in
an efficient way.

The only success we have had so far in our attempts to add adaptivity
to the computational model is when remaining with the hitherto approach in
which we solve a Laplace equation for the mesh velocity, but modifying it only
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by adding a body force on the pseudofluid which acts in the direction of the
mushy zone. This direction is approximated by the temperature gradient and
its negative in the solid and liquid parts of the workpiece respectively. Elements
are thus pushed into the mushy zone where the strong gradients of the material
properties occur. In the ideal case this would cluster the elements to the extent
that the mushy zone extends over several elements, thus reducing the effect of
the kinking element. It has proven difficult to adequately chose the size of the
body force though, and the adaptivity works well only during a limited time
interval.

In the process of developing an adaptive method, we have experienced that
for small deformations allowing a method of spines formulation, the simulation
time can be shortened if we solve the Laplace equation for the mesh velocity
component in the arc axis direction only. This is not quite the method of spines
explained in section 6.2, since we solve an equation, in the entire domain, for
the mesh velocity in the y-direction. This method takes into account the mesh
velocity gradient in the x-direction, and is thus more efficient than the method
of spines, since it consequently does not in comparison skew the elements very
much, although it cannot be used for severly deformed pools.

Based on the above experiences, we have managed to define a computational
model that works better than the hitherto employed, at least for a limited class
of problems. The method circumvents the problem with the violation of the
kinematic boundary constraint by implementing it as pointwise homogenous
Dirichlet constraint on the a solution variable representing the difference be-
tween the mesh velocity and the fluid flow velocity. For this to work, the con-
straint must be on only one of the solution variables along the entire Dirichlet
boundary, and not coupled to any other solution variable. Thus we transform
the dependent variables of the “velocity difference” equation into a coordinate
system the coordinate directions of which at the boundary coincide with the
boundary tangential and normal directions. The constraint is now solely on
the solution variable representing the velocity component which on the bound-
ary coincides with the normal velocity difference. In order to insert the mesh
veocity into the governing equations for the other quantities of interest, we
must transform the velocity difference back into the global xy-coordinate sys-
tem. What more is, we may choose to solve for the “normal” mesh velocity
difference component only, and define the other component in such a fashion
that the mesh moves in the vertical direction only. We have seen that solving
the Laplace equation for a single velocity component only is efficient. Further-
more, we solve this equation on the undeformed domain, thus circumventing all
problems with irregularities in the domain and boundary conditions. For this
method to be efficient, one must take special care in the scaling of the solution
variables representing the transformed velocity difference. For a special kind of
scaling, the method of adding filler material to the pool by modifying the normal
velocity of the boundary can easily be implented as an inhomogenous constraint
on the “normal velocity difference” solution variable, that does not depend on
any other solution variable, not even on the workpiece configuration, i.e. the
Jacobian of the current configuration disappear from the constraint equation.
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Since we specify the motion of the boundary, one could control the amount of
energy added by mass transfer, if one could in the simulation also control the
temperature at the pool surface.

We have also the option of solving only for the “normal velocity difference”
and setting the “tangential” component to zero, thus not restricting the config-
uration of the workpiece boundary at all. We note also that if we are to exploit
symmetry when using the modified model in this fashion, it is necessary that ω
fulfills the boundary condition ∂ω2

∂X = 0 along the entire symmetry line. Thus
we employ the initial configuration

ω0(X,Y ) = [X, Y + X + hε(exp(−X/hε)− 1)]T

when using the modified mesh moving method.
Further investigations of the modified model reveals that the Dirichlet con-

dition seems to be too restrictive for the calculations to converge at a satisfying
rate, and we have found that relaxing the kinematic constraint using a penalty
method alleviates any remaining problem concerning the boundary condition
for the mesh velocity. We can now solve for the mesh velocity instead of the
velocity difference, which makes the equations more easy to implement, and
apparently renders a more robust computational model.

As a paranthesis, we mention also that we tried to solving the Laplace equa-
tion for the transformed mesh velocity on the undeformed domain, which makes
it easy to increase the resistance of the pseudofluid against shear along a plane
perpendicular to the weld surface. This would theoretically imply an increased
resistance towards kinking, but we have had no success when working along
these lines.

After extensive testing of the different models that we now have at hand, two
have emerged as the most competative ones. One of them is approximately the
same as we have explained so far in this treatise, however we solve the Laplace
equation for the mesh motion in the vertical direction only, thus restricting the
set of possible configurations. As previously mentioned, we have experienced
that the problems with the kinematic boundary condition can be resolved sim-
ply by relaxing it using a penalization method instead of a multiplier method or
linear system reduction method. The other model that has emerged as compet-
itive is the one developed during this case study, and in which the dependent
variables in the mesh velocity equation are transformed such that the kinematic
boundary condition, which is implemented using a penalization method, is on
one solution variable only. Also in this model we solve the Laplace equation
for the one mesh velocity component only, however now the mesh always has
freedom to move in the direction normal to the surface. Consequently this ap-
proach does not restrict the set of possible configurations. This is of course
an advantage, but unless large deformations are expected, the former model is
usually more computationally efficient (that is, it finishes in shorter time), since
the distortion of the mesh is usually not as severe as when employing the latter
model. Finally, we have experienced that for both these models, a very good
techique for adding mass to the pool is to control the mesh velocity normal to



60 6 COMPUTATIONAL MODELING OF WELD POOLS

the pool surface. This is good news since we now explicitly control where mass
is added to the pool, and consequently there is a possibility of also controlling
for example the temperature at the locations where mass is added, and thus
also controlling the energy input by mass transfer. Since we explicitly force the
motion of the boundaries of the spatial domain during the filler metal deposi-
tion, the global mass conservation properties of the models are excellent. Both
of these models are written down in their entirety in the following section.

Now we turn to a more detailed analysis of the simulation results for the fillet
case study. A visualization of the pool can be found in figure 11. The results

Figure 11: The fillet weld pool.

we disuss here were obtained from the model (23) below, but with penalization
for the kinematic constraint instead of the multiplier technique. We have used
the value ηs = 0.54 for the efficiency of the surface source, but have avoided
modelling the droplet heat transfer as an applied volumetric heat source, by
setting ηv = 0. The discretization resulted in a system with 99158 degrees of
freedom. The solidified weld bead profiles agree reasonably well with the one
computed in [91]. The bead profile is mainly determined by the maximum weld
pool width and the volume of the deposited mass. Our simulations produce
a slightly wider pool, and therefore also a wider bead the height of which is
slightly lower. We also notice that our bead is not entirely flat as in [91], but
has a top along its center line. This can be seen from figure 12, which also
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displays the spatial configuration of the mesh. We have seen this shape before
in other preliminary simulation tests that are not documented here, and we have
hypothesized that it is mainly due to the effect of Marangoni forces. This study
supports this hypothesize since it can be assumed that the main force driving
the flow in the pool far away from the source is exactly the Marangoni force.

A fingering effect is obtained as the source passes and adds energy by mass
transfer and the Lorenz force produces a downwards motion of the hot material
close to the arc center. At this point there is a second recirculating motion fur-
ther away from the pool center (see figure 13), which is driven by the Marangoni
force due to the negative value of the surface tension drivative with respect to
temperature. At a further distance from the source, the downwards circulating
flow reduces in strength and the pool penetration is not increased, but the pool
is width increases still due to the action of the Marangoni force. The pool pen-
etration directly below the arc is not as deep as for the pool calculated in [91].
However, the penetration of the actual solidified weld was measured and found
to be 3.4mm, which agrees fairly well with the penetration depth of 3.1mm that
our models calculates.

We have showed that the fingering effect can be obtained by adding mass
and energy at the surface of the pool, instead of applying a combination of a
surface source and a volumetric heat source in the interior of the pool. The fact
that the pool shape does not entirely match the one computed in [91] does not
mean that we have computed a shape that is not in accordance with reality. By
studying the shape of the fusion zone of the actual weld and the fusion zone
predicted by our simulations, we find that they agree reasonably well.

We also ran the test case using the method of adding filler material in which
we modify the mesh motion. We compared the maximimum depth and width
of the pool obtained using this method, and they matched quite well the ones
obtained using the method the results of which is analyzed above. This is not
entirely surprising, since it can be suspected from equations (7) and (8) that the
latter tends to the former as the mesh size tends to zero. It may be interesting
thus to compare the cpu times for the different models. So far we have only
seen that the wall-time for the simulation based upon the mass source model is
shorter that for the simulation based upon the mesh velocity source model.

6.7 A moving mesh mixed finite element method of lines

We now summarize the choices we have made for the weighting spaces for the
unknown functions the approximations of which we would like to compute. By
choosing these spaces to be of finite dimensions, we effectively discretize the
equations with respect to the spatial variables. Since the time variable remains
continuous, this discretization results in a differential-algebraic system of equa-
tions, in which the constraints are represented by the purely algebraic ones.
The reason why we apply the method of lines instead of applying finite ele-
ments to all three independant variables at once, as in the corresponding three
dimensional steady-state formulation, is that it is generally easier to obtain con-
vergence when applying our choice of software to time-dependent problems than
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to static ones (c.f. section 6.5).
It can be seen that the boundary mass source which has been applied in

many of our simulations, is not a bounded functional on the weighting space
for the pressure, so the well-posedness of the weak formulation does not follow
from standard methods. This fact does not hinder the method from working
remarkably well. For the sake of completeness, we have also simulated test cases
using a volumetric mass source term instead of the boundary source term. This
produced a solution quite different from the one obtained using the boundary
source for the same problem, most probably due to the fact that the kinematic
boundary condition was severley violated in the case with the volumetric source.
The added mass was consequently overestimated.

We employ the triangular Taylor-Hood element pair ([25]) for the fluid flow
equations, with linear shape functions for the pressure. It is not directly obvious
that this element combination is stable for the Navier-Stokes equations on a
moving domain, but it has hitherto worked quite well. Since the mesh velocity
is coupled to the fluid flow via the kinematic constraint, it is natural, and also
very efficient, to let the unknowns representing the mesh velocity components
also be approximated using socond order Lagrange elements on the same mesh.
Also the current configuration is discretized using this element type, since it
is extracted from the mesh velocity using an ordinary differential equation in
time. Finally, second order Lagrange elements are used for the temperature,
and linear Lagrange elements have been used for the multiplier if computed.

Since it seems natural that the shape of the free surface should have at
least first order geometrical continuity, one may suspect that for example Ar-
gyris elements would be more suitable for approximating the motion. Actually,
even using triangular Hermite elements would result in a C1 surface, since it is
enough that we have continuity of the derivatives at the element nodes located
at the surface. However, we have found that both the Argyris and Hermite
elements perform worse than the Lagrange element. We have experienced that
the coupling between the fluid flow velocities and the mesh velocities via the
kinematic constraint fails when using unsuitable element combinations for the
multiplier and velocities, because the calculations using other elements than
Lagrange fails to converge at the same time as the partial melting of the base
material is initiated and the weld surface begins to change shape.

Since the integrands in the FE formulation involve products of both velocity
or temperature with Jacobians which are also second order, it is necessary to
employ a high order quadrature formula in order to exactly evaluate the inte-
grals. We have however experienced that underintegration is much faster and
seemingly the errors inherent in the low order quadrature formulas we use are
not in any way devestating.

On the following pages we present the system of equations, with boundary
and initial conditions, for the simulation case studied in section 6.6. They are
labeled (23) and (24). The equations for the material representation of the x-
direction and y-direction fluid velocity componenets û and v̂, for the material
representation of the pressure p̂, and for the material representation of the
temperature T̂ , are almost the same for the two systems, however in order
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to achieve a reasonable balance between brevity and completeness, we present
the system (23) with the kinematic constraint implemented using a Lagrange
multiplier and a boundary mass source in the continuity equation, and the
system (24) implemented using a penalization term and a modification of the
weld surface motion for the filler metal deposition. The former is solved for
the material representation of the y-component of the mesh velocity ω̇2, while
the latter is solved for the material representation of the transformed velocity
component ψn. Neither system incorporates an artificial sink. Test functions are
as before denoted by an overbar, and for reasons of brevity we have removed
the subscripts on the nabla operator. For the same reason, we do not write
out the Dirichlet boundary conditions on the fluid flow and mesh velocity, but
they are more or less apparent from the context. The implementation of the
surface divergence operator is somewhat intricate, and we are here content with
the notation ∇̂S . The computational domain is a rectangle aligned with the
coordinate axes which extends h0 meters in the y-direction and 0.025 meters in
the x-direction.
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0 = (23)

− ∫
Ω0

[
∇

[
0
ˆ̇ω2

]
Jω

−1

]
:
[
∇

[
0
ˆ̇̄ω2

]
Jω

−1

]
|Jω|

(Laplace equation for the flow of the pseudo-fluid)

− ∫
∂Ω0

λ̂

[
0
ˆ̇̄ω2

]
· n̂

(Constraining force on pseudo-fluid surface)

0 =

∫
∂Ω0

(
[

û
v̂

]
−

[
0
ˆ̇ω2

]
) · n̂ˆ̄λ

(Constraint equation for multiplier)

∫
Ω0

∂
∂t

[
0
ω2

]
·
[

0
ω̄2

]
=

∫
Ω0

[
0
ˆ̇ω2

]
·
[

0
ω̄2

]

(ODE in time for mesh motion)

ρref

∫
Ω0

[
∂
∂t

[
û
v̂

]
+∇

[
û
v̂

]
Jω

−1

([
û
v̂

]
−

[
0
ˆ̇ω2

])]
·
[

ˆ̄u
ˆ̄v

]
|Jω| =

(Inertia and convection of linear momentum)

− ∫
Ω0

105
[

µm

105

]f◦T̂
[
∇

[
û
v̂

]
Jω

−1+Jω
−T (∇

[
û
v̂

]
)T

]
:
[
∇

[
ˆ̄u
ˆ̄v

]
Jω

−1

]
|Jω|

(Internal force in fluid)

+
∫
Ω0

Ip̂ :
[
∇

[
ˆ̄u
ˆ̄v

]
Jω

−1

]
|Jω|

(Constraining force for incompressibility condition)

+ρref

∫
Ω0

[
1− f◦T̂ β(T̂ − Tsm)

] [
g1

g2

]
·
[

ˆ̄u
ˆ̄v

]
|Jω|

(Gravitational force and buoyancy)
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(23) cont’d.

−∫
Ω0

µBI
2πr2

(
1−exp

(
− r2

σ2

))(
1+ Y

h0

)



I
πσ2 exp

(
− r2

σ(t)2

) (
1 + Y

h0

)
X

I
2πh0

(
1− exp

(
− r2

σ(t)2

))

·

[
ˆ̄u
ˆ̄v

]
|Jω|

(Lorentz force)

− ∫
∂Ω0

(
γm −A(T̂ − Tm)

)
∇̂S ·

[
ˆ̄u
ˆ̄v

]

(Surface tension force)

+
∫

∂Ω0
∇̂S

(
γm −A(T̂ − Tm)

)
·
[

ˆ̄u
ˆ̄v

]

(Marangoni force)

− Parc

πp2
arc

∫
Γw

0
f ◦T̂ exp

(
−||(X,P3(t))||2

p2
arc

)
n̂ ·

[
ˆ̄u
ˆ̄v

]

(Arc pressure force)

0 =

−ρref

∫
Ω0
∇

[
û
v̂

]
: Jω

−T ˆ̄p|Jω|
(Constraint equation for pressure)

−ε
∫
Ω0
∇p̂Jω

−1Jω
−T∇T ˆ̄p|Jω| − ε2

∫
Ω0

p̂ ˆ̄p|Jω|
(Relaxation of incompressibility constraint)

+ M
πb2

∫
Γw

0
f ◦T̂ exp

(
−||X,P3(t))||2

b2

)
ˆ̄p

(Mass deposition as a boundary source for the density)

ρref

∫
Ω0

(c◦T̂ + L ∂f

∂T̂
◦T̂ )

[
∂T̂
∂t +∇T̂Jω

−1

([
û
v̂

]
−

[
0
ˆ̇ω2

])]
ˆ̄T |Jω| =

(Total derivative of energy density)

− ∫
Ω0

k◦T̂ ∇T̂Jω
−1Jω

−T∇T ˆ̄T |Jω|
(Thermal diffusion)
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(23) cont’d.

− ∫
∂Ω0

k̂∞(T̂ − T̂∞)||Jω t̂|| ˆ̄T
(Convective heat transfer across workpiece surfaces)

− ∫
∂Ω0

σε̂(T̂ 4 − T̂ 4
∞)||Jω t̂|| ˆ̄T

(Radiative heat transfer across workpiece surfaces)

ηv2W
π3/2db2

∫
Γw

0
exp

(
−||(X

b , ω2
d , P3(t)

b )||2
)

ˆ̄T

(Applied volumetric heat source)

ηsW
πa2

∫
Γw

0
exp

(
−||(X,P3(t))||2

a2

)
ˆ̄T

(Applied surface heat source)

ω(X, Y ; 0) =

[X, Y + X + h0+Y
h0

hε(exp(−X/hε)− 1)]T

(Initial configuration)

[
0
ˆ̇ω2

]
=

[
0
0

]

(Initial mesh velocity)

[
û
v̂

]
=

[
0
0

]

(Initial flow velocity)

p̂ = 0
(Initial pressure)

T̂ = 298
(Initial temperature)

λ̂ = 0
(Initial multiplier)
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0 = (24)

∫
Ω0
∇

[
0
ˆ̇ω2

]
: ∇

[
0
ˆ̄ψn

]

(Laplace equation for the flow of the pseudo-fluid)

∫
∂Ω0

105(
[ −∂ω2

X
∂ω1
X

]
·
[

û
v̂

]
+ f◦T̂M

ρπb2 exp
(
−||X,P3(t))||2

b2

)
− ψ̂n)

(Penalization term on pseudo-fluid surface)

∫
Ω0

∂
∂t

[
ω1

ω2

]
·
[

ω̄1

ω̄2

]
=

∫
Ω0

[ ˆ̇ω1

ˆ̇ω2

]
·
[

ω̄1

ω̄2

]

(ODE in time for mesh motion)

ρref

∫
Ω0

[
∂
∂t

[
û
v̂

]
+∇

[
û
v̂

]
Jω

−1

([
û
v̂

]
−

[ ˆ̇ω1

ˆ̇ω2

])]
·
[

ˆ̄u
ˆ̄v

]
|Jω| =

(Inertia and convection of linear momentum)

− ∫
Ω0

105
[

µm

105

]f◦T̂
[
∇

[
û
v̂

]
Jω

−1+Jω
−T (∇

[
û
v̂

]
)T

]
:
[
∇

[
ˆ̄u
ˆ̄v

]
Jω

−1

]
|Jω|

(Internal force in fluid)

+
∫
Ω0

Ip̂ :
[
∇

[
ˆ̄u
ˆ̄v

]
Jω

−1

]
|Jω|

(Constraining force for incompressibility condition)

+ρref

∫
Ω0

[
1− f◦T̂ β(T̂ − Tsm)

] [
g1

g2

]
·
[

ˆ̄u
ˆ̄v

]
|Jω|

(Gravitational force and buoyancy)

−∫
Ω0

µBI
2πr2

(
1−exp

(
− r2

σ2

))(
1+ Y

h0

)



I
πσ2 exp

(
− r2

σ(t)2

)(
1 + Y

h0

)
X

I
2πh0

(
1− exp

(
− r2

σ(t)2

))

·

[
ˆ̄u
ˆ̄v

]
|Jω|

(Lorentz force)
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(24) cont’d.

− ∫
∂Ω0

(
γm −A(T̂ − Tm)

)
∇̂S ·

[
ˆ̄u
ˆ̄v

]

(Surface tension force)

+
∫

∂Ω0
∇̂S

(
γm −A(T̂ − Tm)

)
·
[

ˆ̄u
ˆ̄v

]

(Marangoni force)

− Parc

πp2
arc

∫
Γw

0
f ◦T̂ exp

(
−||(X,P3(t))||2

p2
arc

)
n̂ ·

[
ˆ̄u
ˆ̄v

]

(Arc pressure force)

0 =

−ρref

∫
Ω0
∇

[
û
v̂

]
: Jω

−T ˆ̄p|Jω|
(Constraint equation for pressure)

−ε
∫
Ω0
∇p̂Jω

−1Jω
−T∇T ˆ̄p|Jω| − ε2

∫
Ω0

p̂ ˆ̄p|Jω|
(Relaxation of incompressibility constraint)

ρref

∫
Ω0

(c◦T̂ + L ∂f

∂T̂
◦T̂ )

[
∂T̂
∂t +∇T̂Jω

−1

([
û
v̂

]
−

[ ˆ̇ω1

ˆ̇ω2

])]
ˆ̄T |Jω| =

(Total derivative of energy density)

− ∫
Ω0

k◦T̂ ∇T̂Jω
−1Jω

−T∇T ˆ̄T |Jω|
(Thermal diffusion)

− ∫
∂Ω0

k̂∞(T̂ − T̂∞)||Jω t̂|| ˆ̄T
(Convective heat transfer across workpiece surfaces)
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(24) cont’d.

− ∫
∂Ω0

σε̂(T̂ 4 − T̂ 4
∞)||Jω t̂|| ˆ̄T

(Radiative heat transfer across workpiece surfaces)

ηv2W
π3/2db2

∫
Γw

0
exp

(
−||(X

b , ω2
d , P3(t)

b )||2
)

ˆ̄T

(Applied volumetric heat source)

ηsW
πa2

∫
Γw

0
exp

(
−||(X,P3(t))||2

a2

)
ˆ̄T

(Applied surface heat source)

[ ˆ̇ω1

ˆ̇ω2

]
=

(
(∂ω1

X )2 + (∂ω2
X )2

)−1
[ −∂ω2

X
∂ω1
X

]
ψ̂n

(Constitutive equation for the mesh velocity)

ω(X, Y ; 0) =

[X, Y + X + hε(exp(−X/hε)− 1)]T

(Initial configuration)

ψ̂n = 0
(Initial mesh velocity)

[
û
v̂

]
=

[
0
0

]

(Initial flow velocity)

p̂ = 0
(Initial pressure)

T̂ = 298
(Initial temperature)
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6.8 Something on continuum surface formulations and level
set methods

When employing the hitherto analyzed method which is based upon a time-
dependent mapping of the computational domain, sometimes reffered to as an
interface tracking method, it is difficult to treat topology changes such the ones
occurring during non-autogeneous fusion welding as a filler metal droplet merges
the pool, or during overflow. By incorporating into the model a medium on the
other side of the boundary, one can avoid the need for (but not the possibility
of) mapping the referential domain onto the spatial domain, and one may also
treat topology changes without requiring special means. The level set method
accomplish this. Another approach is to employ the volume of fluid method,
in which the interface is treated as a connected volume. Since the thickness of
the actual surface is below the continuum mechanical scale, the approach of yet
treating it as a volume has rendered the volume of fluid method being some-
times known as a diffuse interface method. In [77], a diffuse interface method
coupled with an energy method was successfully applied to three-phase systems.
Therefore, we investigate further the possibilities of applying the akin level set
method. When doing so, the medium outside the weld pool may be ’void’, but
may also be used in order to model the physical behaviour of the continuum
neighbouring the weld pool, in our case the arc. Since we are interested in
studying overflowing weld pools and spatters merging with the base plate, we
will now attempt to adopt the level set method to the computational modelling
of pool and arc fluid flow and heat transfer phenomena. This investigation has
not been the major focus of our work, but since we have discovered some inher-
ent dificulties, and also various possibilities, of employing an interface capturing
method such as the level set method, we present these results in order to prepare
ground for future studies.

For every t, we let Ω(t) be equal to the fixed box Ω0 which is the union
of two disjoint, not necessarily connected, subsets Ωl(t) and Ωg(t) where the
subscripts indicate whether the subset represents the liquid or gaseous (arc)
part of the computational domain. We arbitrarily include the smooth interface
Γlg(t) = ∂Ωl(t) ∩ ∂Ωg(t) into Ωl(t); This implies that when the subscript g
appears on a function evaluated at the interface, its value should be interpreted
in a limiting sense. In our simulations we have also mushy and solid domains,
but since these are modelled as liquids of varying viscosity, the current notation
suffices. Having fixed the spatial domain, there is no longer a need for mapping,
and we may take ω(x, t) ≡ x. However, the computational domain now contains
the surfaces Γlg(t) across which we cannot assume the contuity of neither the
material properties nor the quantity X t nor its flux qt

tot. Since we wish to avoid
tracking the moving boundaries, we realize that we must smooth the material
properties in order for the finite element method to work well on an equation
posed on Ω0. What more is, it is necessary to employ a continuum surface
formulation (CSF) which is explained below.

Since equation (2) is still valid a.e. in the spatial domain, the derivation
of equation (6) is also valid, except that the application of the Greens formula
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leading to the boundary integral must be performed on Ωl and Ωg separately,
since the flux field is continuous only when restricted to either of these sets.
A generic semi-weak equation on the fixed domain containing a disconinuity
surface thus reads;

d
dt

∫
Ω0
X tφ +

∫
Ω0

ut · ∇X tφ = (25)

− ∫
Ω0
X t∇·ut +

∫
Ω0

qt ·∇φ− ∫
∂Ω0

qt ·ntφ− ∫
Γt

lg(t)

[
qt

l − qt
g

]·nt
lφ +

∫
Ω0

F tφ,

where nt
l is the normal to Γt

lg(t) pointing away from the liquid domain. Natural
boundary conditions are incorporated in the weighted surface integral Γt[φ] :=
− ∫

Γt
lg(t)

[
qt

l − qt
g

] · nt
lφ. Assuming that the integrands and weighting space

posses the appropriate characteristics, Γt is a generalized function. What more
is, the characteristics of this generalized function allows us to approximate it
arbitrary well by a smooth function. It follows that the support of a such
function approximates the interface. Altough this approximation procedure is a
simple application of a basic mathematical method, the use of volume integrals
instead of surface integrals have in certain applications been distinguished as
a special formulation commonly known as the CSF, or the continuum surface
force formulation. This is because it has mainly been applied to the surface
forces appearing in the momentum equation.

The assumption of incompressibility requires a few remarks, or rather the
continuity equation does, since it is not an equation that we solve on the above
form. In the case of continuous velocity and mass density fields, the incom-
pressibility constraint is a condition such that, if satisfied at every point, we
would find, using the transport theorem, that the size of every volume advected
with the flow remains constant. We may still not extract any information about
the mass density field, unless we assume that also the mass of every such con-
trol volume remains constant. In this case it follows again from the transport
theorem that the following equation must hold for ρ

Dρ

Dt
= 0,

i.e. we have implicitly assumed the absence of mass density sources and that
the mass density flux is purely advective. If ρ is initialized to be constant,
the above continuity equation is satisfied by taking the mass density equal to
the same constant at every point in space and time, and so we do not need to
solve an equation for the density, but only make sure that the incompressibility
constraint is satisfied. In the case when the control volume contains a surface
across which the velocity is discontinuous, it is not obvious how to interpret the
transport theorem. The interpretation that every control volume W (t) advected
with the flow is, at every time, identified with the same set of fluid particles,
implies some constraints on the velocity field further than being solenoidal.
One may refer to [71] for an illustration of the fact that the continuity of the
flow velocity normal to the interface between the liquid and gaseous fluids is a
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consequence of the mass conservation assumption. The location of the liquid-
gaseous interface can thus implicitly be defined using the normal velocities of
the fluid particles at the interface4, which by virtue are well-defined. We note
that this is what makes Γt

lg(t) ’impermeable’, that is, no fluid flows through
the discontinuity surface. The condition of continuous normal velocity, which
we refer to as the ’kinematic condition’, is automatically satisfied by the finite
element approximation using a continuous finite element space for the velocity,
so its enforcement need not be adressed any further. The kinematic condition
being satisfied at the interface, and the incompressibility condition 0 = −∇ ·ut

being satisfied almost everywhere in Ω0, we find from the Leibniz rule employed
in [71], that we solve the same equation for the mass density as we did in the
absence of a discontinuity surface. However, in this case we would like to solve
the convection euqation using discontinuous initial data, which will not work
well. As mentioned before, this is the reason we smooth the material properties,
and in doing so we introduce the level set function.

The level set function Φ is such that

Φ(x, t) =





> 0, x ∈ Ωl(t)\Γlg(t)
= 0, x ∈ Γlg(t)
< 0, x ∈ Ωg(t)

The initial condition for the continuity equation can now be written as

ρ(x, 0) = ρ0(x) =
{

= ρl, Φ(x, 0) ≥ 0
= ρg, Φ(x, 0) < 0 ,

However in computations we would like to employ a smoothed version of ρ0.
In order to smooth ρ0 such that the transition between the liquid and gaseous
values of ρ occurs in a set the points of which are close to the interface, the
standard level set method requires Φ to be a smooth function giving the signed
distance to interface, and then sets

ρ0(x) = ρε(x) := ρg + (ρl − ρg)Hε ◦ Φ(x, 0),

where Hε is a smoothed Heaviside function such that

Hε(x) =
{

= 0, x < −ε
= 1, x > ε

,

It follows that if the level set function is such that

DΦ
Dt

= 0, (26)

4In treatise, we do not further investigate the question why the motion of a surface is well-
defined by its normal velocity alone, or in other words, why the same interface is obtained
when tracking the fluid particles at the interface using either ut

l or ut
g .
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then ρ(x, t) := ρg +(ρl−ρg)Hε◦Φ(x, t) satisfies the continuity equation (26) and
the initial condition ρ(x, 0) = ρε(x). The beauty of the level set method is that
by evolving the level set function in time using the continuity equation, we find
that Γlg(t) = {x ∈ Ω0| Φ(x, t) = 0}, and that the sign of Φ changes neither in
Ωl(t) nor in Ωg(t). What more is, the vector field Ω0 3 x → nt(x) = − ∇Φ

|∇Φ| ∈ <3

agrees, at the interface, with the normal to Γlg(t) pointing away from the liquid
domain. Hence, equation (26) can be equivalently expressed as

∂Φ
∂t

+ V |∇Φ| = 0,

where V = −ut · nt, and the discontinuity of the tangential component of the
convective field present in the continuity equation can thus be ignored with-
out further ado. Note however, that approximations of the fluid flow field are
ususally continuous so one might as well use equation (26), and as a matter of
fact this is often a better choice.

However practical and often assumed in the standard level set method, it is
not necessary that Φ is a distance function. It is merely required that the level
set function is zero on the interface and that the transition zone, i.e. the zone
in which the Heaviside function varies, extends only over a few elements, so
that when assigning properties to the fluid in the transition zone by weighting
the properties of the adjacent fluids in the same manner as for the denisty,
the solution tends towards the corresponding solution obtained when the CSF
formulation is not utilized, as the mesh size tends to zero. The complication
of the standard level set method is that even if we initialize Φ to be a signed
distance function, it does not necessarily keep its nice features when evolving it
according to the continuity equation only. This is why the level set function of
the standard level set method has to be reinitialized every now and then. Since
renitialization has a positive effect on the shape and size of the phase transition
zone, one cannot completely avoid all kinds of reinitialization. However, an
alternative level set formulation, together with a reinitialization technique, was
proposed in [64]. It was noticed that the thickness of the transition zone is
often smeared out, and that this behaviour can be supressed by employing
a reinitialization technique that utilizes a flux for Φ in the direction pointing
towards the interface. This direction can, as we have seen, be expressed using the
level set function itself. The flux has the effect of pushing the isolevels of the level
set function (i.e. the level sets) towards the interface, thus limiting the thickness
of the zone. Also, a diffusion term was added in order to avoid discontinuities
at the interface. Based on this approach, COMSOL has developed a level set
method in which the compressive flux is added to equation (26), and no separate
reinitialization step is required. The amount of compressive flux and diffusion in
the level set equation ofcourse has to be traded against mass conservation. We
have adopted this modelling strategy for an axi-symmetric test case involving
a droplet falling into a liquid pool under the influence of gravity only. In this
test case we have not considered the solid phase but instead applied no slip
conditions on the walls of the cylindrical pool. In other repsects, the settings
are chosen as in the fillet case study. The results is shown in figure 14.
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If we wish to model also the solid phase we must consider a three-phase
modelling strategy. The naive approach is to simply apply the equations we
have developed for the interface tracking problem, which effectively includes a
volume of fluid method for the solid-liquid interface. We immediately run into
problems since the properties of the fluid we have considered so far are dependent
only upon the value of the temperature a ta certain point. The property is now
also dependent upon the value of the level set function at that point. If we are
to continue in a straightforward manner, we must first figure out how to define
the liquid fraction in the gaseous phase as a function of temperature only. For
example, if we use the same expression as before for the effective viscosity, but
now also weigh it using the level set function, we obtain

µ = µg +
(

105
[µm

105

]f◦T
− µg

)
Hε◦Φ.

If we use the same expression for f as before, and the temperature of the gas is
lower than the melting point of the base material, we find that

µ = µg +
(

105
[µm

105

]0.5

− µg

)
0.5 ≈ 102.5µ0.5

m ,

i.e. a liquid droplet is surrounded by very viscous shell. This phenomena can be
seen to appear no matter how the viscosity is taken to vary with T between the
liquid and solid phases. The best one can hope for is that the gas is hotter than
the liquid, in which case we instead find that the viscosity in the transition zone
between the solid and gaseous domains depend on the viscosity of the liquid,
but not even this is entirely to our satisfaction.

We see two ways of getting around the problem. One of them is well-known,
and it involves solving an equation for f which evolves the location of the liquid
domain in a manner similar to the one for Φ. The other way is to couple the
interface tracking method for the weld pool and workpiece to a level set method
for the arc region, using domain decomposition. The deposition of filler metal
droplets into the weld pool can then, as before, be modelled as a mass density
source or by a mesh velocity source which is dependent upon the velocity and
mass density in the arc region. We note also that if we are to simulate the arc
and pool during an autogeneous process, the previous developed model using
interface tracking works well if domain decomposition is applied, and no three
phase modelling is required.
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Figure 12: An approximation of the spatial configuration of the mesh as the
weld has solidified. In this picture the spatial locations of the element nodes are
according to the solution, however they are connected by straight lines instead
of the quadratic curves which define the locations of the edges.
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Figure 13: Flow field at a distance of 1.5mm behind the arc.
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Figure 14: A droplet dropped into a liquid pool.
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7 Calibration and Verification

In this section we present the results of a calibration of the relaxation para-
meter for the fillet case study. However, since the non-autogeneous model has
proven somewhat difficult to work with, we restrict our attention to an autoge-
neous GTA butt weld when verifying the computational results against fusion
zone shape for a weld case that requires only a calibration of the temperature
coefficient of surface tension. Preferably, we would like to calibrate the pool
shape against measurements, however no such data has been obtained within
our project.

It should be pointed out that it is not practical to simultaneously optimize
the model with respect to all input parameters in a calibration procedure (vir-
tually all data in our model can be subject to calibration). Therefore, the
parameter set should be reduced for the specific process that is considered. The
calibration then outputs effective values for the unknown parameters, for which
the model can be assumed to output reliable predictions for similar cases. In
the verification of the GTA fusion zone shape predition, we have access to data
from a related study, and we may calibrate with respect to the effective value
of A only.

7.1 Incompressibility relaxation

The value Cε = 10−5 that was used in the fillet case study, conserved the mass
by 99.98%. The reason for introducing the relaxation in the first place, was to
decrease the computational time, so calibrating the Cε is a matter of deciding
how much mass loss/increase one is prepared to accept. In order to find an
optimal value of the relaxation coefficient, we therefore run the test case for
a range of values for Cε, namely 10−3, 10−4, 10−5, 10−6, 10−7, 10−8. For the
value Cε = 10−3, the computations did not converge. In figure 15, the mass
conservation ratio (the added mass in the computational model to the added
mass in the purely incompressible mathematical model) is plotted against the
negative 10-logarithm of Cε. As we see, perfectly acceptable mass conservation
is obtained for Cε = 10−5, and there is no need to decrease it further. Lets
look at the simulation times for the same runs (figure 16); Except for the first
run in the test series, for which mass conservation was not entirely good, we see
that simulation times increase slightly with decreasing values of the relaxation
parameter. The conclusion is that the value Cε = 10−5 is a good starting guess
when applying the developed model.

7.2 Calibration of the temperature coefficient of surface
tension and verification of fusion zone shape for a lin-
ear autogeneous GTA bead-on-plate weld

In [69] the arc efficiency and spot radius for the heat source was calibrated for a
linear autogeneous GTA bead-on-plate welding process, using the weld surface
temperature as measured by an IR-camera, see figure 17. At first attempt at
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Figure 15: Mass conservation ratio plotted against the negative 10-logarithm of
Cε.

recreating the fusion zones of the welds in this set of experiments, we ignore arc
pressure, set the incident current radius equal to half of the heat source spot
radius, and approximate many of the material properties from the data given in
[61] for the base material, which is steel 316. However, the value of the magnetic
permeability, which can be assumed to have an impact on the fusion zone shape,
is not known. We employ the value used in [91] for another type of steel. We
reduce the set of uncertain input parameters further by incorporating the values
of the heat transfer coefficients along the different workpiece surfaces, which are
used in [40] and [91]. Since no mass is added, the incompressibility condition
is not relaxed. A difficulty is that, according to the relations recommended in
[61], the value of the surface tension and its temperature coefficient is strongly
dependent upon the sulphur content of the base material, the precise value
of which in our case is unknown. The value of A even switches sign within
reasonable limits for the sulphur content. We therefore employ the value for
γm also used in [91], and perform a calibration of A. Considering what we
learned from the fillet case study, we may suspect that the fusion zone shape is
determined by the relative influence of the circultaing motions induced by the
electromagnetic force and the Marangoni force.

Having run a number of simulations we find that the size of the pool is
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Figure 16: Simulation times plotted against the negative 10-logarithm of Cε.

Figure 17: Experimental setup for measuring the surface temperature during a
GTA welding process.

repeatedly overestimated when using the value µs = 0.8962 that was calibrated
in [69]. We set instead the arc efficiency of the surface source to 0.7. It is
plausible that the reduction of the size of the pool that this setting causes could
be obtained by instead calibrating the heat transfer coefficients as well as the
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spot radius, or by employng an effective value for the heat capacity which is
allowed to vary with temperature in the pool. What more is, the value 0.7 was
found by trial and error, so in a sense the arc efficiency has also been calibrated,
however not in formal fashion but rather by hand-weaving.

We have hitherto extracted the fusion zone shape from the result of a sim-
ulation by manually searching through the isocontours of the temperature at
different times. In order to avoid this cumbersome procedure, we now add an
equation for an independent field variable fsol, the value of which at a certain
spatial point approximates the solidification time, i.e. the time that spatial
point spent in the mushy zone during solidification. This way we may visualize
the FZ shape by plotting the isocountour fsol = εFZ , where εFZ is a small pos-
itive number, however not zero since fsol has no zero isocontour. What more
is, the solidification time can be input to metallurgical simulations of the weld,
c.f. section 8.2. The equation we employ is the following;

∫

Ω0

[
∂f̂sol

∂t
−∇(X,Y )f̂solJω

−1 ∂ω

∂t

]
|Jω| ˆ̄fsol =

∫

Ω0

(
∂T̂

∂t
<0)(T̂<Tm)(T̂>Ts)|Jω| ˆ̄fsol

(27)
where (∂T̂

∂t <0)(T̂<Tm)(T̂>Ts) is a function which is one whenever and wherever
the paranthesized expressions are all true, and zero otherwise. It turns out that
we usually need to set εFZ to a value between 0.01 and 0.1 depending on the
mesh size, in order to compensate for the inaccuracy in the solution of equation
(27). The error is likely due to numerical diffusion, caused by the discontinuity
of the coefficient in the right hand side of equation (27). The value of εFZ is
found by matching the fsol isocontour to the T = Ts isotemperature curve at
the weld and root surfaces, at the times when the pool widths at the respective
surfaces were at their widest.

The simulations were run for A = 10−6[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], and with the
same value of the weld parameters (travel speed, voltage and current) as were
used in the experiment that produced the weld with the cross section shown on
the left side in figure 19. Due to the limited deformation of the pool surfaces,
we employ the model which allows the mesh to move in the y-direction only,
and applies a penalizations method for the y-direction mesh velocity at the weld
and root surfaces. This approach has proven to be very useful so far, but for the
first four simulation runs in the series, a disturbing phenomena occurs, which
comprises that wiggles in the mesh appear on the root side as melt-through
is initiated, see figure 18. An investigation of the difference between the fluid
velocity and the mesh velocity discloses that the kinematic boundary constraint
was violated. We recall from the fillet weld case study, that A seems to have a
smoothing effect on the mesh, which may explain why the calculation manage
to converge without wiggles for the value A = 5× 10−6. However, for the fillet
case, the main problem with the kinks were solved by applying the penalization
technique instead of the multiplier technique, and that seemingly does not do
the trick in this situation. The simulations thus did not provide any useful
information about the value of A however it did hint that the values of the
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arc efficiency and the incident current radius should be modifed, and that the
simulation results are quite sensitive to the value of A. For the next series of
simulations, we therefore instead set ηs = 0.725 and σ = 0.3a, and run the
simulations for A = 10−6[1, 2, 3, 4, 5]. Also, a coarser mesh was used. In this
test series, no wiggles appear at the root side. We have no intention to further
investigate the wiggling phenomena in this treatise, but are content that it has
vanished for now.

A reasonable agreement between the measured and simulated FZ shapes were
obtained for A = 10−6. A comparison between the real and simulated fusion
zones for the melt-through weld against which A was calibrated, is shown in
figure 19. The widths at the weld surface and root surface agree reasonably
well. There is some ambiguity in the location of the fusion zone line, both
when considering the real weld and when considering the simulated weld. The
ambiguity is possibly due to inaccuracy in the measurements, the possibility of
oxides on the surface, numerical errors, and modelling errors (from not taking
into account the solid state transformations the results of which are visible in
the photographs taken of the weld transversal cuts). As can be seen, the root
side shape of the weld surface is not accurately rendered. This is may very well
be due to the fact that we have ignored the arc pressure in this calibration, since
the arc pressure pushes the pool towards the root side.

We now verify the simulation against one other run in the same test series,
using the same value for A but other values for the voltage and current. A
comparison between the real and simulated fusion zones is shown in figure 20. As
can bee seen, the weld surface is convex. The weld was performed autogenously,
so the volume of mass required to stablish this reinforcement is most likely due
to transversal shrinking or thermal expansion, neither of which we consider in
the simulations. Altough fusion zone is not entirely erroneous, we conclude that
more than one parameter should be calibrated simultaneously in order to obtain
better predictions of the fusion zone shapes. What more is, even if the FZ shape
is correct, we cannot be certain that the pool shape is accurately predicted. This
is a reason for investigating the effect of the arc pressure, and such a study is
presented in section 8.4.

We conclude the present study of the linear autogeneous GTA bead-on-plate
weld by speculating about the sensitive of the FZ shape to the value of A. We
have run several simulations more than have been presented so far, particu-
larly for finding an appropriate value for the arc efficiency. These were isolated
runs and not part of any paramater study or (formal) calibration procedure,
which is why we cannot draw any definite conclusions from them. However,
we have found that when the value of A is high, the pool widening effect of
the Marangoni induced circulating motion dominates. No melt-through of the
plate then occurs, and we obtained a completely erroneous shape of the FZ,
since melt-through did occur during the real welding process. A slight decrease
in A allows for the digging effect induced by the Lorentz force to increase its
influence on the pool shape. When A is decreased further, melt-through occurs,
and Marangoni forces now act on the root side pool surface. The root side
Marangoni force and the Lorentz force now both act to strenghten the circulat-



7.2 Calibration of the temperature coefficient of surface tension and verification of fusion zone shape for a linear autogeneous GTA bead-on-plate weld83

ing flow pattern which tends to widen the width of the pool on the root side.
This seems to be the reason why the FZ shape is sensitive to the value of A.



84 7 CALIBRATION AND VERIFICATION

Figure 18: Wiggles in the mesh appear as melt-through is initiated. In the close-
up picture, surface normals are shown. The left boundary is the symmetry line,
which is not deformed.
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Figure 19: On the left; A cross-section of the weld against the dimensions of
which the surface tension coefficient was calibrated. On the right; Simulated
fusion zone shape. The surface is color is mapped to the value of fsol. The white
region which marks the location of the fusion zone line is the set of isocontours
of fsol corresponding to the values fsol = 10−2[1, 2, .., 10].
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Figure 20: A comparison between measured and simulated fusion zone shapes..
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8 Applications and Conclusions

8.1 Welding out-of-position

If the settings used in the fillet case study are applied to a welding process
which is performed upside down, the calculations fail to converge when the arc
has passed the computational slice by 0.15mm. The configuration is then as
in figure 21. By this time, the Jacobian determinant of the configuration had

Figure 21: Configuration at 0.15mm behind the arc when welding at 362A.
The problem we solve is symmetric, but for the sake of visual appearance we
have in this picture reflected the workpiece slice in the symmetry plane and
superimposed it onto the original one.

already switched sign at the triple point, so the result is not valid according
to our theory. This could perhaps be avoided by employing the formulation in
which the mesh is allowed to move in any direction, however it turns out that we
cannot define an efficient method that penalizes two variables for violating the
same scalar constraint. As we have seen, neither does the multiplier technique
work very well when encountering this type of configuration.

It is interesting, and computationally challenging, to investigate whether the
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pool can be kept in place during welding in PD psoition, and adequate penetra-
tion achieved, by increasing the source ampereage and thus also modifying the
arc pressure according to the expression employed in [90] (similar expressions
are also use in [55] for studying different welding positions). It is a fact that
GMA welding in this position is performed, so this is rather an investigation
made in order to find out if our simulation tool can handle this situation. We
run simulations for a set of values for the current which are percentages of the
current used in PA position, the highest of which is 1.5×362I. The simulations
do not show that the melt can be kept in place by modifying the current only.
As the current is increased from its original value, the pressure alos increases,
however so does the effective heat input to the workpiece, which makes the melt
larger and more difficult to keep in place c.f. figure 22. The simulations all fail
to converge at approximately the same arc positions.

Figure 22: Configuration at 0.3mm in front of the arc when welding at 543A.
As can be seen, the penetration of the workpiece has increased, but not in a
very useful manner.
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8.2 Metal deposition and metallurgical simulations

Metal deposition is process during which metal is melted and deposited onto a
workpiece to which it fuses. The purpose is to repair or create from scratch a
component with certain characteristics such as a predefined shape and durabil-
ity. The process can be performed using non-autogenous fusion welding equip-
ment, and several passes of the source are required in order to establish the
geometry. At each pass, the previously deposited metal layer (bead) is partially
remelted, however only as much as is required for the fusion with the subse-
quently deposited layer. The heat distribution and the shape of the solidified
bead can be studied using the simulations tool developed in this treatise, as was
done in [22]. The output of such simulations, i.e. the reinforcement geometry
and temperature distribution within the bead, can be input to a simulation cal-
culating for example the dendrite arm spacing and grain growth directions in
the layers of the wall, which impact on the performance of the component.

8.3 Laser welding

Simulations of conduction mde laser weld pools were performed within the INN-
Side project. As is evident from equation (9), it is largely so that it is the ratio
between the welding direction flux and the welding speed determines whether
our model, without modification, successfully can be applied to a specific weld-
ing process. The welding speed during laser welding is high in comparison to
electric arc welding methods. However, the energy density of a laser welding
process is also comparatively high, and so it can be expected that the welding
direction flux is too. We have attempted to recreate a number of those laser
welding fusion zones described in [67], but have not managed to obtain accurate
penetration. This verfifies that the welding direction expansion of a laser weld
pool is foremost due to conduction through the workpiece of the heat absorbed
in the key-hole or cavity. Even though the welding speed is high, the concen-
trated heat source gives rise to large temperature gradients near the pool. We
have therefore attempted two modifications to the two-dimensional model; First
we consider a longitudinal workpiece slice instead of a transversal one. This will
account for heat flow in the welding direction. Secondly, we have managed to
take into the possibility of substantial evaporation of the base metal, a phe-
nomena that should not be ignored when simulating high density energy pools.
When doing so we have utilized the different models for mass deposition that
we have developed. When adding material to a weld pool, we have seen that the
energy it carries cannot be controlled without specifying the temperature at the
locations where the mass is added. However, by applying the mass deposition
model in reverse, we can implement a simple evaporation model which removes
exactly the material the temperature of which exceeds the evaporation point
of the base material. Preliminary results show that the simulated penetration
depth increases significantly when considering evaporation in this fashion, in
comparison to not taking into account at all.

In parallell, we have begun working on a three-dimensional time-dependent
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model. So far we have made only simulations of the heat flow and mass depo-
sition, an example of which can be found on the cover of this thesis.

8.4 The influence of arc forces on the probability of over-
lap

As we approach the end of our work, it is good to remind ourselves why we
started it. Hence we study in this section the probability of overflow as a function
of the arc pressure, overflow being one of the reasons for the appearance of cold
laps at the weld toe. This we do for the linear autogeneous GTA bead-on-plate
weld which served as a verification case in section 7.2. This study is mainly
of theoretical interest, since cold laps are usually not a such a big problem
as in consumable arc welding processes, such as GMA welding of fillet joints.
However, the GTA simulation was calibrated, so can allow ourselves to put a
relatively large amount of trust in its output.

When adding the arc pressure to the simulation, we at first employ the
[90] expression for the arc pressure and impingement radius as functions of the
source amperage. However, all other parameters remain the same throughout
the study, including the applied current. The pressure parameters must thus be
modified according to an artificial amperage, used only as a tool for modifying
the pressure in a physical manner. This approach does not reveal much useful
information concerning the probability of overflow, possibly because the arc
pressure impingement radius increases as the total pressure increases while the
pool width does not. This implies that the magnitude of the gradient of the
applied force along the surface does not increase a lot as the artificial amperage
increases. However, we do find that penetration is increased by the application
of an arc pressure. It seems that the calibration of the model should have
included the arc pressure to begin with, c.f. figure 23.

We now instead run a series of simulations in which the arc pressure radius
remains equal to the heat source radius, and increase the total pressure according
to Parc = 10−4[10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30]. Even better agree-
ment with the verification case was achieved at Parc = 17× 10−4, se figure 24.
As a measure of the probability of overlap we choose the maximum dmax of the
distance in the arc axis direction between the highest elevated and deepest cav-
itated points on the pool surface, during the simulation. For Parc = 24× 10−4,
Parc = 25× 10−4 and Parc = 30× 10−4 failed to converge as the source passed
the computational slice, c.f. figure 25. This failure to converge is due to a severe
deformation of the domain in the cavity. This would not necessarily be a prob-
lem in a real weld, on the contrary the cavitation helps to provoke penetration
and is filled as the pool advances. There is no obvious reason why the possi-
bilty of overflow should be higher in this situation, but one should rather worry
about the entrapment of gas bubbles in the pool which do not exit the pool
before solidification and thus causes porosity. Yet we include these simulations,
as they are part of a pattern. For the other runs, dmax is plotted against Parc

in figure 26 Except for the outlier, there is a clear cut trend in the simulation
results. We do not dare to draw any conclusion about the reason for cold laps



8.5 Summary, conclusions and future work 91

Figure 23: Better agreement with respect to penetration can be achieved if the
arc pressure is considered.

from this study, however it shows that the fluid mechanical influence that the
arc exercises on the pool plays an important role.

8.5 Summary, conclusions and future work

The work commenced with a litterature study, but we did not find that previ-
ous research had attempted a fluid and thermo dynamical model for studying
the kind of phenomena (overflow, spatter) that we supposed exercised a major
effect on the appearance of defects related to solidification and cooling. A com-
putational tool that simulates arc fusion weld pools with respect to fluid flow,
temperature and pool deformation, and which is based upon a finite element
model for the governing continuum mechanical equations, was developed and
employed in a series of articles.

It was discovered that modelling the pool seperately from the arc has some
inherent drawbacks when considering non-autogeneous processes. Specifically,
it is difficult to a priori define the amount and distribution of the energy trans-
ferred by the filler metal droplets. Therefore, a minor investigation into the
possibilities of exploiting a three-phase modelling strategy which incorporates
temperature, was undertaken. Some suggestions for pool-arc modelling strate-
gies were presented.
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Figure 24: Even better agreement can be achieved if the total arc pressure and
the arc pressure radius are entirely decoupled.

The effects of arc pressure on the probability of overlap was studied. It was
concluded that it is important to accurately model (or measure) the arc pressure
on the pool surface in order to predict the behaviour of the pool flow. We learned
also from studying a GMA fillet weld that since mass cannot escape in the
welding direction, the build up of material is greater in the two dimensional case.
When studying the motion of the pool surface it might therefore be worthwhile
to consider a three dimensional model, which preferrably also takes into account
transients in order to incorporate the effects of disturbances in the arc (such as
voltage drops or arc wandering) or workpiece (such as irregularities in the weld
surface).

In order to accurately predict weld shape and temperature distribution dur-
ing non-autogenous welding, and also to predict weld defects related to the
motion of the pool surface, it is recommended that the pool model is coupled
to an arc model. Until then the tool should be used mainly for autogeneous
weld pool simulations and for prediciting the temperature history in the bead
deposited during metal deposition, but only after having undertaken a model
calibration which simultaneously optimizes the values of several parameters for
the specific process.
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Figure 25: For Parc = 0.0025, the mesh Jacobian turns negative in the cavity.
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Figure 26: dmax against Parc. The scale of the vertical axis is logarithmic.



REFERENCES 95

References

[1] M. Arenas, V.L. Acoff, and N. El-Kaddah, Measurement and prediction
of gta weld penetration in gamma titanium aluminide, Mathematical Mod-
elling of Weld Phenomena 5, IOM Communications Ltd, 2001, pp. 39–53.

[2] Z. Barsoum, Fatigue and quality analysis of cruciform joints welded with
different methods, Tech. report, International Institute of Welding, doc.
XIII-2136-06.

[3] K.B. Bisen, M. Arenas, N. El-Kaddah, and V.L. Acoff, Computation and
validation of weld pool dimensions and temperature profiles for gamma tial,
Metallurgical and Materials Transactions 34A (2003), no. 10, 2273–2279.

[4] K.E. Brenan, S.L. Campbell, and L.R. Petzold, Numerical solution of
initial-value problems in differential-algebraic equations, Elsevier Science
Publishing, 1989.

[5] P.N. Brown, A.C. Hindmarsh, and L.R. Petzold, Using krylov methods in
the solution of large-scale differential-algebraic systems, Journal of Scientific
Computing 15 (1994), no. 6, 1467–1488.

[6] W. Cao, W. Huang, and R.D. Russel, A moving mesh method based on the
geometric conservation law, Journal on Scientific Computing 24 (2002),
no. 1, 118–142.

[7] Z.N. Cao and P. Dong, Modeling of gma weld pools with consideration
of droplet impact, Journal of Engineering Materials and Technology 120
(1998), 313–320.

[8] N. Chakraborty, S. Chakraborty, and P. Dutta, Modelling of turbulent
transport in arc welding pools, International Journal of Numerical Meth-
ods for Heat and Fluid Flow 13 (2003), no. 1, 7–30.

[9] , Three-dimensional modeling of turbulent weld pool convection in
gtaw processes, Numerical Heat Transfer Part A (2004), no. 45, 391–413.

[10] K. Chattopadhyay, G. Phanikumar, and P. Dutta, Modelling of transport
phenomena in laser welding of dissimilar metals, International Journal of
Numerical Methods for Heat and Fluid Flow 11 (2001), no. 2, 156–171.

[11] F.K. Chung and P.S. Wei, Mass, momentum, and energy transport in a
molten pool when welding dissimilar metals, Journal of Heat Transfer 121
(1999), 451–461.

[12] S.A. David and J.M. Vitek, Analysis of weld metal solidification and mi-
crostructures, Mathematical Modelling of Weld Phenomena (H. Cerjak and
K.E. Easterling, eds.), The Institute of Materials, 1993, pp. 41–59.

[13] P.A. Davidson, An introduction to magnetohydrodynamics, Cambridge Uni-
versity Press, 2001.



96 REFERENCES

[14] M.H. Davies, M. Wahab, and M.J. Painter, An investigation of the inter-
action of a molten droplet with a liquid weld pool surface: a computational
and experimental approach, Welding Journal 79 (2000), no. 1, 18–23.

[15] T. DebRoy, Weld pool surface phenomena - a perspective, Mathematical
Modelling of Weld Phenomena (H. Cerjak and K.E. Easterling, eds.), The
Institute of Materials, 1993, pp. 24–38.

[16] T. Debroy, Role of interfacial phenomena in numerical analysis of weldabil-
ity, Mathematical Modelling of Weld Phenomena 2 (H. Cerjak, ed.), The
Institute of Materials, 1995, pp. 4–21.

[17] T. DebRoy, Mathematical modelling of fluid flow and heat transfer in fusion
welding, Mathematical Modelling of Weld Phenomena 5, IOM Communi-
cations Ltd, 2001, pp. 1–20.

[18] M Do-Quang and G. Amberg, Modelling of time-dependent 3d weld pool
flow, Mathematical Modelling of Weld Phenomena 7 (H. Cerjak, H.K.D.H.
Bhadeshia, and E. Kozeschnik, eds.), Verlag der Technischen Universität
Graz, 2005, pp. 91–112.

[19] M. Do-Quang and G. Amberg, Modelling of time-dependent 3d weld pool
due to a moving arc, Proceedings of High Performance Scientific Comput-
ing, Hanoi, March 2003.

[20] J.N. DuPont and A.R. Marder, Thermal efficiency of arc welding processes,
Welding Journal 74 (1995), no. 12, 406–416.

[21] M. Edstorp, A dislocation based technique for the simulation of the fa-
tigue growth of initiated microcracks, Master’s thesis, University of Gothen-
burg/Chalmers University of Technology, Department of Mathematics,
2003.

[22] , A comparison between moving mesh implementations for metal de-
position simulations, Proceedings of the Nordic Comsol Conference (Lyn-
gby, Copenhagen, Denmark), November 2006, pp. 107–110.

[23] , A simplifed finite element formulation for spray transfer gma weld
pools, Progress in Industrial Mathematics at ECMI 2006 (L.L. Bonilla,
M. Moscoso, G. Platero, and J.M. Vega, eds.), Mathematics in Industry,
vol. 12, The European Consortium for Mathematics in Industry, Springer,
2007, pp. 822–826.

[24] M. Edstorp and K. Eriksson, Modelling and simulation of moving bound-
aries and convective heat transfer in non-autogenous fusion weld pools using
femlab 3.1, Proceedings of the FEMLAB CONFERENCE 2005 (J Yström,
ed.), October 2005, pp. 85–90.

[25] A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied
Mathematical Sciences, vol. 159, Springer, 2003.



REFERENCES 97

[26] H.G. Fan and R. Kovacevic, Droplet formation, detachment, and impinge-
ment on the molten pool in gas metal arc welding, Metallurgical and Ma-
terials Transactions 30B (1999), 791–801.

[27] , A unified model of transport phenomena in gas metal arc welding
including, electrode, arc plasma and molten pool, Journal of Physics D:
Applied Physics 37 (2004).

[28] M. Farajian-Sohi and N. Järvstr̊at, Formation and detection of imperfec-
tions in tandem gas-shielded metal arc welding, unpublished.

[29] , Formation and detection of weld toe imperfections in tandem gas
metal arc welding, Tech. report, International Institute of Welding, 2005,
Doc.212-1074-05.

[30] , A fractographical investigation of weld toe imperfections in tandem
gas metal arc welding, Steel Research International 77 (2006), no. 12, pp
889–895.

[31] M. Farajian-Sohi, N. Järvstr̊at, and B. Jonsson, Surface geometry measure-
ments and the experimental and numerical investigation of stress concentra-
tion in fillet welds, 59th Annual Assembly and the International Conference
of the International Institute of Welding, Quebec, 2006.

[32] M. Farajian-Sohi, N. Järvstr̊at, and M. Thuvander, Effect of welding para-
meters on formation of toe imperfections in tandem gas metal arc welding,
ASM 7th International Conference on Trends in Welding Research, Pine
Mountain, Georgia, USA, May 16-20 2005.

[33] C.V. Goncalves, L.O. Vilarinho, A. Scotti, and G. Guimaraes, Estimation
of heat source and thermal efficiency in gtaw process by using inverse tech-
niques, Journal of Materials Processing Technology (2006), no. 172, 42–51.

[34] M. Goodarzi, R. Choo, T. Takasu, and J.M. Toguri, The effect of the
cathode tip angle on the gas tungsten arc welding arc and weld pool ii.
the mathematical model for the weld pool, Journal of Physics D: Applied
Physics (1998), 569–583.

[35] J. Haidar, A theoretical model for gas metal arc welding and gas tungsten
arc welding. i, Journal of Applied Physics 84 (1998), no. 7, 3518–3529.

[36] C.R. Heiple and J.R. Roper, Effect of selenium on gtaw fusion zone geom-
etry, Welding Journal 60 (1981), no. 8, 143–145.

[37] , Mechanism for minor element effect on gta fusion zone geometry,
Welding Journal 61 (1982), no. 4, 97–102.

[38] C.R. Heiple, J.R. Roper, R.T. Stagner, and R.J. Aden, Surface active ele-
ment effects on the shape of gta, laser, and electron beam welds, Welding
Journal 62 (1983), no. 3, 72–77.



98 REFERENCES

[39] K. Hong, D.C. Weckman, and A.B. Strong, The influence of thermofluids
phenomena in gas tungsten arc welds in high and low thermal conductivity
metals, Canadian Metallurgical Quarterly 37 (1998), no. 3-4, 293–303.

[40] K. Hong, D.C. Weckman, A.B. Strong, and W. Zheng, Modelling turbulent
thermofluid flow in stationary gas tungsten arc weld pools, Science and
Technology of Welding and Joining 7 (2002), no. 3, 125–136.

[41] D. Honggang, G. Hongming, and W. Lin, Heat transfer and fluid flow in fu-
sion type pa-gta double-sided welding, MODELLING AND SIMULATION
IN MATERIALS SCIENCE AND ENGINEERING (2005), no. 13, 1205–
1215.

[42] J. Hu and H.L. Tsai, Heat and mass transfer in gas metal arc welding,
part i, the arc, International Journal of Heat and Mass Transfer 50 (2007),
833–846.

[43] M. Hughes, K. Pericleous, and N. Strusevich, Modelling the fluid dynamics
and coupled phenomena in arc weld pools, Mathematical Modelling of Weld
Phenomena 6 (H. Cerjak, ed.), Maney Publishing, 2002, pp. 63–81.

[44] P.G. Jönsson, J. Szekely, R.T.C. Choo, and T.P. Quinn, Mathematical mod-
els of transport phenomena associated with arc-welding processes, a survey,
Modelling Simul. Mater. Sci. Eng. (1994), no. 2, 995–1016.

[45] M. Kanouff and R. Greif, The unsteady development of a gta weld pool,
International Journal of Heat and Mass Transfer 35 (1992), no. 4, 967–
979.

[46] V.A. Karkhin, H.J. Pesch, A.S. Ilin, A.A. Prikhodovsky, V.V. Plochikhine,
M.V. Makhutin, and H.-W. Zoch, Effects of latent heat of fusion on ther-
mal process during welding, Mathematical Modelling of Weld Phenomena
7 (H. Cerjak, H.K.D.H. Bhadeshia, and E. Kozeschnik, eds.), Verlag der
Technischen Universität Graz, 2005, pp. 3–37.

[47] C.-H. Kim, W. Zhang, and T. DebRoy, Modeling of temperature field and
solidified surface profile during gas-metal arc fillet welding, Journal of Ap-
plied Physics 94 (2003), no. 4, 2667–2679.

[48] W.-H. Kim and S.-J. Na, Heat and fluid flow in pulsed current gta weld pool,
International Journal of Heat and Mass Transfer 41 (1998), 3213–3227.

[49] S.H. Ko, D.F. Farson, S.K. Choi, and C.D. Yoo, Mathematical modeling
of the dynamic behavior of gas tungsten arc weld pools, Metallurgical and
Materials Transactions B 31B (2000), 1465–1473.

[50] S. Kou, Welding metallurgy, second edition, Wiley-Interscience, 2003.

[51] S. Kou and D.K. Sun, Fluid flow and weld penetration in stationary arc
welds, Metallurgical Transactions 16A (1985), no. 2, 203–213.



REFERENCES 99

[52] S. Kou and Y.H. Wang, Computer simulation of convection in moving arc
weld pools, Metallurgical Transactions 17A (1986), 2271–2277.

[53] A. Kumar and T. DebRoy, Calculation of three-dimensional electromagnetic
force field during arc welding, Journal of Applied Physics 94 (2003), no. 2.

[54] , Guaranteed fillet weld geometry from heat transfer model and mul-
tivariable optimization, International Journal of Heat and Mass Transfer
47 (2004), 5793–5806.

[55] A. Kumar and T. Debroy, Heat transfer and fluid flow during gas-metal-arc
fillet welding for various joint configurations and welding positions, Metal-
lurgical and Materials Transactions 38A (2007), no. 3, 506–519.

[56] A. Kumar, W. Zhang, and T. DebRoy, Improving reliability of modelling
heat and fluid flow in complex gas metal arc fillet welds - part i: an engi-
neering physics model, Journal of Physics D: Applied Physics 38 (2005),
119–126.

[57] A. Kumar, W. Zhang, C.H Kim, and T. DebRoy, A smart bi-directional
model of heat transfer and free surface flow in gas metal arc fillet weld-
ing for practicing engineers, Mathematical Modelling of Weld Phenomena
7 (H. Cerjak, H.K.D.H. Bhadeshia, and E. Kozeschnik, eds.), Verlag der
Technischen Universität Graz, 2005, pp. 3–37.

[58] S. Kumar and S.C. Bhaduri, Three-dimensional finite element modeling
of gas metal-arc welding, Metallurgical and Materials Transactions (1994),
435–441.

[59] Y.P. Lei, Y.W. Shi, H. Murakawa, and Y. Ueda, Numerical analysis on the
effect of sulphur content on weld pool geometry and free surface phenomena
for type 304 stainless steel, Mathematical Modelling of Weld Phenomena
4, IOM Communications Ltd, 1998, pp. 104–122.

[60] R.W. Jr. Messler, Principles of welding; processes, physics, chemistry and
metallurgy, Wiley-Interscience, 1999.

[61] K.C. Mills, Recommended values of thermophysical properties for selected
commercial alloys, Woodhead Publishing Limited, 2002.

[62] S. Mishra, S. Chakraborty, and T. DebRoy, Probing liquation cracking and
solidification through modeling of momentum, heat, and solute transport
during welding of aluminum alloys, Journal of Applied Physics 97 (2005).

[63] S. Mishra and T. DebRoy, A heat-transfer and fluid-flow-based model to
obtain a specific weld geometry using various combinations of welding vari-
ables, Journal of Applied Physics (2005).

[64] E. Olsson and G. Kreiss, A conservative level set method for two phase
flow, Journal of Computational Physics 210 (2005), 225–246.



100 REFERENCES

[65] W. Pitscheneder, R. Ebner, T. Hong, T. Debroy, K. Mundra, and R. Benes,
Experimental and numerical investigation of transport phenomena in con-
duction mode weld pools, Mathematical Modelling of Weld Phenomena 4,
IOM Communications Ltd, 1998, pp. 3–25.

[66] I.K. Pokhodnya, O.M. Portnov, and V.I. Shvachko, Computer modelling of
gas partition between the weld metal and its plasma environment, Mathe-
matical Modelling of Weld Phenomena 5, IOM Communications Ltd, 2001,
pp. 55–65.

[67] R. Rai, S.M Kelly, R.P. Martukanitz, and T. Debroy, A convective heat-
transfer model for partial and full penetration keyhole mode laser welding
of a structural steel, Metallurgical and Materials Transactions 39A (2008),
98–112.

[68] P. Sahoo, T. Debroy, and M.J. McNallan, Surface tension of binary metal
- surface active solute systems under conditions relevant to welding metal-
lurgy, Metallurgical Transactions 19B (1988), 483–491.

[69] F. Sikström, A.-K. Christiansson, and B. Lennartson, Simulation for de-
sign of automated welding, Proceedings of the International Conference on
Computer as a tool, Warsaw, Poland, September 2007.

[70] R. Sizaire, Numerical study of free surface newtonian and viscoelastic flows,
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