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using sizing optimization problems
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ABSTRACT

The present work is devoted to approximation techniquesifaular extremal problems
arising from optimal design problems in structural and fiendchanics. The thesis con-
sists of an introductory part and four independent papeng;iwhowever are united by
the common idea of approximation and the related applinatieas.

In the first half of the thesis we are concerned with findingdptmal topology of truss-
like structures. This class of optimal design problemsearishen in order to find the op-
timal truss not only are we allowed to redistribute the mat@mong the structural mem-
bers (bars), but also to completely remove some partsratéie connectivity (topology)
of the structure. The other half of the thesis addresseaubstipn of the optimal topolog-
ical design of flow domains for Stokes and Navier—Stokes $luebr flows, optimizing
topology means finding the optimal partition of the givenigesiomain into disjoint
parts occupied by the fluid and the impenetrable walls, gikiern-flow and the out-flow
boundaries. In particular, impenetrable walls changehlags and the connectivity of the
flow domain.

In the first paper we construct an example demonstratingitigeilgr behaviour of truss
topology optimization problems including a linearizedlzgbbuckling (linear elastic sta-
bility) constraint. This singularity phenomenon has not&nown before and affects
the choice of numerical methods that can be applied to thingation problem. We
propose a simple approximation strategy and establishaheecgence of globally op-
timal solutions to perturbed problems towards globallyiropt solutions to the original
singular problem.

In the second paper we are concerned with the constructibnesfapproximating prob-
lems that allow us to reconstruct the local behaviour of eegarclass of singular truss
topology optimization problems, namely to approximatéiatery points to the limiting
problem with sequences of stationary points to the regydpraimating problems. We
do so on the classic problem of weight minimization unde¥sstrconstraints for trusses
in unilateral contact with rigid obstacles.

In the third paper we extend a design parametrization pusiygoroposed for the topo-
logical design of flow domains for Stokes flows to also incltigelimiting case of porous
materials—completely impenetrable walls. We demonsttete in general, the resulting
design-to-flow mapping is not closed, yet under mild assignptit is possible to approx-
imate globally optimal minimal-power-dissipation dom&imsing porous materials with
diminishing permeability.

In the fourth and last paper we consider the optimal desigloaf domains for Navier—
Stokes flows. We illustrate the discontinuous behaviouhefdesign-to-flow mapping
caused by the topological changes in the design, and prdpuser” changes to the
design parametrization and the equations that allow ugtzausly establish the closed-
ness of the design-to-flow mapping. The existence of optsohltions as well as the
convergence of approximation schemes then easily followrs the closedness result.
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INTRODUCTION AND OVERVIEW

I N the present thesis we study approximation techniquesrigutar extremal problems
arising from optimal design problems in structural and fleiechanics. The purpose
of this chapter is to provide an introduction to some of thedeie and methods coming
from bi-level programming, topology optimization, and siirity analysis for non-linear

programs, as well as to give a summary of the results edtallign the four appended
papers, placing them in a proper perspective.

Mathematical programming with equilibrium constraints

Hierarchical decision-making problems are encounteredwide variety of domains in
the engineering and experimental natural sciences, aegiarral planning, management,
and economics. These problems are all defined by the presétvwee or more objectives
with a prescribed order of priority or information. In mangpdications it is sufficient
to consider a sub-class of these problems having two legelsbjectives. We refer to
the upper-level as the objective having the highest pyianitd/or information level; it is
defined in terms of an optimization with respect to one setaoiables. The lower-level
problem, which in the most general case is described by ati@mal inequality, is then
a supplementary problem parameterized by the upper-levihies. These models are
known as generalized bi-level programming problems, otherattical programs with
equilibrium constraints (MPEC); see, for example, Luo efl#PR96].

Many extremal problems arising from applications in meatsof solids, structures,
and fluids have an inherent bi-level form. The upper-levéédive function measures
some performance of the system, such as its weight, stiffrmaaximal contact force,
pressure drop, drag, or power dissipation. This objectinetion is optimized by select-
ing design parameters, which in our case will be related ¢éoggometry of the system
and the amount of material being used. Further, the uppet-dptimization is subject to
design constraints, such as limits on the amount of availataterial, and to behavioural
constraints, such as bounds on the displacements andestres$uckling/stability con-
straints. The lower-level problem describes the behawbtire system given the choices
of the design variables, the external forces acting on d,tha boundary conditions.

For linear elastic structures the behaviour is governedhbyeguilibrium law of min-
imal potential energy, which determines the values of theestariables (displacements)
at the lower level. Equivalently, the equilibrium law canéx@ressed as a (dual) principle
of the minimum of complementary energy, determining thesstes and contact forces.

Similarly, for slow (creep, Stokes) flows the flow velocitydistermined by the princi-
ple of minimal potential power. In the case of faster flow,be-linear convection effects



must be taken into account in the lower-level problem, legdb the Navier—Stokes equa-
tions that (in a weak form) can be formulated as a variatiorejuality.

Mathematical programs with equilibrium constraints arewn to be an especially
difficult subclass of non-smooth non-convex NP-hard matt@al problems, which
in addition violates standard non-linear programming t@ist qualifications/[LPR96,
Chapter 1]. Furthermore, MPEC problems coming from the lagpp optimization of
structures, solids and fluids typically violate even theeiawualifications, such as the
strict complementarity conditions, or strong regularigg@mptions, constructed specifi-
cally for generalized bi-level programs. Therefore, the abapproximation techniques
for the numerical solution of such problems seems inewétabl

Letx e 2 (respectivelyy € %) denote a vector of upper-level, or design (resp. lower-
level, or state), variables. Given the performance fumetid : 2" x % — RU {4}, the
mathematical program with equilibrium constraints canthéesl as follows:

min f(x,y),

(xy)

3

s.t.(x,y) €S @)
y € SOL(x),

whereSC 2" x % is a set representing design, behavioural, and joint cainss; and
SOL: 2" = % is a point-to-set mapping defined by the set of solutionseddiver-level
parametric optimization, or variational inequality, plein. For example, in the simplest
case SOIx) may be given by the solution set of the following parametptiraization
problem:

{ minF(x,y),
2

s.t.yeC,

whereF : 2" x % — RU {4} is a given lower-level objective function (usually convex
in the second variable), af@iC ¢ is a set of admissible state vectors (also usually con-
vex). In view of the special structure of the feasible seflpf one of the central questions
in the study of MPEC is the verification of closedness and samtinuity properties of
the point-to-set mapping SOL, which bears close relatigmsstvith the verification of
the existence of optimal solutions and applicability ofioptation algorithms to a given
MPEC problem.

For MPEC problems arising in the topology optimization afustures, solids, and
fluids, the typical situation is as follows. For design vestofound in theinterior of the
design domain, the mappimxg= SOL(x) is in fact single-valued and continuous; whereas
for designs on the boundary this mapping is at most closeti @y have unbounded,
or even empty, images. This behaviour prompts to be explatgorithmically. Thus,
instead of the original MPEC (1) we solve a sequence of apmating problems

min f(x,y),

(xy)

st (X,y) €S,
y € SOL(x),

where & is a specially constructed approximation §favoiding the “bad” points of
the design space, ared> 0 is an approximation parameter eventually tending to zero.
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The approximation problems are usually constructed sahledimit points of sequences
of globally optimal solutions to the approximating probkare globally optimal in the
original, singular problem, as the approximation parameteds to zero.

Unfortunately, for non-convex, non-smooth, large-scal@fems like instances of
MPEC problems arising from structural topology optimipatione can hardly expect to
find globally optimal solutions, and therefore the convergeof globally optimal solu-
tions is a positive result of more theoretical than prattsgnificance. However, the
approximation of stationary points for MPEC problems is anpticated task. Firstly,
even the practical concept of a stationary point is not sg &asdefine in this case, be-
cause the standard constraint qualifications are violaB=tondly, even more modern
MPEC-specific assumptions are violated by the optimal adepigblems we consider,
especially at the boundary of the design domain; since ihéslocal behaviour of the
mappingx = SOL(x) that is important in this case, we need to regularize or apprate
the latter point-to-set mapping. Thus, in order to appr@tarhe stationary points of the
original, singular MPEC-problem (1) we introduce approating problems of the form

(x)

st (X,y) €S,
y € SOLg(x),

where, as beforeg > 0 is a small approximation parametg,is an approximation o$,
and SOl is a “simple” approximation of SOL. For example, insteadafisideringexact
optimal solutiony in (2) we may require onlg-optimal solutions; other choices are also

possible (see [LIM97, FJQ99]).

Truss topology optimization

Truss topology optimization problems play an importan¢ @i being model problems in
structural optimization owing to their simple and very wadlveloped structure; yet the
techniques developed for truss topology optimization [@ois are applicable to much
wider classes of structures than trusses, including fraandsfinite element discretized
models of solids. Systematic research on truss optimizdtégan in the beginning of
the previous century with the work of Michell [Mic04], andwadays this is probably
the most advanced area of topology optimization (cf. [BdBSd3owever, some compu-
tational aspects of truss topology optimization probletiislack a theoretical basis; in
the appended papers 1 and 2 we try to resolve some of thenis|seittion, however, we
introduce the necessary truss-specific notation to puttiss topology optimization prob-
lems, and the discussion about the approximation techsjdute the general framework
of MPEC.

Using the de-facto standard in the field, greund structureapproach [DGG64], the
designof the truss is completely described by prescribing for dzti, i = 1,...,m, the
amount of materiak; > 0 allocated to this bar. For convenience we collect all trsgie
variables in a vector = (xq,...,Xm)! € RT. We introduce an index set of the present
(or, active) members in the structurg®(x) = {i =1,...,m| x > 0}. Given a particular
designx € R, the equilibrium status of a truss in the presence of rigstaties that may
come into unilateral frictionless contact with some nodasloe described by specifying
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o a pseudo-force (also known as the normalized stress; it is in fact a stredhen
bar times its volume) for each bar .#(x) present in the structure. To simplify the
notation we collect all values, i = 1,...,m, into one vectos € R™, assumings = 0
fori ¢ .7 (x) (since inactive members cannot carry any load);

o a contact forcé; for each of the potential contact nodes: 1,...,r. These values are
collected in a vectod € R" ; and

o a displacementy for each of the structural degrees of freedkm 1,...,n. These
values are collected in a vectore R".

The values of the state variables for a specific degigre determined using various
energy principles. Therefore, we define the complementaeygy of the structure as

1 S
E(X,8A) = Eie;(x)E_NJFgA’

as well as the linearized strain energy:

M(x,u) = }utK(x)u,

2
whereK(x) is thestiffness matriof the structure. The latter matrix is defined as
K(x) := Z xiKi,
i€ (x)

whereK; = EB!B; is thelocal stiffness matrixor the bari = 1,...,m, B € R is a
kinematic transformation matrix for the bia= 1,...,m, andE is the Young modulus of
the structural material.

Throughout the thesis, we make the blanket assumptiorkibgtis positive definite
for everypositivedesignx; a necessary and sufficient condition for this property & th
K(1™) is positive definite. We do not loose any generality from #ssumption, because
the positive definiteness can be achieved by starting frofemough rich” ground struc-
ture.

In this notation the equilibrium state of the structure urtbe external loaéle R" can
be characterized using the following primal-dual pair ofieex quadratic programming
problems:

min &(x,s,A),
(sA) i t
‘ ) minM(x,u) —f'u,
(€)x(f){ SL.CA+ z Bis =T, (2)x(F)¢ U
ie.7(x) s.t.Cu <g,

A>0,

whereg € R" is a vector of initial gaps between the contact nodes and ogstacles,
andC € R"™" is a kinematic transformation matrix. We have implicitlsamed that the
matrix C is quasi-orthogonalthat is, thatCC! = I. The problem®)«(f) is known as the
principle of minimum complementary energy, and the proble)y(f) is the principle
of minimum potential energy.

Equivalently, the equilibrium problem can be written as aTK&ystem for the pair
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(€)x(f) and(2)«(f). Define

Bt (t 0 —f
Q(x) := (0 0 —C ) q(f):=(g>,
|l 0 -D(XB 0

andY :=RMx R xR", whereB € R™" is the matrix with rows3y, ..., Bm, andD(x) =
diagx) € R™™. Then, the paifs,A) solves(%)x(f) andu solves(Z)«(f) if and only if
the vectoly* = (&, A, ut)t € Y solves the following affine variational inequality problem
denoted AV(q(f),Q(x),Y):

[QX)Y* +q(f)]'(y—y*) >0, forallyeY.

Now, one can easily spot the difficulties arising at the baupadf the design domain
RT, that is, when some bars are completely removed from thengrstiucture:

o the objective function of the probleff®’)x(f) is only lower semi-continuous and may
assume infinite values on this subset of the design space;

o similarly, the objective function of the dual problg# )« (f) is not strongly convex at
the boundary of the design domain;

o the affine variational inequality problem AW (f), Q(x),Y) may have zero, or multiple,
solutions at the boundary.

All these difficulties have immediate implications on theerties of the corresponding

multi-mappingx = SOL(x); as a consequence the class of algorithms capable of solving

truss topology optimization problems is significantly resed, for example when com-

pared to the corresponding sizing problems. Thus one isttirtp replace the design

domainRT with the natural approximatiofix € R | x > 1™}, with £ | 0, thus convert-

ing the topology optimization problem into a sequencsipingones.

For some relatively simple truss topology optimization lgemns (such as, e.g.,
compliance minimization problems, possibly with so-cdlléstrong” stress con-
straints [[Ach98]) the strategy we just outlined is suffitieBuch approximations have
been rigorously studied for trusses without (Achtzigerlj88]) and with (Patriksson and
Petersson [PaP02]) unilateral constraints.

On the other hand, there are many other classes of topoldgyiaation problems
including important mechanical constraints (e.g., stoessstraints [SvG68], local buck-
ling constraints [GCYO01], and global buckling constraifRaper 1, this thesis]) where
the simple strategy outlined above leads to erroneoustseswing to the complicated
singular structure of the feasible set near the points wtterdruss topology changes.
Historically, the study of singularity phenomena for trdspology optimization prob-
lems started with problems including stress constraintg. oBved and Ginos [SvG68]
observed that such problems may have singular solutiomstremproperties of the fea-
sible region were further investigated by Kirsch [Kir90h&hg and Jiang [ChJ92], and
Rozvany and Birker [RoB94]. Cheng and Guo [ChG97] were tis fir propose a more
sophisticated restriction-relaxation procedure, whereomly the lower bounds but also
the stress constraints were perturbed. They establiskedatfivergence of the optimal
values of the perturbed problems to the optimal value of tigiral problem, while Pe-
tersson|[Pet01] (using the continuity of certain desigisteie parameterized mappings)
has established the convergence of optimal solutions. eSimen, thes-perturbation
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strategy has been extended by many researchers, in many Waysinx and Bend-
s@e[DuB98] and Duysinx and Sigmund [Du$98] consideredigouin structures; Guo et
al. [GCYO01] included local buckling constraints into theplem; Patriksson and Peters-
son [PaP02] generalized the result for trusses includigtenal constraints; Evgrafov et
al. [EPPO03, EvP03, EvP03a] considered the possibility baucing stochastic forces;
and Evgrafov [Paper 1, this thesis] studied the lineariastie stability constraint.

Despite the clear advantage of approximating the nonsmeathular optimization
problem with a sequence of smooth and regular ones, all firggsapproximations con-
sidered above suffer from a similar difficulty: while the enlying theoretical results
are concerned with the approximation of tfiebally optimal solutions, in computational
practice it is impossible to solve the nonconvex approxingaproblems to global opti-
mality. There are also negative results regarding thisistiuee-perturbation approach
may fail to find a globally optimal solution even for topologgtimization problems with
only 2 design variables [StS01]!

The analysis of the convergence of stationary points topipecximating problems to-
wards stationary points of the limiting (that is, originpfpblem is difficult; for example,
the dependence of the equilibrium state of the structure tipe design near the points
where the topology changes is nonsmooth, and even nonfitpsontinuous. Therefore,
Evgrafov and Patriksson [Paper 2, this thesis] have dedignelternative approximation
scheme, capable of approximatibgth globally optimal solutions and stationary points
through corresponding sequences of global or stationduyigns to approximating prob-
lems. To achieve this, we approximate both the design sehatksign-to-state mapping
x = SOL(x), as we outlined in the previous section. Namely, we congluefollowing
approximating feasible sets:

FER) ={(x,5A,u) e RTx R"x R, x R"| x> 0(g)1™,
E(X,5A)+MN(xu) —flu<e,
Bl's+C'A =T,
Cu<g},

whereo(¢) is a positive function of such that limgo(g) /€ = 0. Of course, the weak du-
ality theorem for convex problems implies th&®(f) corresponds to the original design-
to-state mapping; for positive values ofthe “state” variablegs, A, u) [which in this
formulation play a role equal to that of the design variaklesnd do not correspond to an
equilibrium state of the truss anymore] are required to Ibegdrdual feasible, but onlyg-
optimal. We also note that only strictly positive desigrns altowed in the approximating
sets, so that we isolate the “problematic” points and enditipsmooth and more regular
problems.

Topology optimization of flow domains

The optimal control of fluid flows has long been receiving ¢desable attention by en-
gineers and mathematicians, owing to its importance in nagpjications involving fluid
related technology; see, e.g., the recent monographs [GWOP01]. According to a
well-established classification in structural optimirati(see [BeS03, page 1]), the ab-
solute majority of works dealing with the optimal design aiwil domains fall into the
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category of shape optimization. (See the bibliographicaés (2) in [BeS03] for clas-
sic references in shape optimization.) In the frameworklape optimizationthe op-
timization problem formulation can be stated as followsoa$e a flow domain out of
some family so as to maximize an associated performancéidmat. The family of
domains considered may be as rich as that of all open subBetgiven set satisfy-
ing some regularity criterion (see, e.g. [Fei03]), or asrpa® the ones obtained from
a given domain by locally perturbing some part of the boundam Lipschitz manner
(cf. [Ton03b, GKM0O0, GuK98]). Unfortunately, it is typidglonly the problems in the
latter group that can be attacked numerically. On the othedftopology optimization
(or, control in coefficients) techniques are known for tHxibility in describing the
domains of arbitrary complexity (e.g., the number of cone@écomponents need not to
be bounded), and at the same time require relatively moglecahputational efforts. In
particular, one may completely avoid remeshing the doma&the@optimization algorithm
advances, which eases the integration with existing FEMsoahd simplifies and speeds
up sensitivity analysis.

While the field of topology optimization is nowadays very vegtablished for the
optimal design of solids and structures, surprisinglyelitvork has been done for the
optimal design of fluid domains. Borrvall and Petersson [@&]Rvere the first to suc-
cessfully consider the optimal design of flow domains for imiming the total power
of the incompressible Stokes flows, using inhomogeneousuysamaterials with a spa-
tially varying Darcy permeability tensor, under a consttain the total volume of fluid
in the control region. Later, this approach has been gemedhto include both limiting
cases of porous materials, i.e., pure solid and pure flovonsgiave been allowed to ap-
pear in the design domain as a result of the optimizationgmtore [Paper 3, this thesis].
(We also cite the work of Klarbring et al. [KPTKO03], which hewer study the problem
of the optimal design of flow networks, where design and stat@bles reside in finite-
dimensional spaces; in some sense this problem is an amaddtyuiss design problems if
one can carry over the terminology and ideas from the areptohal design of structures
and solids.)

To put the topology optimization of Stokes flows into the feamork of MPEC, we
need to introduce some fluid-specific notation. Qelbe a connected bounded domain of
RY, d € {2,3} with a Lipschitz continuous boundaFy Borrvall and Petersson [BoP03]
proposed to control the Stokes equation€iiin the following manner: given the pre-
scribed flow velocitieg on the boundary, and forcéscting in the domain one adjusts
the inverse permeabilitg of the medium occupying, which depends on the control
functionp:

divu=0

u=g, onl.

—VvA Op=f
VAu+a(p)u+Op=H, inQ.
3)

In the system (3 is the flow velocity,p is the pressure, andis the kinematic viscosity.
The control domai? is defined as follows:

#={pel”@|0<p<laeina [ p<yall,
Q
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where 0< y < 1 is the maximal volume fraction that can be occupied by thid.flGor-
mally, we relate the permeability ! to p using a convex, decreasing, and nonnegative
functiona : [0,1] — R4 U {+}, defined as

a(p)=p*-1

[Thus,p(x) = 0 corresponds to zero permeability, or solid regions, wihiamot permit
any flow, while p(x) = 1 corresponds to infinite permeability, or 100% flow regipns.
In order to introduce the weak formulation of the systém (@, consider the sets of
admissible flow velocities:

Ugiy = {vEHY(Q)|v=g onT, divv = 0,weakly inQ},
and introduce the potential power of the viscous flow throtinghporous medium:

/(p,u):%/QDU-DH%/Qa(p)u-u—/K;f-u.

In this notation, we end up with the following lower-levebiem corresponding to (2):

{muin J(p,u),

s.t.u € Ziv.

(4)

Now we can see that, at least from the approximation viewtptiie situation in flow
topology optimization is similar to the situation in the tdpgy optimization of trusses.
Namely, for all designg almost everywhere i satisfying the inequality > ¢, for
somee > 0, the design-to-flow mapping SOL corresponding to the leleel prob-
lem (4) parameterized by is continuous. However, if we allow solid regions to appear
in the domairQ, the objective function of (4) suddenly becomes discomtirs) and thus
induces a non-closed design-to-flow mapping. Therefopglomy optimization prob-
lems for Stokes fluids are ill-posed in general; however, careestablish the existence
of optimal solutions at least if we take the upper-level obye functional to be equal to
the lower-level objective functional, which has numeropigliations for fluids [BoP03].
(Minimizing the potential power for Stokes fluids corresgsto minimizing the compli-
ance in linear elasticity.)

Now, if we are interested in modeling faster flows, the nowdir convection effects
must be taken into account. In our opinion, the most convemiay to do so is to consider
the following fixed-point problem:

ueargmin{/(p,v)Jr/Q(u-Elu)-v}. (5)

VEUiv

This is the straightforward generalization of the paramiza¢ion proposed by Borrvall
and Petersson [BoP03] for the Navier—Stokes equationshéseader may expect, the
design-to-flow mapping induced by the problem (5) demotestra behaviour that is very
similar to the design-to-flow mapping for Stokes flows, exdbpt it may not be single-
valued even for positive designs, and that power dissipagioot a lower-semicontinuous
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function of the design in this case. Thus, regularizationhef topology optimization
problems for the Navier—Stokes equations is absolutelgssary.

It turns out that if we employ the idea diter [Sig97,/ SiP98] (which has become
quite a standard technique in topology optimization, semu[®, BrT01] for the rigorous
mathematical treatmeni) additionto relaxing the incompressibility constraint (which
is unigue to the topology optimization of fluids) we can ebsibthe continuity of the
resulting design-to-flow mapping, and therefore the eristeof optimal designs for a
great variety of design functionals [Paper 4, this thes@ir use of filters significantly
differs from the traditional one in the topology optimizati of linearly elastic solids,
owing to the dissimilar design parameterizations in thesedases.

Summary of the appended papers

Paper 1: We consider a mechanically tractable techniquelitaining robust optimal
truss topologies alternatively to stochastic programmivagnely, the introduc-
tion of global buckling (linear elastic stability) condtrainto the optimiza-
tion problem. This technique has already been considerddraarior point
algorithms have been proposed to solve this non-convexnggztion prob-
lem [Ko02, BTJK"00]. We show that the global buckling constraint produces
singular feasible sets, which may prevent convergenceanfdstrd numerical
methods towards optimal solutions; we also propose a sireptdution strategy
based on approximation. This manuscript is to apped&tinctural and Multi-
disciplinary Optimization2004.

Paper 2: All regularization techniques proposed so far fiosst topology optimization
address the convergence of globally optimal designs, wimal not be realis-
tic for this class of large-scale non-convex optimizatioolpems. In this paper
we propose an alternative regularization technique, wicrantees the conver-
gence of stationary points to perturbed problems towaet®osiary points to the
original singular problems. Preliminary results have bpersented at the 18th
International Symposium on Mathematical Programming,2P8August 2003,
Copenhagen, Denmark. The manuscript was submittédtésnational Journal
for Numerical Methods in Engineerirg April 2004.

Paper 3: We show that the minimal power dissipation problenttokes problems in
porous media proposed in [BoP03] can be extended to inchickkimpenetra-
ble walls. We demonstrate that, in general, the resultirsigeeto-flow mapping
is not closed, yet under mild assumptions it is possible fwr@adamate globally
optimal minimal-power-dissipation domains using porowgemals with dimin-
ishing permeability. The manuscript was submitted\pplied Mathematics and
Optimizationin August 2003.

Paper 4: We show that a straightforward generalization ef dbsign parameteriza-
tion proposed in| [BoP03] for Navier-Stokes flows results mnileposed con-
trol problem. We propose a regularization technique basedhe relax-
ation of the flow incompressibility requirement and the dalinction of a fil-
ter into the design parameterization (the latter now regdirds a standard
computational technique in topology optimization of lingeelastic continua,
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see|[Sig97, SiP98, Bou01, BrT01]). The manuscript was stiedio Zeitschrift
fir Angewandte Mathematik und Mechaimk-ebruary 2004. A condensed ver-
sion of the paper is accepted for presentation at the 10tIAABSMO Multidis-
ciplinary Anlysis and Optimization Conference, August S@ptember 1, 2004,
Albany, NY, USA, and will appear in its proceedings.
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Paper 1

ON GLOBALLY STABLE SINGULAR
TOPOLOGIES

Anton Evgrafov *

Abstract

We consider truss topology optimization problems inclgdanglobal stability constraint, which
guarantees a sufficient elastic stability of the optimalcttires. The resulting problem is a noncon-
vex semi-definite program, for which nonconvex interiompionethods are known to show the best
performance.

We demonstrate that in the framework of topology optimmatithe global stability constraint
may behave similarly to stress constraints, that is, thaesglobally optimal solutions are singular
and cannot be approximated from the interior of the designaio. This behaviour, which may be
called aglobal stability singularity phenomenpprevents convergence of interior point methods
towards globally optimal solutions. We propose a simpléysbation strategy, which restores the
regularity of the design domain. Further, to each pertugredlem interior point methods can be
applied.

Key words Topology optimization — global stability — linear bucldin- singularity — semi-
definite programming

1.1 Introduction

THE optimum design of trusses is concerned with the distrilouticthe available mate-
rial among structural members (bars) in order to carry argiet of loads as efficiently
as possible, subject to mechanical and technological @nt.

In the framework of topology optimization (as opposedsizing optimization), the
topology of a truss may change as a result of the optimizatiooess, that is, if a zero
amount of material is allocated to some parts; this possitsignificantly enlarges the

“‘Department of Mathematics, Chalmers University of Tecbggl SE-412 80 Goéteborg, Sweden, email:
toxa@math.chalmers.se
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design space and, at the same time, increases the compatationplexity of the prob-
lem. The former gives the possibility to obtain optimal desi that perform much better
than their “sizing” counterparts [Mic04]; the latter placgignificant requirements on the
topology optimization algorithms.

In most cases, “standard” nonlinear programming algoriticem be applied directly
to sizing optimization problems. Therefore, one naturgrapch to topology optimiza-
tion is to introduce a small but positive lower bounidn the bar volumes, converting the
problem into a sizing one [Ach98]. Solving the sequence zihgi problems fore con-
verging to zero produces a sequence of designs, whose himitsoone hopes are optimal
in the original topology optimization problem.

Unfortunately, some important constraints produce ded@nains that violate stan-
dard nonlinear programming constraint qualifications; antigular, some optimal solu-
tions cannot be reached by sequences of positive feasiblgrmde The stress singular-
ity phenomenon appearing in topology optimization proldentluding constraints on
the maximal effective stresses in the structural membgpsoilsably the most studied in
the literature — we mention the works [SvG68, Kir90, ChJ9@BB4, ChG97, DuB98,
'DuS98, Pet01, StS01, PaP02, EPP02, EVP03] just to name aRfevently, local (Eu-
ler) buckling constraints were shown to exhibit an even waiagular behaviour, in the
sense that singular optimal solutions become disconndrted the rest of the design
region [GCYO01].

Despite such an attention, the existing strategies fossitenstrained problems may
fail to discover global optima even for very small probler8$301]. On the other hand,
“real-world” structures may fail not on account of high sses, but owing to an insuffi-
cient elastic stability [TiG61, K€02]. Rozvany [Roz96] discusses the elastic instability of
the solutions to topology optimization problems with s¢raed local buckling constraints;
Cheng et al/ [GCYO01, Example 4] provide an example of suclobaily unstable struc-
ture. (The latter reference concludes with a discussiomeirclusion of global stability
constraints.)

Unfortunately, to verify the global stability we need to bis& a static equilibrium
path, which is defined by the structure loaded from the reté stith a given load, for
possible bifurcation points. Being not an easy task evea ffiven mechanical structure,
it is much more difficult to include the global stability restion into already complicated
structural optimization problems. Using a linear bucklmgdel and semi-definite pro-
gramming techniques, a mechanically viable yet practicailvable model of global sta-
bility has been introduced by Kwara [K&02] (see also [BTJK00]). High-performance
interior point algorithms are proposed to solve the globathiity side constrained topol-
ogy optimization problems, which makes it possible to sdiligh-dimensional practical
engineering truss design problems.

However, as we show in this paper, singular optima may alpeapin optimization
problems with global stability constraints if we consideolplems with several loading
scenarios, which seems very natural in real-life problerhgrefore, interior point meth-
ods, however powerful and modern that they are, applieddb problem instances will
produce erroneous results. Using the continuity of desigstate mappings established
by Petersson [Pet01], we show that a simple strategy sitailasrelaxation method for
stress constraints (cf. [ChG97]) can cure the ill-posesloéthe feasible region. Further,
the interior point method can be applied to the perturbedlpros.
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1.2 Optimal truss design with a global stability constraint

In this section, we introduce the necessary notation anchargcal principles, and dis-
cuss the assumptions on the mechanical structure (ugjligirinear buckling model)
that naturally lead to the global stability constraint antuced by Kévara [Ka202] (see
also [BTJK"00, SeT00] and references therein). Finally, we state thientgation prob-
lem we are going to analyse.

1.2.1 Mechanical equilibrium

Given positions of the nodes, tliesign(and topology in particular) of a truss can be
described by prescribing for each biari = 1,...,m, the amount of materiak > 0
allocated to this bar. For convenience we collect all thagiesariables in a vector

X = (X1,...,Xm)' € RT. We introduce an index set of the present (or, active) mesber
in the structures (x) = {i =1,...,m| x > 0}, and denote by”¢(x) the complement of
F(x)in{1,...,m}.

For a vectov € R" and an index set= {iy,...,i; } € {1,...,n}, we denote by,
the subvecto(vi,, ... ,vim)t.

Given a particular desigx, the equilibrium status of a truss (up to the rigid displace-
ments, which we do not consider) can be described by spegifgrr each bar € .7 (x)
present in the structure a pseudo-force (also known as ttmeatised stressg, which is
in fact a stress in the bar times its volume. To simplify théation we collect all values
s,i=1,...,m, into one vectos of dimensiorm.

The values of the state variables at equilibrium are detegthby the principle of
minimum complementary energy; in our case, it is the follggwjuadratic programming
problem, parameterised by

. 1 g
miné&(x,s) := = —_
S 2 ie;(x) EX
(€)x(f) S Bls=f,
s.t.d i€ (x)
Syex) =0,

where the data in the problem has the following meaning:
- E is the Young modulus for the structure material,
- Bi € R™1 s the kinematic transformation matrix for the bar
- f € R"is the vector of external forces.

We further introduce the vector of nodal displacemants R" as a vector of La-
grange multipliers for the force equilibrium constraimstie problem above. Defining
thestiffness matrixof the structure as

K(x) := z xiKi,
i€ (x)
whereK; = EB!B; is the bar stiffness matrixor the bari, one can relate the equilib-
rium displacements directly to the applied force via a sysbé linear (inu, f) equations:
K(x)u =f. We, however, avoid this simple, and familiar, formulatibacause the matrix
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K(x) is usually not positive definite, unlegs> 0 (i.e., when all bars are present in the
structure), leading to a non-uniqueness of the equilibrilisplacements. On the con-
trary, the optimal solution t¢%)x(f) is always unique whenever it exists (i.e., if a static
equilibrium is possible in the linear model); see [Pet0lediiem 2.1].

For the rest of the paper, we make the blanket assumptioitixais positive definite
for everypositivedesignx; a necessary and sufficient condition for this property & th
K(1) is positive definite. We do notloose any generality from #ssumption, because the
positive definiteness can be achieved by starting from aaugh rich” ground structure
(see, for example [Ach98, Assumption (A5)]).

1.2.2 Linear buckling model

For the reader’s convenience in this subsection we repeaistsumptions on the mechani-
cal structure that lead to the linear buckling model anddse@sentation as a linear matrix
inequality; interested reader is referred totkara [Ka&02] for more details.

The analysis of the global stability of structural equiigin its simplest form reduces
to the classification of the critical points of a given enefiglyctional as being strict local
minimum points (that is, stable points) or not. We also detiyt stable points those that
are limits of sequences of strict local minima Q#].

In the linear model the strain energy in the barrelated to displacements via

n 1 .
win — EE>q-(|3iu)2, i=1,...,m
The linear strain energy is convex, and, therefore, locatima or saddle points are
impossible in this model, leading to the false conclusiat #very equilibrium is stable,
if any exists. Therefore, in order to verify the stabilityari equilibrium point we must
employ a nonlinear model, in which the strain energy takegdim

1 1 1 1 2
\/\/InI — EE)q Biu+§(BiU)2+ E(CiU)2+ E(Diu)z )
i=1,....m,

where the kinematic transformation matricgse R™! andD; € R™*! account for dis-
placements that are orthogonal to the axial direction obireand to each other. (In the
two-dimensional model there is of course only one diredti@at is orthogonal to the axial
direction of the bar, whence there will be only one “addiimmatrix C;.)

In order to make the model computationally tractable, yetliapble to a wide
class of structures, the followintinear buckling assumptionare supposed to hold
(see[Coo74, BTJK00, Kog02)):

o the displacements depend linearly on the load applied fmiddess than the critical
buckling load;

o the vector of these linear displacements is orthogonaldovéttor of buckling dis-
placements; and

o the bar axial forceExBju/¢i, 1 =1,...,m(where¢; is the length of the ba, remain
constant during the deformation caused by buckling.
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Under these assumptions, the strain energy can be simgtbifibe following expres-

sion [Koc02]:

1 .
WS = SUDiKi+s(GG+DID)u, i=1,....,m
where we used the fact thgt= Ex B;u for all barsi. Defining, similarly to the stiffness
matrix K(x), thegeometry matrix

G(s) —iﬁsGi,

whereG; = C!C; + D!D; is the bar geometry matrix, Kwara proposes the following sta-
bility constraint to be added to the design problem:

K(X) + G(s) = 0.

(For two symmetric matricedl,, M, € R™" we write M1 = M5 if and only if the ma-
trix M1 — M3, is positive semi-definite.) The matrik(x) + G(s) is a Hessian matrix for
the simplified nonlinear potential energy functiom&iS(u) = ™, W"'S(u) — ftu; it must
be positive semi-definite at every local minimum point. Wewhkver, verify this condi-
tion at the linear equilibrium stag", motivating it by the fact that, under linear buckling
assumptionss’™ ~ s for loads smaller than the buckling load. Arguments for susta-
bility condition can be found in the papers [BTIBO0, Kot02]; we cite [K&02, Lemma 1]
which asserts that if the stiffness matkxx) is positive definite, then the global stability
constraint implies that for any € 7 < 1 the loadrtf is not a classic buckling load for the
idealised structure (e.g., see [TiG61]).

1.2.3 Optimization problem

GivenN load cased!,...,fN, we look for a truss of minimal volume that is globally stable
as well as stiff w.r.t. each load case. To guarantee thestff we require that the inverse
quantity (fK)tuk = 2£(x, <), known as the compliance, does not exceed a given amount
¢ > 0 for each load case. The problem, which differs from the jgmobconsidered by
Kocvara[Ka02] only by the fact that we consider several load scenacasbe formally
stated as follows:

mgr;w(x) = ;xi,
x >0,
&(x,8°) < 0.5c,

K(X)+G($) =0, k=1,...,N,
s<solves(€)x(f¥)

In this form, the problem is an instance of the class of matteal programs with equi-
librium constraints, or bilevel programming problems [L98R OKZ98]. For the prob-
lems in this class, establishing the existence of solutis@snon-trivial matter; see, for
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example, [LPR96, Example 1.1.2]. In our case, the equilinrconstraint$ %)y (f€) do
not, in general, define closed feasible sets in the desigredpat01, Example 3.1]. How-
ever, combined with the energy bou#dx, §‘) < 0.5¢, the design-to-state mappiRg— S
is continuous/[Pet01, Theorem 3.1], and the correspondiagilile set is closed. Fur-
thermore, the design vectgr= al is feasible (stiff and stable) far > O large enough.
Therefore, the existence of optimal solutiong #8) follows from Weierstrass’ theorem.
We also note the presence of the matrix inequality in the &dation of (&?); the
problem therefore is an instance of semi-definite programyras well. It is customary
to solve such problems using interior point techniques;énti®n 1.4 we formulate the
approximating problems that can be attacked by nonlingarior point methods. The
next section, however, explains why interior point alguris applied to an equivalent
reformulation of the probleni#?) as a non-linear semi-definite programming problem,
as it has been proposed in [E@2, BTJK"00], may produce erroneous results.

1.3 A global stability “singularity phenomenon”

Consider the truss structure shown in Fig./1.1 (a), whichsist® of 6 bars and has 2
nodes. We consider the two-dimensional case, and thusrthetise has = 4 degrees
of freedom, which we collect in one vector= (ux(1),uy(1),ux(2), uy(2))!, whereuy(j)

is the displacement of the nodealong the coordinate axis The structure is subject
to N = 2 load casesf! = (0.0,—1.5,0.0,0.0)! andf? = (0.0,0.0,0.0, —1.0)!. Owing to
the vertical symmetry of the ground structure and the loagsawe are interested in
symmetric designs only, which allows us to describe thegiessing onlym = 4 design
variables, collected in one vectar= (x;,%,X3,%4)' (the correspondence between the
design variables and bars is found in Fig.]1.1 (a)). Assurfingl, the global stiffness
and geometry matrices of the structure are, respectivaly épproximately)

7.574-107 3%, 0.0 0.0 0.0
K(X) ~ 0.0 X1 + X2 4+ 0.485¢4 0.0 —X2
0.0 0.0 0.110%s 0.0 '
0.0 —Xo 0.0 Xo+ 1772
S1+Sp +0.485 0.0 -5 0.0
G(s) ~ 0.0 7.574-10 3y 0.0 0.0
—-S 0.0 S+1.7725; 0.0
0.0 0.0 0.0 0.110%;

Looking at the buckling mode of this structure for the loadec&, which is shown in
Fig.[1.1 (b), one can immediately see that the buckling disginents are orthogonal to
the linear ones; thus the linear buckling assumptions ar& probably verified to some
degree of accuracy. To further investigate the linear bogkhypothesis we consider
the one-parametric family of load$?, 0 < t < 1, and plot the graphs of the nodal dis-
placements as functions ofboth for the fully nonlinear strain model and the simplified
nonlinear strain model, based on the linear buckling hygsith The graphs are shown in
Fig.[1.2; we use their similarity as a visual argument in thebdf” of the linear buckling
hypothesis. To give some numbers, we note thagak ~ 0.475 the cosine of the angle
between the linear and the buckling displacements is ajppeigly 13-10 2, and the
relative change in the axial forces i86%.
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o X1
node 1 —
)Q‘f\ node 2 X, node 2 node 1
Lonl »4 ‘?
[ ;
025 | Iil [ T T[]
(a) (b)

Fig. 1.1: (a) The unstable structure and (b) its buckling mode.

Limiting the compliance to be at most= 2, one can verify analytically that the
globally optimal solution to the problef?) is x* = (1.1250.9,0.0,0.0)!, with optimal
weightw(x*) = 2.025. At the optimal point, not only are the compliance caaists active
for both load cases but also the matrix inequality for the firad case; namely, there are
three positive eigenvalues 8f(x*) + G((s')*), where(st)* is the solution to(%)x (f1),
and one zero eigenvalue. Solving the state prob(eh(f!) to obtain a closed form
expression fos(x) and making a first-order Taylor expansion of the smallestreiglue
of K(x) + G(s(x)) nearx = x* (which, luckily, exists for our example at this point) we
get the expressioa(x) ~ —4.4747%3 + “higher order terms”. Thus, for some> 0, the
globally optimal solutiorx* is separated from every feasible (in particular, stablsjgie
satisfyingx > 0, i.e.,||[x —X*|| > €. We see that in the framework of topology optimization
the global stability constraint may behave similarly taest constraints (the singularity
phenomenon for the latter was first observed by Sved and G8wi368)); therefore, we
can call this behaviour of the solution t6”?) a global stability singularity phenomenon

In Table 1.1, we show the results of the naive introductiathefpositive lower bound
€ > 0 into the problem. [We used an SQP-algorithm to solve thissmooth nonconvex
problem in 4 variables, which was first converted to a onellearm by explicitly solv-
ing the equilibrium constraint. This is of course unsuiédiolr realistic problems that will
include large semi-definite constraints and thereforeireguuch more cautious algorith-
mic treatment; we propose one formulation that is suitatmeéimerical computations in
Section 1.4, see proble(rf?s).] One can clearly see that the sequence of perturbed op-
timal designs converges to a limit, which is approximateftgén times heavier than the
(unperturbed) optimum! The interior point method applieédh equivalent formulation
of this problem instance as a non-linear semi-definite @ogjthat is, to the problem
(27¢) stated in Section 1.4 fag > 0, but with the perturbation parameteset to zero]
would produce similar results, because, as we have shoigiyipossible to approximate
the globally optimal solution from the interior of the desigomain.

We further note that the semi-definite approximation metpoaposed by Ben-
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0.2 T T T T 0.2
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Fig. 1.2: Nodal displacements calculated (a) for fully nonlinear é&mdsimplified non-
linear strain modelsq= (1.125,0.9,1,1)1].

€ X w(x")
1 (26.9932.6561.0,1.0)' 33.649
10t (30.08,0.326,0.1,0.1)'  30.810

103 | (30.13,0.3260.1,1-10%! 30.654
107 | (30.126,0.326,0.1,1-10°")'  30.652
0 (1.1250.9,0.0,0.0)'  2.025

Tab. 1.1: Results for the naive-perturbation approach.

Tal et al. [BTJK00] cannot reach the optimal solution either. IndeedZlet R™ x RK

be the set formed by the linear matrix inequalities, such Brajm(%) = {x € R™ |
3zeRK: (x,2) e ¥ } € 2, whereZ is the set of feasible designs for the probles).
Then, Progm(int(#)) C int(2"), and an interior point method applied to the problem
having# as a feasible set would not converge towards a pgint (x*,z*), for some

z* € R¥, becausa* ¢ cl(int(.2")).

Finally, we note that the problems including free vibrat@mmstraints (see [KiD2,
Section 6]), which is sometimes substituted for the prolslewith the global stability
constraint, are convex and, therefore, do not exhibit amgidarities. Thus, our example
further illustrates significant differences between the problems.

1.4 e-perturbation approach

The instance of the proble(®?) given in the previous section clearly demonstrates the
need to relax the stability constraint in order to be ableg®e the interior point machin-
ery. We employ an idea similar to tlgerelaxation of the stress constraints, proposed by
Cheng and Guo [ChG97] (see also [Pet01]). eelR, . — R, be a function such that
limg_00(¢)/e =0. We introduce the positive lower boun(k) on the design variables,
thusrestrictingthe feasible set, while at the same tilm&axingthe stability constraint by
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adding a positive definite matri:

Eni?w(x)
X > 0(¢g)1,
(2F) &(x,8) < 0.5¢,
s.t.
K(X)+G(s)+el=0,p k=1,...,N.
$solves(%)x ()

Using the locally directionally Lipschitz dependence of #iate variables on the de-
sign [Pet01, Theorem 3.3], we can easily prove the convemefa sequence of globally
optimal solutions td (#?¢)} to globally optimal solutions t0.%?) ase — +0.

Theorem 1.1. Let {&} be a positive sequence, converging to zero, and furthefxet
be a sequence of designs that are globally optimdl(i?%)}. Then, every limit poink
of {x;} (and there exists at least one) is a design that is globaltjnug in (22).

Proof. As we have already mentioned, for sufficiently lamge- 0 the desigra 1 is feasi-
ble in (£2); thus it is also feasible iGZ?%) for all i large enough. Therefore, eventually,
the subsequencii} lies in the compact setx € R | w(x) < w(a1l) }, which implies
the existence of limit points for the original sequence.

Without any loss of generality, we assume that the origieglence[x;} converges
toX. Let {#‘}, k=1,...,N, be the corresponding sequence of state vectors. Owing to
the uniform energy bound (x;,s¢) < 0.5, for eachk =1,..., N, we have thafs‘} — &,
where & moreover solve§?)z(f€) (cf. [Pet01, Theorem 3.1]). The lower semiconti-
nuity of & (cf. [PetO1, Lemma 2.1]) together with the continuity of tflebal stability
constraint, implies that is feasible in(#?). Thus, we have proved the inequality

val(Z2) <w(R) < Iimiogfval(ﬂgi).

On the other hand, let" be a design that is optimal {{”), and consider a sequence
of positive designg%;} := {x* 4+ 0(&)1}. Then, owing to|[Pet01, Theorem 3.3], there
is a constan€ > 0 such that for the distance between the corresponding taters
the following inequality holdsi|& — (s)¥|| < Co(&), k= 1,...,N. Given the additive
structure of the stiffness and geometry matrices this iespli

K(%) +G(§) +&l = K(x*) +G((s)")
+K(o(&)1) — G(Co(&)1) + &l = 0,
k=1...,N,
owing to the global stability ok* and the properties ai(-). Thus we have proved the

reverse inequality:
limsupval(22%) > lim w(%;) = val(2?),

j—o00 |—00
which concludes the proof. ]

Each probleni.2?¢) is a sizing optimization problem including matrix inequyion-
straints. In the following proposition, we show that thedibte design set of such prob-
lems is regular, as opposed to the singular feasible seeafriginal problem&?).
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€ X w(x*)
1 (1.0,1.0,1.0,1.0)° 6
101 (1.08,0.7952.31-1072,1.0- 102!  1.943
1073 (1.121,0.890,2.24-10°21.0- 104! 2.015
)
)
)

2
4
104 | (1.12460.8992.235.1074,1.0-10~©
8

t 2024
105 (1.1250.9,2.235-10°5,1.0- 108t  2.025
0 (1.1250.9,0.0,0.0)0 2.025

Tab. 1.2: Results for thee-perturbation scheme.

Proposition 1.2. Every desigrx that is feasible in(#?¢), can be approximated by a se-
quence ofstrictly feasible points, that is, for which the inequality congtiaiare strictly
satisfied.

Proof. The sequence of desighewx}, where{ay} | 1, satisfies the requirements of the
claim. 0

Owing to the inequaliti > o(g)1 > 0, the stiffness matriX(x) is positive definite.
Therefore, the equatioi(x)uk = f< is uniquely solvable, and the constraimf (X, s¢) =
(fk)‘uk < c¢ can be equivalently written as the linear matrix inequationstraint after
an application of the Schur Complement Theorem (this is rmdstal technique in semi-

definite programming):
KX(x) := c (1 =0
A Kx)) T

Furthermore, denoting the unique equilibrium displacambyuk(x), one can write the
unique solution td% )« (f*) as a function of the design by using the following expression
s(x) = ExBjuX(x). We further define the matrig(x) := G(s¢(x)) to write thenested
formulation of the probleni#?¢), which includes design variables only and is very similar
to the one introduced by Kwara [Ka&02]:

mxinw(x)
~e x> 0(g)1,
(%) s.t. { K¥(x) =0, }
- k=1,...,N.
K(x)+GK(x)+ €l = 0

This formulation contains only simple design and matrixgnality constraints. Fur-
thermore, Proposition 1.2 guarantees that every feastite pan be approximated as a
sequence of strictly feasible points. Therefore, we caryapmonlinear interior point
method (e.g., see [WSV(Q0, Jar00]) to solve this problem.

One can of course argue thatagoes to zero, there might be “fewer and fewer” inte-
rior points around globally optimal solutions. Implemeigas of interior point methods,
however, take special precautions to the numerical iledogss appearing as the iterates
approach the boundary (cf. [FGWO02] and references ther@ingrefore, the numerical
problems appearing as “boundary approaches” the currémt @@., as the perturbation
parametee decreases) will not prevent convergence of the method.
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In Tablel 1.2, we summarise the results of thperturbation scheme applied to our
numerical example. We have chosgs) = £2; an SQP algorithm has been used for the
numerical solution. [The comments made about the use of é&Wer for solving
the problem(4?) of course apply to the present situation as well.] One cantlsate
the sequence of perturbed optimal designs converges tanfelar global optimum, as
Theorem 1.1 predicts.

1.5 Discussion

1.5.1 Stress constraints

In the same way that the stress (and local buckling) comsgrailone do not guaran-
tee global stability, globally stable designs might inéwerstressed bars (cf. [SeT00])
which significantly reduce the life-time of the structurdiefefore, there might be an en-
gineering interest in including stress constraints int $tructural problem formulation
(2).

Let g; > 0 be the maximal allowable stress in the bar = 1,....m. The stress
constraints in our notation then take the fosm < gix, i = 1,...,m. The easiest way to
add stress constraints in our problem is via a penalty fandsee [EvP03]):

[Is] — aixi]2
i 7x) X

In this way, we only need to change the objective functionhef problem(@s) to
w(X) + t(€)g(x,s(x)), wherep : Ry, — Ry, is a penalty parameter. The speed at
which p(e) grows must be “synchronised” with the speed at whi¢h) converges to
zero (see [EvPO03] for details).

Stress constraints, however, significantly contributéngortonconvexity of the result-
ing nested formulation of the problem. Therefore, instebdsing the nested formula-
tion together with nonlinear interior point algorithms,eooan exploit the convexity of
(x,8) — g(x,s) as well as the linearity ofx,s) — K(x) + G(x,s) by using a semi-definite
approximation approach, as proposed by Ben-Tal et al. [BTK for the original prob-
lem (2?) without stress constraints. Thkeperturbation of the global stability constraint
as well as the treatment of the stress constraints via atydoattion will guarantee the
approximability of the globally optimal solutions from threerior of the feasible domain.

g(x,8) =

1.5.2 Global vs. local optimality

Since each of the problents”¢) is nonconvey, it is still possible to construct numeri-
cal examples demonstrating the non-convergence of-ferturbation approach in prac-
tice. Such examples are based on the local nature of theneanlinterior point methods
(see|[StS01] for examples of non-convergence for stresstained problems solved us-
ing thee-relaxation approach of Cheng and Guo [ChG97]); they do antradict Theo-
rem 1.1, which makes an assertion about the sequergleludl solutions. Nevertheless,
we believe that the results of this paper contribute to tlgdeunderstanding of the prob-
lems including a global stability constraint, as well agte tonstruction of more efficient
algorithms for this practically important class of probkem
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A convergence analysis of sequences of local minima antbiséay points to vari-
ous sizing approximations of topology optimization prabteis one of the topics of our
current research.
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Paper 2

ON THE CONVERGENCE OF STATIONARY
SEQUENCES IN TOPOLOGY
OPTIMIZATION

Anton Evgrafov *and Michael Patriksson T

Abstract

We consider structural topology optimization problemduding unilateral constraints arising from
non-penetration conditions in contact mechanics. Thdtiegunon-convex non-smooth problems
are instances of mathematical programs with equilibriunstaints (MPEC), or bi-level programs.
Applying nested (implicit programming) algorithms to tleigiss of problems is problematic owing
to the singularity of the feasible set. We propose a pertighatrategy combining the relaxation
of the equilibrium constraint with the restriction of thesiign domain to its regular part only. This
strategy allows us to attack the problem numerically ustagdard nonlinear programming algo-
rithms.

We rigorously study the optimality conditions for the origl singular problem as well as the
convergence of stationary points and globally optimal sohs to approximating problems towards
respectively stationary points and globally optimal solus to the original problem. A limited
numerical benchmarking of the algorithm is performed.

Keywords: topology optimizationg-perturbation, local optimality, stress singularity, MBPE
smoothing

2.1 Introduction

THE optimum design of trusses is concerned with the distrilouticthe available mate-
rial among structural members (bars) in order to carry argiet of loads as efficiently

“‘Department of Mathematics, Chalmers University of Techggl SE-412 96 Goteborg, Sweden, e-mail:
toxa@math.chalmers.se

Department of Mathematics, Chalmers University of Techgpl SE-412 96 Géteborg, Sweden, e-mail:
mipat@math.chalmers.se
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as possible, subject to mechanical and technological @ntt. The distinguishing fea-
ture of structural optimization problems is the presenctefcomplicatingequilibrium
constraint, relatinglesignvariables (i.e., those controlling the material distribnj with
statevariables (e.g., nodal displacements and stresses inrietlsal members). Ver-
bally, the relation between the two sets of variables canobatlated as follows: the
state variables solve a parametric optimization probleth désign variables as parame-
ters. Therefore, the problem belongs to a class of diffiqofinoization problems known
as mathematical programs with equilibrium constraints B@F, or generalized bi-level
programming problems.

In the framework of topology optimization (as opposedsizing optimization), the
topology of a truss may change as a result of the optimizationess, that is, if a zero
amount of material is allocated to some parts; this possitsignificantly enlarges the
design space and, at the same time, increases the compatatonplexity of the prob-
lem. The former implies the possibility to obtain optimalsims that perform much
better than their “sizing” counterparts [Mic04]; the latmaces significant requirements
on algorithms for solving topology optimization problems.

In most cases, “standard” algorithms for differentiablalimear programming prob-
lems can be applied directly to sizing optimization prokdenTherefore, one natural
approach to topology optimization is to introduce a smatlfmsitive lower bounad on
the bar volumes, thus converting the problem into a sizing. d®olving a sequence of
sizing problems fore converging to zero produces a sequence of designs, whoge lim
points one hopes are optimal in the original topology optation problem.

Unfortunately, some important constraints produce ded@nains that violate stan-
dard nonlinear programming constraint qualifications; antigular, some optimal solu-
tions cannot be reached as limits of any sequence of stipctbitive feasible designs.
The stresssingularity phenomenon appearing in topology optimization problents wi
constraints on the maximal effective stresses in the stractmembers is probably the
one most studied and the one that has attracted the most retsgast—we mention the
work in [SvG68, Kir90, ChJ92, RoB94, ChG97, DuB98, DuS980ReStS01, PaP02,
EPPO03,; EvP(O3], just to name a few references. Similarlyall@€uler) buckling con-
straints [GCY01], and global (system) stability consttsiitvg04] are known to exhibit
a singular behaviour.

Sizing approximations, studied in the cited papers, arecsiterned with approxima-
tions of theglobally optimal solutions. In computational practice, howeveis iimpos-
sible to solve the non-convex approximating problems tdgloptimality. Since most
numerical nonlinear optimization algorithms can only fstdtionary pointsof the ap-
proximating sizing problems, in this paper we study thetlipgints of such sequences.
We show that they are indeed stationary (in some sense) iimiiteng (that is, original)
topology optimization problem as well.

2.1.1 Equilibrium problem

We consider a truss witim bars anch degrees of freedom. There ardesignated nodes
of the truss that may come into frictionless unilateral eohtvith rigid obstacles.

Given positions of the nodes, tliesign(and topology in particular) of a truss can
be described by prescribing for each bar=1,...,m, the amount of materiat; > 0
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allocated to this bar. For convenience we collect all thegegariables in a vectox =
(X1,...,%m)! € RT. We introduce an index set of the present (or, active) mesibethe
structure# (x) = {i =1,...,m| x > 0}, and denote by”¢(x) the complement of7 (x)
in{1,...,m}.
Given a particular desigr, the equilibrium status of a truss can be described by
specifying
o a pseudo-forcg (also known as the normalized stress, which is in fact asirethe
bar times its volume) for each bae .7 (x) present in the structure . To simplify the
notation we collect all values, i = 1,...,m, into one vectos € R™, assumings = 0
fori ¢ 7(x);
o acontact forcé; for each of the potential contact nodes: 1,...,r. These values are
collected in a vectod € R" ; and
o a displacementi for each of the structural degrees of freedkm 1,...,n. These
values are collected in a vectore R".
The triple(s, A, u) will be referred to astatevariables.
For a vectorv € RY, and an index sét= {iy,...,i } €{1,...,q}, we denote by,
the subvecto(vi,, ... ,vim)t.
The values of the state variables for a specific dezigre determined using various
energy principles. Therefore, we define the complementaeygy of the structure as

_1 € 4
(o@(X,S,A) = EiEJZ(X>E_)(i+gA’

as well as the linearized strain energy:
1
n(x,u) == EutK(x)u,

whereK(x) is stiffness matriof the structure. The latter matrix is defined as

K(x) := Z xiKi,
i€ 7(x)
whereK; = EB}Bi is thelocal stiffness matriXor the bari = 1,...,m, B ¢ R™"is a
kinematic transformation matrix for the ba& 1,...,m, andE is the Young modulus of
the structural material.

For the rest of the paper, we make the blanket assumptiorkixatis positive defi-
nite for everypositivedesignx; a necessary and sufficient condition for this property is
thatK(1™) is positive definite. We do not loose any generality from #ssumption, be-
cause the positive definiteness can be achieved by startingen “enough rich” ground
structure.

In these notations the equilibrium state of the structuidenthe external loaflc R"
can be characterized using a primal-dual pair of convex@i@gprogramming problems:

min&(x,s,A),
(sA)

o . minM(x,u) — f'u,
(€)x(f){ sSt.CA+ z Bis =T, Py (f u
ic7(x) s.t.Cu <g,

A>0,
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whereg € R" is a vector of gaps between the contact nodes and rigid destaand
C € R™" is a kinematic transformation matrix. We have implicitlysamed that the
matrix C is quasi-orthogonalthat is, thatCC! = I. The problen(% )x(f) is known as the
principle of minimum complementary energy, and the problefx(f) is the principle
of minimum potential energy.

Equivalently, the equilibrium problem can be written as aTK&ystem for the pair
(€)x(f) and(2)x(f). Define

Bt ¢t 0 —f
Q(X)i—(O o -C ) Q(f)i—(g),
| 0 -D(xB 0

andY := R™x R x R", whereB € R™" is the matrix with rowsBj,...,Bm, and
D(x) = diagx) € R™™. Then, the pairs,A) solves(%)x(f) andu solves(2)x(f) if
and only if the vectoy* = (§,A',ut)! € Y solves the affine variational inequality prob-
lem AVI(q(f),Q(x),Y) [see, e.g.] [FaP03] for the definition]:

[QX)Y* +q()]'(y—y*) >0, forallyeY.

Either of the equilibrium problem formulations(%)x(f), (£)x(f), or
AVI(q(f),Q(x),Y) has its advantages and disadvantages. For example, the prob
lem (¢)x(f) possesses at most one optimal solution for every desigiR"; at the same
time, the objective functio® is only lower semicontinuous (and may be infinite) for
somex € dRT. Both problems have been studied by Patriksson and Petef3a®02],
and we summarize some of their results below.

Proposition 2.1. (i) The multi-mapping = argmin%)x(f) is at most single-valued for
everyx € RT, and is single-valued for every> 0™. Moreover, this mapping is locally
directionally Lipschitz for everyx € R},

Furthermore, the mapping— argmin@)x(f)N{(s,A) e R™x R’ | &(x,s,A) <C}
is continuous for every constant&0.
(it) The multi-mapping = argmin Z)x(f) is single-valued for every > 0™. Moreover,
this mapping is locally directionallguppe) Lipschitz for every € R'T'.
(iii ) The multi-mapping = SOL(q(f),Q(x),Y) is closed and locally directionallfup-
pen) Lipschitz for everx € RT.

Our ultimate goal in this paper is to establish stationanyditions that must be ver-
ified by limit points of certain sequences of positive desighiVe cannot use the equi-
librium formulation given by the problen(t’)«(f) for this purpose, because its objec-
tive violates such a basic condition for sensitivity anelyss continuity. Neither the
problem(2?)(f) is suitable for us, because the design-to-state mappinduitcies is not
closed. Therefore, we will use the primal-dual charactigon of the equilibrium given
by AVI(q(f),Q(x),Y) in the sequel.

We close the subsection by defining the feasible set gemebgtehe equilibrium
constraint:

F(F):={(x,8A,u) CRTx R"x R, x R"| (s,A,u) € SOL(q(f),Q(x),Y)}. (2.1)



On the convergence of stationary sequences in topologsnatiion 19

2.1.2 Weight minimization problem

We use a stress constrained weight minimization problemtofss subject to unilateral
frictionless contact with some rigid obstacles as a remtesige of the difficult structural
optimization problems. To skip one index and simplify theéation we consider a single
load case only; this does not affect the applicability of msults to multiple load cases
in any way.

The weight minimization problem can be written as follows:

m

min w(x):= 9 X
Qin, W0) = 3 %,
s.t.(x,s5,A,u) € Z(f),

ox <s <o, i=1,....m

whereg; < 0 andd; > 0 are the stress bounds in compression and tension for the bar
i=1,...,m and.%(f) is given by[(2.1).

The results of the present paper are of course applicablevidea class of problems
than (). For example, more general objective functions can be densil as long
as they are reasonably regular [differentiable, or Lipgcbontinuous w.r.t(x,s, A, u)];
additional constraints may be considered [such as bounadslimissible displacements,
local buckling constraints, or global stability constitajn However, to keep the notation
simple we do not discuss such straightforward generatiaatin detail.

2.2 Previous results

2.2.1 e-perturbation of Cheng and Guo and variations

The so-callec&-perturbation of structural topology optimization pratle or approxima-
tion with a sequence a&fizingoptimization problems, has become a classic topic. Conver-
gence results of this type allow one, at least in princilegdmpute optimal solutions to
structural topology optimization problems by solving awsece of smooth non-convex
approximating problems. Such approximations do not stiften many numerical diffi-
culties possessed by the original model prob(g#), so that efficient solvers are readily
available.

For some truss topology optimization problems (such as, @gnpliance minimiza-
tion, possibly with so-called “strong” stress constraii#sh98]) the naive replacement
of the lower bound 0 on design variables with a small posiigkie ¢ > 0 tending to
zero (whence the namee—perturbation) is sufficient. Such a strategy has been<igor
ously studied for trusses, without (Achtziger [Ach98]) amith (Patriksson and Peters-
son [PaP02]) unilateral constraints.

On the other hand, there are many other classes of topoldiyieation problems
including important mechanical constraints (e.g., stoessstraints [SvG68], local buck-
ling constraints [GCYO01], and global buckling constraifftvg04]) where the simple
strategy outlined above leads to erroneous results, ovarthe complicated singular
structure of the design domain near the points where the tapology changes. His-
torically, the study of singularity phenomena for trussdimgy optimization problems
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started with problems including stress constraints onlyedSand Ginos [SvG68] ob-
served that such problems may have singular solutions,tenproperties of the feasible
region were further investigated by Kirsch [Kir90], Chengdaliang[[ChJ92], and Roz-
vany and Birker [RoB94]. Cheng and Guo [ChG97] were the fagiropose a more so-
phisticated restriction-relaxation procedure, whereamy lower bounds but also stress
constraints were perturbed. They established the conwveegd the optimal values of the
perturbed problems to the optimal value of the original jjeoh while Petersson [Pet01]
(using the continuity of certain design—to—state pararized mappings) has established
the convergence of optimal solutions. Since then,gdperturbation has been extended
by many authors in many ways: Duysinx and Bendsge [DuB98]ungsinx and Sig-
mund [DuS98] considered continuum structures; Guo et &Y&L] included local buck-
ling constraints into the problem; Patriksson and PeterfiRaP02] generalized the result
for trusses including unilateral constraints; Evgrafoale{EPPO03] considered the pos-
sibility of stochastic forces; and Evgrafov [Evg04] stutlibe linearized elastic stability
constraint.

Despite the clear advantage of approximating the nonsmeatgular optimization
problem with a sequence of smooth and regular ones, all firggsapproximations con-
sidered above suffer from the same difficulty. While the utyileg theoretical results
are concerned with the approximation of tflebally optimal solutions, in computational
practice it is impossible to solve the non-convex approfinggproblems to global opti-
mality. There are also negative results regarding thisistiues-perturbation approach
may fail to find a globally optimal solution even for topologgtimization problems with
only 2 design variables (see [StS01])!

The analysis of the convergence of stationary points to fipeaimating problems
towards stationary points of the limiting (that is, origihproblem is difficult; for ex-
ample, the dependence of the equilibrium state of the streiatpon the design near the
points where the topology changes is nonsmooth, and evetipsnhitz continuous.

In constructing a newg-perturbation we try to address these above issues, coatent
ing on the convergence tbth globally optimal solutions and stationary points towards
the respective limits.

2.2.2 The extended formulation of Stolpe and Svanberg

Recently, Stolpe and Svanberg [St503] proposed an alieemaethod for the solution of
the truss topology optimization problems including strasd local buckling constraints,
which is based on the Karush—Kuhn—Tucker (KKT) formulatidithe equilibrium con-
straint. In this formulation the state variables are treéagually to the design variables,
and artificial lower bounds on the design are unnecessarthelmbsence of unilateral
constraints, the formulation is suitable for any SQP atyani and for some numerical
examples Stolpe and Svanberg report that such an algordbkra better performance than
an e-perturbation based approach. Later, a branch-and-caotitdgh based on this for-
mulation has been developed [Sto03, Paper DJ; furtherndaietziger [Ach03] has made
the conjecture that every globally optimal solution to adiogy optimization problem in-
cluding stress and local buckling constraints (but notideig unilateral constraints) is a
KKT pointin the extended formulation.

Unfortunately, the KKT formulation of the lower level egbilium problem for trusses
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with unilateral constraints includes complementarityditions, which are known to vi-
olate standard nonlinear programming constraint quatifina. Therefore, the extended
formulation cannot be used directly to solve topology ojation problems for trusses
in contact with rigid obstacles, or including tensile-onigmbers (ropes or cables).

We therefore propose a new approximation scheme, whiclvalfor the violation
of the lower-level equilibrium conditions, and thus does mzlude the complicating
complementarity constraints.

2.3 A smoothing method for a general MPEC problem

Among iterative algorithms for MPEC problems, aiperturbation method is special in
that it combines relaxation (of the equilibrium conditipaad restrification (of the design
space). Most iterative algorithms for general MPEC prolsldralong to the relaxation

category, wherein constraints are penalized or complesmigntonditions are smoothed.
In the latter category, the method of Facchinei et al. [F]®88 relations to ours that are
interesting to explore, in order to analyze the strengthunfomnvergence results. Due to
the stronger regularity properties of the problem considén [FIQ99], their convergence
results are shown to be stronger; we then seek to explain eday, literative methods for

our problem are unlikely to yield better convergence charastics than those that we
reach in this paper.

2.3.1 The problem

Consider the problem to

minf(x,y),
(xy)

(A) xe X,
st { ysolvesVIF(x,-),C(x)),

wheref : R™™M— R is continuously differentiableX ¢ R" is nonempty and compact,
and, for eachx € X and for a continuously differentiable functida: R™™M — R™,
VI(F(x,-),C(x)) denotes the variational inequality defined by the &K, -),C(x)),

yEC(X), F(va)t(zfy) Z 07 ZGC(X)a

where
Cx)={yeR"gi(xy) >0,i=1,....0},

g: R™™M— R’ being twice continuously differentiable and concave ingbeond argu-
ment.

For the lower-level VI, we assume tHafx) # 0 for all x in an open seA containingX,
thatC(x) is uniformly compact o\ (with C(x) C B for some open bounded $t- R™),
that F(x, ) is uniformly strongly monotone oB for all x € A, and that for every pair
(x,y) for which x € X andy solves V(F(x,-),C(x)), the partial gradient§}, gi(x,y),
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ie Z(xy):={i=1,...,0]0g(x,y) =0}, are linearly independent (that is, the linear
independence CQ, LICQ).

By these assumptions, it is clear thatM(x,-),C(x)) has a unique solution for each
x € X. By the concavity ofg and the LICQ, each lower-level VI is equivalent to the
existence of a (unique) multiplier vectdre R’ such that

F(va) - Dyg(xvy)A = Oma (22a)
0’ <g(x,y) LA >0 (2.2b)

holds. (That these KKT conditions are necessary followsheyltlCQ); sufficiency fol-
lows from concavity.) We can therefore replace the loweel@roblem VIF(x,-),C(x))

in the problem (#) by (2.2). This non-smooth reformulation has been utiliredhe
development of iterative algorithms. Since it, howevegesloot satisfy any CQ, due to
the presence of the complementarity conditions, it is témypb consider perturbations
of the KKT system. Let

F(Xay) - Dyg(XaY)
Ho(X,y.z,A) 1= g(x,y) —z L (%Y,Z,A) € R
—2min(z,A)

The KKT system[(2.2) is equivalent to the statement Hgix,y,z, A )0™ 2, We there-

fore write
min f(x,y),
(xy)

() t xeX,
s.t.
Ho(x,y,z,A) = ™2

which is an equivalent, non-smooth, restatement4f)( in the sense that the two prob-
lems share global as well as local optimal solutions (of. [FIQ99, Proposition 1]).

2.3.2 A smooth approximation

Facchinei et al| [FJQ99] consider a smooth reformulatichefproblem £?), as follows.
We introduce the functiop : R? — R by

@(ab):=/(a—b)2+4u2—(a+b), (ab)cR?

For this function, we have that ([FJQ99, Proposition 2])
w(ab) =0 <= a>0,b>0,ab= p2

For u =0, @u(a,b) = —2min(a,b); for u # 0, ¢, is in C*; and for every paira,b),
lim,—o @u(a,b) = —2min(a,b). The functiong, therefore serves as a smooth pertur-
bation of the min function. We consider replacing the opmrhfy in the problem ?)
above with the smooth operatidy,, defined by

(F(w) - Dyg(x,y))
Hu(X,y,z,A) = g(x,y) —z , (X,¥,2,A) € RMM2
®u(z,A)
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where
‘D(Z,A) = ((p(zlv/\].)a ceey (p(zfa)‘f))v
thus defining the smoothing problem

min f(x,y),
(xy)

(Zu) fxex
s.t. :
Hyu(x,y,z,A) = 0™,

While () coincides with the non-smooth problen¥), the problem £,) for

p # 0 is a smooth optimization problem. We denote the feasibtetsd>?,) by
Fy C RMM™20 The functionH, has favourable properties: it is not only locally Lip-
schitz continuous for every but also regular (in the sense that the directional devigati
exists in all directions and equals the Clarke derivatife[fJQ99, Lemma 1]), and its
generalized Jacobian with respect(ioz,A) is non-singular for every and feasible
point of the problem £,,), cf. [FIQ99, Proposition 3]. Further, for evexyc X and

U € R there exists a unique point i, such that itx-part equal, and this vector,

Wy 1= (%, Yu(X),Yu(X), A u (X)), (2.3)

is continuous iru. Based on these properties, Facchinei et al. [FJQ99, Thebfestab-
lish that the feasible set&, of the problem {7,) are non-empty and uniformly compact;
this is crucial, because then by the continuityfpthe problems£?,,) have optimal solu-
tions.

2.3.3 Optimality conditions

We develop the optimality conditions of the proble?(). The first-order optimality
conditions for the problem#,) can be written as follows: with (x,y,A) := F(x,y) —
Oya(x,y)A, if (x,y,z,A) is a locally optimal solution to4,,), then there exist vectors
(8,p,0) € R™2" ands € Nx (x) x R™ 2’ such that (cf., [FIQ99, Theorem 2])

V4
0™ M e Of(x,y) + 0L (x,y,A)0+0(g(x,y) —2)p+ Zldcpu(z,/\i)oi +M||(1,6,p,0)]s,
i=

(2.4)
whereM is a Lipschitz constant foff,H ) around(x,y,z,A). Since the multiplier for
Of(x,y) is non-zero (it then equals 1, without any loss of generglityis condition is
stronger than the Fritz—John conditions, and is in fact t& Konditions for the problem.
While one may then refer to this condition for= 0 as the KKT conditions for the MPEC
problem (), Facchinei et al. [FIQ99] refer to it is asong C-stationaritSCS).

2.3.4 Global convergence

A global version of the smoothing algorithm is immediatethwén arbitrary choice of
starting pointw? := (x%,y%,2%,A9), and{;} being any sequence of non-zero numbers
with lim;_. p; = 0, we define the sequen¢a’} to be given by globally optimal solu-
tionsw’ := (x',y",z",AT) to the problems$,,).



24 Evgrafov, A. and Patriksson, M.

For this algorithm, it is not difficult to establish (cf. [F9Q, Theorem 3]) that the
sequencgw’} is bounded and that every limit point is a globally optimalusion to
(£); it follows from the uniform compactness of the feasibless&,,, and the continuity
of the trajectory defined by, in (2.3).

2.3.5 Convergence to stationary points

A more practical algorithm is obtained by replacing, in thgoaithm above, global op-
timality in (7,,) of the vectow" by stationarity in the sense of the KKT system (2.4).
For this algorithm, it is shown in [FIQ99, Theorem 4] that sieguencgw’} of KKT
points in (#,,) is bounded and every limit point is an SCS pointi#). A crucial part of
the proof is the continuity property of any sequence of KKThp®in the problem£7,,)
asp tends to zero (cf [FIQ99, Proposition 4]). The proof of thewergence result also
establishes the important result that the sequdii6é, p’,o")} of KKT multipliers is
bounded. This is a crucial part of any analysis of the statibyiproperty of a limit point.

A yet more practical algorithm is also devised, in which teguencgw’} of vectors
is allowed to be defined by near-feasible and approximate I§&ihts. In other words,
in each iteratiorr, the distance from the vectar’ to the feasible se#, of the problem
(Zy,) is bounded by; > 0, and the Euclidean length of the vector defining the rigirieh
side of the inclusion (2/4) is also bounded above by thisezalineorem 5 in [FIQ99] then
states that if &} | 0 as{u;} — 0, then the sequendev’} of approximate KKT points
is bounded and every limit point is, again, a SCS pointdf) (

The latter algorithm was coded and tested in [FJQ99] on somadl and medium-size
MPEC problems; each problen#A,,) was then solved by utilizing an SQP algorithm.
They report that it compares favourably with, for examples implicit programming
algorithms proposed in [Out94, OuZ95].

2.4 A new smoothing approach to topology optimization

2.4.1 Motivation

The smoothing algorithm described in Section 2.3 may uafwtely not be applied to
truss topology optimization problems, out of whit#") is a typical example. The lat-
ter problem violates several assumptions that are vitatfersmoothing algorithm of

Facchinei et al! [FIQ99], the most important being the Iddke uniform strong mono-

tonicity by the lower-level problem A(f(f), Q(x),Y). In addition, some of the variables
(thatis,u) may not be uniformly bounded, and upper-level joint caaists (such as stress
constraints) are essential in the probléi).

In order to overcome the difficulties outlined we introduceaternative perturba-
tion scheme for solving stress constrained weight minitiomgproblems for trusses in-
cluding unilateral constraints. It resembles theerturbation approach of Cheng and
Guo [ChG97] (cf. Section 2.2.1) by the fact that we introdpositive lower bounds on
the design variables, thus restricting the design domaierd are important differences,
however: instead of relaxing the technological constsafatg., stress constraints in the
original paper[[ChG97]) we relax the equilibrium consttato accomplish this, we for-
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mulate the optimization problem usifmgpththe design and the state variables, similarly
to the extended formulation of Stolpe and Svanberg [StSff3Bection 2.2.2).

2.4.2 Relaxed equilibrium problem

Formally, fix an arbitrare > 0 and consider the following perturbation of the feasible se

Z(f) (cf. (2.D))

FE(f) ={(x,5A,u) e RT xR"x R, xR"| x> o0(g)1™,
E(X,5A)+N(x,u) —flu<e
B's+ C'A =T,
Cu<g},

whereo(¢) is a positive function o such that limgo(¢)/e = 0. Of course, the weak
duality theorem for convex problems implies th@P(f) = .7 (f); for positive values of
€ the “state” variablegs, A ,u) (which in the extended formulation play a role equal to
that of the design variables and do not correspond to an equilibrium state of the truss
anymore) are required to be primal-dual feasible, but aatyptimal.

From the theoretical point of view, allowing fgroptimal solutions to the lower-level
equilibrium problem means that we “regularize” the bi-lgw®gramming probleni?),
in the sense defined by [LiM97]; this will allow us to obtaireteonvergence of both
globally optimal solutions and stationary points (see Bldt least of equal importance
is the practical interpretation of the method, where thaxation parameter comes from
the approximate numerical solution of the equilibrium peob (e.g., using the existing
finite element software).

Finally, for everye > 0 we consider the followingerturbedversion of the stress
constrained weight minimization problem:

min w(x),
. (x,8A,u)
(7%)  st.(x,sA,u) € FE(f),

oX <§ <0, i=1...m

Remark 2.2. In the multiple-load case, the problgn# ¢) will have several constraints of
the form(x,s¢, Ak uk) e .72¢(fK), wherefX is a vector of external forces corresponding to
the load cask, and the triplgs, Ak, uk) € R™ x R, x R" represents the “state” variables
for the load cask, k=1,...,7.

In the rest of the section, we study the theoretical proge«i the point-to-set map-
ping € = Z&(f) which will allow us to establish the convergence of globatimal
solutions as well as stationary pointseag0.

2.4.3 Properties of & = F4(f)

In this section we show that the point-to-set mapping .7 ¢ (f) enjoys most of the nice
properties one can expect from a point-to-set mapping: nswae mild conditions it has



26 Evgrafov, A. and Patriksson, M.

compact (although, unfortunately, non-convex) imaged,islosed and lower semicon-
tinuous at zero [AuF90, Chapter 1]. Furthermore, in Prapmsi2.7 we demonstrate a
continuity of the design-to-force “sub-mapping™ (s,A) (see Proposition 2.7 for the
formal definition), the property originally established tbe unperturbed feasible sét
by Petersson [Pet01] for trusses without unilateral cairss, and later generalized by
Patriksson and Petersson [PaP02].

We formulate the results as a sequence of short propositions

Proposition 2.3 (Closed images)For eache > 0 the setZ#(f) is closed.

Proof. The claim follows easily from the lower semicontinuity 61-,-,-) (cf. [PaP02,
Lemma 3.2]) together with the continuity of the other funas defining#¢(f), € > 0.0

Proposition 2.4 (Lower semicontinuity). The multi-functiore = .%#¢(f) is lower semi-
continuous at zero.

Proof. Let(x,s,A,u) € Z(f). Then{ (x+0(g)1M s A u) } € Z&(f) for all enough small
€ >0, wherel™=(1,...,1)' € R\ O

Remark 2.5. The same construction establishes the lower semicontiofiithe multi-
functionse — (.7 ¢ NK), where (independent @ the closed s&t may represent stress,
stiffness, or global stability constraints, or any comhimathereof.

We stress that the classieperturbation of Cheng and Guo [ChG97] results in a l.s.c.
mapping including design variablesly; i.e., there might be some displacement vectors
corresponding to the limiting design that cannot be appnaxéd with the displacements
corresponding to positive designs.

Proposition 2.6 (Closedness)The multi-functiore = .#£(f) is closed at zero.

Proof. The claim follows from the lower semicontinuity of’(-,-,-) (cf. [PaP02,
Lemma 3.2]) together with the continuity of the other funos, defining the setg & (f),
e>0. O

Proposition 2.7 (Continuity of the design—to—force mappig). Let {&} be a positive
sequence, converging to zero. Assume RS, Ak uk) € .Z%(f), and that{x<} — x.
Suppose further that for eachx1,2,...,i=1,...,m, the stress constraint_ax{‘ < $< <
T X constraints are satisfied. Thef(s<,A¥)} — (s,A), this limit vector solve$#)x(f),
and there is a vectau solving(Z?)x(f). [In particular, (x,s,A,u) € %]

Proof. The additional stress constraints imply the uniform bowméss of the sequence
of complementary energigss (x¥,s¢,A%)}, as has been established in [PaP02]. There-
fore, the sequencg(sf,A¥)} is bounded, owing to the coercivity &f, which is locally
uniform with respect to the design. L&t A ) be an arbitrary limit point of this sequence.
The lower semicontinuity of” and the uniform boundedness of energies yield that

&(x,5,A) < liminf &£(xK, & AK) < oo,

k— 00
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Therefore, the probleri6’)x(f) is feasible and thus possesses a unique optimal solution
(cf. [PaP02, Theorem 2.1]).

Let now(3,A ) be an arbitrary force distribution that is feasible #1)«(f). Then, from
the gc-optimality of (s, A¥) and feasibility of(3,A ) in (%) (f) it follows that

£(x,54) < liminf &(xk & Ak < lim EKEA) +e=E(X5A),

where the equality follows from the continuity &f(-,5,A) (cf. [PaP02, Lemma 3.2]).
Therefore(s,A) is optimal in(%)x(f). It follows that(s,A) must be the only limit point
of the sequencé(sk,A¥)}.

The existence of at least one dual optimal solutidn (.2?)x(f) follows. |

Proposition 2.8 (Compact images).For everye > 0 and every constant M- 0 the set
{(x,5,A,u) € Z¢ | ||x|| <M} is compact.

Proof. The function&(x,s,A) + MN(x,u) — flu is continuous as well as coercive in
(s,A,u), uniformly in x for all x > o(£)1™, with ||x|| <M. 0

In the subsections that follow we apply the continuity resule have just established
to show that the-perturbed problems can indeed be used as approximatiidepns for
smalleg, both if we are interested in globally optimal solutions atationary points.

2.4.4 Regularity of (#°¢)

To be of practical use, every approximating proble#®) should be easier to solve than
the original problent#?”). Clearly, the functions defining the constraintg#f¢) are con-
tinuously differentiable on some neighbourhood of the ifdasset.% ¢ for everye > 0;
therefore, the smooth Fritz—John conditions must hold &it@ points. The follow-
ing (purely academic) example shows that the feasible $ete@ptimization problems
(#°¢) do notin general verify MFCQ, and therefore we cannot exiiecKKT conditions
to be satisfied at every point of local minimum. On the otharchan Proposition 2.10
we show that under rather mild additional conditions MFCQesfied, so that standard
nonlinear programming algorithms can be used to find loaglymal solutions of #¢).

Example 2.9. Consider a simple 1-bar structure shown in Figuré 2.1 thatide of (aca-
demic) material with the Young modulis=1. Letf =3,g=2,e=1,0=(2— \/5),
and consider the point of global minimufs,s A,u) = (1,2—v/2,1+1/2,2). At this
feasible in(##) point the active constraints are:

S+A=f, S+A =3,
*XS*EZ, _X§_17
u<?2
u§g) <:> - ?
s< OX, s< (2—V2)x,
& 1 & 1
2 Lo+ cudx— fu< > Zux—3u<1.
2X+g +2ux u<e 2X+2/\+2ux u<i
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It is easy to verify that there is no directione R* such that

(0 1 1 0d=0,
-1

0
0 1] d<0?
-G

(fzifﬁ”—zz 2 g xu—f)d<0,
so that MFCQ is violated gk, s, A, u).

= OO
O oo
o

X

Fig. 2.1: 1-bar truss structure.

While MFCQ is violated at the point of global minimum in thedfwple 2.9, this does
not prevent the KKT conditions to hold at this point, becatligemore basic Abadie’'s CQ
is still verified. While for realistic trusses the latter CQdlose to impossible to verify,
the following result resolves the problem of verifying a GQmost practical situations.

Proposition 2.10. Let (x,s,A,u) be a point of local minimum fof# €), € > 0. Suppose
that any of the following conditions are verified:

(i) &(x,8,A) +N(x,u) —flu < ¢;

(i) r =0, thatis, no rigid obstacles are present;

(ii ) u is not the equilibrium displacement correspondingto

Then, Abadie’s CQ hold dk,s,A,u). In particular, the KKT-conditions fo(# ¢) hold
at this point.

Proof. Suppose thafi) holds. Then the relaxed equilibrium constraint is passine, the
feasible set of the problefw ¢) is locally aroundx, s, A ,u) defined by affine constraints
only, which guarantees Abadie’s CQ.

Alternatively, assume that there are no rigid obstacles, (i) holds. Consider the
directiond = (ax,0™ 0", —Bu), wherea > 0, 3 > 0 are parameters to be determined.
This direction isfeasiblewith respect to all linear constraints ¢#¢). Furthermore, an
easy calculation shows that

O[&(x,5,A) —N(x,u) —fu'd = —a[&(x,5,A) — M (x,u)] — B[2M (x,u) — f'u] < O,
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for somea > 0, 8 > 0, owing to the inequality
0<e=[&(x,5A)—N(x,u)]+[2M(x,u) - f'u].

Thus, the MFCQ is verified, implying Abadie’s CQ.

At last, assume thdiii ) is verified. Similarly to the casgi) we can show that the
directiond = (ax,0™, 0", B[u(x) — u]) satisfies the requirements of MFCQ for some-
0, B > 0, whereu(x) is the equilibrium displacement, correspondingto ]

Naturally, all three assumptions of Proposition 2.10 acdated by Example 2.9.

Itis interesting to note that topology optimization prabkefor trusses without unilat-
eral constraints are always qualified in the sense of Mamigasdromowitz; it is proba-
bly even more interesting to see that the violation of MFCQ im@ppen even for “nice”
feasible points that verify a strict complementarity asptiom for MPEC problems (like
the point considered in Example 2.9).

2.4.5 Optimality conditions for (%)

Motivated by the description of the feasible sets of the apipnating problemg 7 ¢),

€ > 0, in terms of differentiable inequalities which lead to eadt Fritz—John necessary
optimality conditions (see Example 2.9 and Propositio®R.ive may use the same de-
scription withe = 0 in order to develop non-smooth necessary optimality d@rdi for
(7). The biggest difficulty we encounter is the loss of continitot to mention differ-
entiability) of the complementary energy functién Indeed, if we look at the constraint
involving &

E(X,5A)+N(x,u)—flu<o, (2.5)
we note that the function on the left-hand side of the inetuil neither Lipschitz con-
tinuous nor convex, and therefore the classic subdiffatsnof such functions are not
defined. On the other hand, we may use the structure of thdifum it is continuously
differentiable everywhere except wher dRT, and it is a sum of convex and Lipschitz

continuous functions. Therefore, the notionliafiting subdifferentiald, is well defined
for such functions (see [Mor76]). In particular, it holdsth

0a[€(x,8,A) +M(x,u) — f'u] = 3a&(x,8,A) + O[M(x,u) — ftu].
As a result, we obtain the following non-smooth Fritz—Jofpetoptimality conditions.

Proposition 2.11. Let(x,s,A,u) be a point of local minimum faf#"). To simplify nota-
tion we write all inequality and equality constraints ), except the relaxed equilib-
rium, constraint in the form:

Ai(xtvsthtvut)t < bi;
Ae(xt7st7At7ut)t = bEa

whereA; € RNx(mmirdn) - RNex(mimir+n) . = RN andb, € RNe are matrices
and vectors of appropriate sizes. Then, the non-smootk-kkithn optimality conditions
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hold at(x,s,A,u), that is, there are vectorg; € Rﬁi, Ue € RNe, and numbergig, 4 € R,
not all equal to zero such that:

QM € LoDW(X) + Al i + AgHe + H[026'(x,8,A) + O(M(x,u) —f'u))], and
0= pi[Ai(X,s, A% Ul —by.
(2.6)

In general, we cannot expect the KKT conditions to be satisfteevery point of local
minimum, because the problef#”) is usually much less regular than its approximation
(#°¢), € >0, and even the latter problem may violate the standard meatiprogramming
constraint qualifications (see Example]2.9). In fact, indRrm 2, Subsection 2.5.2, we
obtained a locally optimal solution that satisfies the sys{2.6) only withpg = 0. It is
sad to note that this example does not contain any contaclitamms, and the optimal
solution we obtained is non-singular (in particular, nosbaere removed), yet it is only a
FJ pointin our formulation. On the positive side, at leashiflateral condition are absent,
the conditions (2.6) imply the fulfillment of the KKT condbtis for a related optimization
problem that has a clear engineering interpretation. Ngrtted stationary point obtained
is a KKT point for a “semi-fixed topology” optimization pradah, in which the given
subset of the bars is removed from the ground structure; dtynthe following result
holds.

Proposition 2.12. Assume that the unilateral constraints are absent and thatpoint
(%,5,0) € RT x R™ x R" satisfies the FJ optimality conditior(2.6). Let .7 = {i =
1,...,m| % = 0}. Then, the pointX,s,0) is a KKT-point for the following problem:
min w(X)

(x,s.u)

s.t.Bls=f,

7) E(x,5A) +M(x,u)—flu=0,

ox<s<Tx, ie{l..m}\7,

Xi=5 =0, ic.7.

Proof. Clearly the point(X,$,0) is feasible in the probler(W). Furthermore, it is easy
to check that the feasible set of the probl¢ii) verifies a Mangasarian—Fromowitz
type constraint qualification &&,5,0) [one can, for example, take the directidn=
(X,0,—u) € RT x R™x R" to verify that], and thus the FJ conditions (2.6) [that can be
viewed as FJ conditions foﬁV/)] also imply the KKT conditions. O

There are of course other approaches to optimality comdifior MPEC. For example,
[OKZ98, Theorem 7.2] establishes non-smooth KKT-type dthowas for a problem rather
similar to (#'). However, the strong regularity condition on the lowereleproblem
assumed in [OKZ98, Theorem 7.2] is violated by our probleecause the displacements
u are in general not uniquely determined for desigrsdR.
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2.4.6 Global convergence

Convergence of globally optimal solutions to relaxed wergmimization problems with
stress constraints# ¢) towards globally optimal solutions to the limiting problegn#”)
ase | 0 follows easily, given the results of the previous subsesti

Proposition 2.13. Consider a positive sequencgsg} converging to zero. Let
{(Xg»Se, A g Ug )} be a corresponding sequence of globally optimal solutioms t
{(##%)}. Then, an arbitrary limit point of this sequence is a glogalptimal solution to
the limiting problem?).

Proof. That globally optimal solutions to the sequence of probldi# )} exist fol-
lows by the coercivity of the objective w.r.t. the designishtes, Propositioh 2.8, and
Weierstrass’ Theorem). N
Without any loss of generality, assume thatdim., (Xg,, Sg ;A g, Ug ) = (X,S,A,0).
Then, owing to Proposition 2.6, the poifX, s A,U) is feasible in(#). Together with
RemarK 2.5 and the continuity of the objective functiona fhroves the claim. ]

In general, the displacement componémt} of the sequence of global optimal solu-
tions we study in Proposition 2.13 need not to have any limih{s. However, we may
use the fact that our objective function is independent efdtsplacements and utilize
Proposition 2.7 to establish the following result.

Proposition 2.14. Consider a positive sequencgsg} converging to zero. Let
{(Xg»Se, A g Ug )} be a corresponding sequence of globally optimal solutioms t
{(#&)}. Then, an arbitrary limit pointxo,so,A o) of the sequencg(X,. S .A¢ )} (@and
there is at least onecorresponds to some globally optimal solutio®, Sp, A o, Uo) to the
limiting problem(%).

Proof. Similar to the proof of Proposition 2.1.3, but uses Proposifl.7 instead of Propo-
sition/2.6. O

2.4.7 Convergence of stationary points

The main result of this paper, Theorem 2.15, uses the fatsthess constraints are im-
posed. Furthermore, we need to make an assumption thatgherse of displacements
{ué} produced by the smoothing procedure is boundegi[a8. We cannot guarantee the
latter property without imposing explicit bounds on theptieements; however, our com-
putational experience with the smoothing approach we dhice in this paper confirms
that convergence of displacements takes place in prattiesay case, Proposition 2.4 as-
serts that it is at least possible to approximate every #ifn state using the relaxation
approach we propose; this is contrary to traditicgratlaxation, where some equilibrium
displacements cannot be approximated.

Theorem 2.15. Consider a positive sequencgec} converging to zero. Let
{(Xg»Se, A g, Ug )} be a sequence of KKT-points {§#%)}. Then, every limit point
of this sequence is feasible in the limiting probl€#), and in addition it verifies the
non-smooth FJ stationarity conditioi®.6).
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Proof. Without loss of generality we assume tHgxe,, S, A g, Ug )} — (X,S,A,u) ask
converges to infinity. Owing to Propositibn 2.6, the pdixts, A, u) is feasible in(#/).
The stress constraints imply that the gradiefig(xe,,ss,Ag) are uniformly
bounded fok=1,2,... Therefore, the sequen¢&l&’(xg,, Sy, A g, ) } has at least one limit
point that by definition is a member d§&(x,s,A). It is now an easy exercise to verify
that the poin{x,s, A, u) satisfies the syster (2.6). O

Again, the optimality conditions we obtain in Theorem 2.1& eather weak, but we
cannot expect more from points of local minima {&") in general; see the discussion in
Section 2.4.5.

2.5 Numerical experiments

While a substantial amount of theoretical studies of toggloptimization problems
for trusses including unilateral frictionless contact Hazeen carried out (see, e.g.,
[BTKNZ99, PaP02, EPPO03]), surprisingly little numericaperience has been reported.
Therefore we use a comprehensive numerical study of St@m8] (who was inter-
ested in finding globally optimal solutions using a brancl-aut algorithm) as a rich
and authoritative source of benchmark problems, unfotaipaowever for trusses with-
out contact. We also compare our algorithm against a few td#stclassic” MPEC algo-
rithms (implicit programming-based algorithm, IMPA, [LBR, Section 6.3], and penalty
interior point algorithm, PIPA, [LPR96, Section 6.1]), MM&va87] (see also [Sva02]),
as well as the smoothing algorithm [FJQ99], made by Hildid&P99, Hil00]. Unfor-
tunately, the latter studies are not concerned woiologyoptimization (i.e., a strictly
positive bound on the bar volumes is imposed) and stresdraams are not included.

Below we present some preliminary numerical experiench aiit academic imple-
mentation of our approximation method.

2.5.1 Implementation issues

A sequence of smooth optimization subprobldifi& é)} has been solved using the SQP-
solver SNOPT [GMS(02]. The optimal solution obtained at &teyas used as a starting
point for the stegk+ 1. We used a simple update rule for &1 = ye&, wherey €
[0.25,0.75].

The biggest computational difficulty we have noted is thatphojected gradient of
the potential energy with respect to displacements is dimgero for all points feasible
in (#¢) whene is small, resulting in rather slow progress of the optimaaprocedure
based on the first order information only. The use of secoddranformation in this case
seems essential for improving the performance.

Another problem is that the complementary energy has arathesual scaling when
the design variables are close to the boundagiR. While we obtained satisfactory
results with automatic scaling in SNOPT, a specific scalihthe relaxed equilibrium
constraint may be necessary for more robust convergenbe afigorithm.
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2.5.2 Numerical results: topology optimization, contact- less
case

A number of “classic” weight minimization problems for tags without frictionless con-
tact but including stress, and possibly local buckling ¢@ists and bounds on displace-
ments have been solved to global optimality by Stolpe [Stod® benchmark our relax-
ation algorithm against the results reported in the citgeepand find that in many cases
our local algorithm is capable of finding globally optimal#ioons. We keep the problem
numbers assigned by Stolpe [Sto03] and report the resultsbtained on a subset of
these problems in Tables 2.1 (only stress and/or displateco@straints) and 2.2 (stress
and local buckling constraints).

Since we use a local algorithm to solve non-convex optinoraproblems, starting
the optimization procedure from different starting poimigy result in obtaining different
optimal solutions. We started the algorithm from the desigtained by uniformly dis-
tributing structural material among bars, and calculathmy corresponding equilibrium
forces/displacements.

Some comments are in order. In problems 24—-26 the numbergfrbghe structure
is m= 10, but the volumes of 4 of them are fixed, which leaves us ordg$ign vari-
ables. In addition, these are the only problems with dispfeent constraints, and the
optimal weight we report differs from the known globally opal solution despite the
small value of the relaxation parametewe used. The reason for such a behaviour is
that the potential enerdyt(x,u) — f'u becomes rather insensitive to some components of
the displacements for desigrshat are close to the boundad#R". In problems 24-26
this allows the optimization procedure to choose displa@sthat are reasonably far
from the equilibrium displacements (compared to the sizthefrelaxation paramete)
but are feasible with respect to the imposed bounds on thdadisments. (Recall, that
Proposition 2.7 does not guarantee the convergence of sptadements as designs con-
verge.) This may or may not be a problem in practice, depgnainhow stringent the
displacement constraints are, if present. In particulargwarantee the convergence of
forces, and always keep the stress (and local bucklingYi@nts satisfied, which means
that the structure will not suffer from destructive stresg&ven though stress constraints
are imposed not on the “equilibrium” stresses, stress beane usually chosen far from
the point where plastic deformation occurs.) In any caseatmorithm successfully finds
the optimal topology, which is of major importance in manykgations.

In problem 17 our algorithm indeed finds a better solutiorhdlassic 25-bar truss
problem stated in [ScF74] than the one reported in [StoOB/8 The reason for this
small victory of a local optimization algorithm over a gldbae is that the branch-and-cut
method developed in [Sto03] may be applied only to probleritis lnounds imposed on
all variables involved. In the original formulation of thegblem 17 taken from [ScF74]
there are no upper bounds on the volumes of the bars, and tineabpreight of the truss
we obtained for theriginal formulation is 510157. On the other hand, Stolpe [Sto03]
imposes artificial bounds on the design variables for thadireand-cut method to func-
tion, which leads to a globally optimal solution with the ki 545264; in fact, the newly
introduced bounds are inactive at the latter solution buihgwo the non-convexity of the
problem they cannot be safely removed without changing genal solution. The last
comment about the problem 17 is that in the original formaiathere are only 2 load
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Problem m n k Wur  Wsto03] Source
2 5 4 2 399856 335000 [ChG97]
5 4 2 2 185597 185667 [Hob96]
9 10 8 1 489®5 489831 [ScF74]
11 10 8 1 15839 158400 [ScF74]
13 10 8 1 44256 442652 [ScF74]
15 10 8 1 1659 165600 [ScF74]
*17 25 18 5 51057 545264 [ScF74]
18 10 8 1 15839 158400 [ChG97]
23 5 4 1 240000 240000 [ChJ92]
24 1Q06) 8 1 1819%4 182118 [Kir90]
25 1Q06) 8 1 200218 200353 [Kir90]
26 1Q06) 8 1 227997 228173 [Kir90]
27 10 8 1 19799 198000 [GCY01]
28 5 4 2 79713 799716 [GCYO01]

Tab. 2.1: Results of numerical experiments: weight minimization emstress and/or
displacement constraints

Problem m n k Wur  Wstop3] Source
5 4 2 2 408312 408628 [Hob96]
27 10 8 1 855314 855344 [GCYO01]
28 5 4 2 109831 105831 [GCY01]

Tab. 2.2: Results of numerical experiments: weight minimization emstress and local
buckling constraints

scenarios and many linear constraints on the design vasaelated to the required sym-
metry of the truss. Instead, we consider all design vargafolde independent and obtain
a symmetric solution by introducing additional load cases.

2.5.3 Numerical results: sizing optimization of trusses in
contact

Hilding et al. [HKP99] (see also Hilding [Hil00]) were intested in minimizing the max-
imal contact force, that is, to achieve as uniform contagspures as possible. The formal
problem statement can be written as follows:

min- Amax
(%,8,A,U,Amax)
s.t.(x,8,A,u) € Z(f),
N x<x<x, i=1
W(x) < W,
A <Amax, £=1,....,r,

gy




On the convergence of stationary sequences in topologmaatiion 35

wherex;, X;, Ware given positive numberiss=1,...,m. In general, allowing lower bounds
on the design variables to be zero results in an ill-posetnigstion problem, unless
bounds on the compliance of the structure or stress contstraie added (see [PaP02)).

The problem(A) is thus not a topology optimization problem and does not suf-
fer from the difficulties outlined in Sectidn 2.4.1; in partlar, the smoothing method
of Facchinei [FJQ99] outlined in Section 2.3 is directly kpgble to this problem
(see [Hil00], where smoothing was used for “the heuristicidwg of local minima”)
and we use it as one of the benchmarks for our new smoothiogitm.

On some instances of the problém) Hilding et al. [HKP99] also implemented and
tested some classic MPEC algorithms (IMPA [LPR96, Secti@®} énd PIPA [LPR96,
Section 6.1]) on the family of structures shown in Figure 2820, they tested o)

a very popular method in the structural optimization comityurthe method of moving
asymptotes, MMA, [Sva87], even though it is not guaranteasldrk on this problem.

o f

0O 0 O O

| (o))

o

Fig. 2.2: Test problem found in [Hil00]. & 5 case is shown.

We apply SNOPT to the following relaxation of the probléfy):

min - Amax,
(X,5,A ,U,Amax)
s.t.(x,5,A,u) € FE(f),
(AF) X <x<x, i=1....m
w(x) < W,
A <Amax, £=1,...,r,

wheree > 0 is a relaxation parameter. We report the results we olddioetrusses
of different sizes (see Figure 2.2) in Table 2.3 along with tbsults found in [HKP99,
Hil0O].

We report the size of the structure, the number of bars (desigables) and the op-
timal values obtained by PIPA and IMPA/MMA as reported in [P99] (the two latter
algorithms are reported to produce the same optimal valtrespptimal values produced
by IMPA and MMA as applied to the smoothed MPEC using the metmgy introduced
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< < =2

o s =

o < 2 5 =

N = + + o

s £
a <

3 i g 2 3

= € g 2 o n =z

3x3 58 - 30 10 1.0 1.0

4x4 113 - 20 10 1.0 10

5x5 190 167 25 10 125 107

10x 10 875 25 50 - - 2.0

Tab. 2.3: Results of numerical experiments: contact force mininizat

in [FIQ99], as reported in [Hil00]; and the optimal valuesaited using our new smooth-
ing procedure. The “-” sign in the table columns means thattrresponding algorithm
has not been applied to a given problem instance.

One can see that our algorithm favourably competes witlsidddPEC algorithms
on these tests. As we already mentioned, general MPEC #igwicannot be applied
to truss optimization problems if we remove strictly pagtlower bounds on the design
variables, i.e., consider topology optimization problems

2.6 Conclusions and further research

In this paper we proposed a new algorithm for solving MPEChbfmms arising from
the topology optimization of trusses with unilateral catteonditions. The algorithm
is based on the approximation of topology optimization fpeots with sizing-type prob-
lems, where in addition we relax the equilibrium constraiffe studied the convergence
of global optimal solutions and stationary points to apjprating problems towards, re-
spectively, globally optimal solutions and stationaryrsito the original, singular prob-
lem. We have also performed some numerical testing of theqsed method.

Many open problems remain. On the numerical side, we neetlex baplementation
(probably utilizing second order information); also, a tnatore thorough numerical test-
ing should be done, especially for trusses with unilateyatact. However, in our opinion,
the most challenging task is to improve the optimality céinds we obtained in this pa-
per. To do that, the comparative analysis of modern KKT-typgmality conditions for
general MPEC problems (see, e.g., [FIK02a, FIKO2b, FIKpanH the FJ-type optimality
conditions we obtained needs to be performed. We hope t@sslthiese questions in our
future research.
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Paper 3

ON THE LIMITS OF POROUS MATERIALS
IN THE TOPOLOGY OPTIMIZATION OF
STOKES FLOWS

Anton Evgrafov *

Abstract

We consider a problem concerning the distribution of a solaterial in a given bounded control
volume with the goal to minimize the potential power of thelk&ss flow with given velocities at
the boundary through the material-free part of the domaie. &l§o study the relaxed problem of
the optimal distribution of the porous material with a sallyivarying Darcy permeability tensor,
where the governing equations are known as the Darcy-Stok&rinkman, equations. We show
that the introduction of the requirement of zero power giggon due to the flow through the porous
material into the relaxed problem results in it becoming #-pesed mathematical problem, which
admits optimal solutions that have extreme permeabilibperties (i.e., assume only zero or infinite
permeability); thus, they are also optimal in the origimadr-relaxed) problem.

Two numerical techniques are presented for the solutiom@fcbnstrained problem. One is
based on a sequence of optimal Brinkman flows with increagswpsities, from the mathematical
point of view nothing but the exterior penalty approach &ggpto the problem. Another technique
is more special, and is based on the “sizing” approximatibthe problem using a mix of two
different porous materials with high and low permeabiitieespectively.

This paper thus complements the study of Borrvall and Peterfinternat. J. Numer. Methods
Fluids, vol. 41, no. 1, pp. 77-107, 2003], where only sizipgraization problems are treated.

Keywords. Topology optimization, Fluid mechanics, Stokes flow.
AMS subject classification.49J20, 49345, 76D55, 62K05.

“Department of Mathematics, Chalmers University of Techggl SE-412 96 Goteborg, Sweden, e-mail:
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3.1 Introduction

HILE topology optimization of structures in (very) rough ternas®e described as

the science of introducing holes in the structure so as tedrgthe structural per-
formance, in the vast majority of the literature on the sabjespecially computationally-
oriented one, the appearence of holggécludedrom the very beginning by the require-
ment that the minimal structural dimension is positive arg\point.

The reason for introducing such a constraint is two-foldonfrithe numerical point
of view, the FEM-stiffness matrix of the governing diffeteth equation is guaranteed
to be positive definite in this case, resulting in stable nucaéprocedures. However,
more importantly, allowing some structural parts to dissgpwve often end up with an
optimization problem having a non-closed feasible set asd result, lacking optimal
solutions.

In topology optimization of solids and structures the dlagsoblem of minimizing
the structural compliance is known to possess optimal isolsit if we allow microstruc-
tures to be used in the optimal structure (cf. [BES03, Appeb@]). At the same time, if
we are interested in a pure solid—void design, free of miouotures, the same problem
lacks optimal solutions. Since the “grey” optimal solusdthe ones involving micostruc-
tures, as opposed to “black—white” pure solid—void sohgjoare usually difficult to in-
terpret and to manufacture, various restriction or redzddion methods are considered in
order to reduce the amount of the “microstructural maténmathe optimal structure; see
the bibliographical notes (8) in [BeS03]. The pure void paitie very heart of the topol-
ogy optimization, are not allowed to appear in such methadsaae usually modelled by
a very compliant material. However, the limits of optimabims as the properties of the
compliant substitute approach those of void are not ingatti.

In the case of topology optimization of truss structures,dhestion of the continu-
ity of the optimal solutions w.r.t. the lower bound on the mial structural dimension
has received significant attention in the literature (sag, the bibliographical notes (16)
in [BeS03] on the “stress singularity phenomenon”). Desflie abundant amount of lit-
erature on the topology optimization of linearly elastiotiouous systems, similar studies
have not been conducted in this case.

Recently, topology optimization techniques have beeniagpb optimization prob-
lems in flow mechanics [BoP03], where traditionally shapgnojzation methods were
prevealing (see the pioneering works of Pironneau [Pirfi34Pon the optimality con-
ditions for shape optimization in fluid mechanics; see atsoHtibliographical notes (2)
in [BeS03] for classical references). The benefits of usipgkogy optimization (or con-
trol in coefficients) over shape optimization include easiglementation and sensitivity
analysis, and better integration with existing FEM codestvBIl and Petersson [BoP03]
considered the optimal design of flow domains for minimizthg total power of the
Stokes flows. The set of admissible designs is a set of porasrials with a spatially
varying Darcy permeability tensor, under a constraint anttital volume of fluid in the
control region. The appearence of internal walls in the darfr@gions with pure solid
material, not permitting flow; these can be interpreted adehin the flow”) is not per-
mitted. Thus, tha@opology i.e., connectivity of the flow region does not change, and,
carrying over the terminology from optimization in solid am&anics, we will refer to this
case as that of a “sizing” optimization.
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In the present paper we study the “real” topology optim@atcase of the Stokes
flow, i.e., pure solid and pure flow regions are allowed. Wenstiwt the relaxed prob-
lem of distributing porous material, as well as the puredseloid (zero—one) problem,
possesses optimal solutions. Furthermore, we show thatzimg optimal solutions have
limits as the permeability of the porous material is allow@gtanish (i.e., converge to the
permeability of solid material).

The outline of the present paper is as follows. In the nexti@ecwe describe the
necessary notation and state precisely the weak formalafithe governing equations,
its interpetation, and the objective functional. Sectiod i3 dedicated to the proof of
the existence of the optimal solutions to the relaxed problehile in Section 3.4 we
introduce a well-posed formulation of the zero-one optimablem and establish the
well-posedness of the latter. Two numerical approachethfsolution of the zero-one
control problem are the topics of Sections 3.5 3.6. Ini@e8.7, we show that for
functionals other than the total power of the flow, the cdrgroblem might be ill-posed,
even if rather strong continuity requirements are imposethe objective functional. We
end the paper with a brief discussion of further researcit$op

3.2 Prerequisutes

3.2.1 Notation

We follow standard engineering practice and will denotémeguantities, such as vectors
and vector-valued functions, using theld font. However, for functional spaces of both
scalar- and vector-valued functions we will use regulat.fon

LetQ be a connected bounded domairRst d € { 2,3} with a Lipschitz continuous
boundaryl". In this domain we would like to control the Darcy-Stokes,Byinkman,
equations/[NiB99] with the prescribed flow velocitigson the boundary, and forcéds
acting in the domain by adjusting the inverse permealkilityf the medium occupying,
which depends on the control functipn

—vAu Op=f
tau+Op=f] o
divu=0

u=g, onl.

(3.1)

In the system (3/1) is a flow velocity,p is a pressure, andis a kinematic viscosity. Of
course, the functiog must satisfy the compatibility condition

/g'n:Oa
r

wheren denotes the outward unit normal. df{p(x)) = 4+ for somex € Q, we simply
requireu(x) = 0 in the first equation of (3.1).
Our control set’Z is defined as follows:

#={pel”@|0<p<Llaeina [ p<yall,
Q
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where 0< y < 1 is the maximal volume fraction that can be occupied by thd.flavery
elementp € 77 describes the scaled Darcy permeability tensor of the mediua given
pointx € Q in the following (informal) way:p(x) = O corresponds to zero permeability
atx (i.e., solid, which does not permit any flow at a given poiathjle p(x) = 1 corre-
sponds to infinite permeability (i.e., 100% flow region; naustural material is present).
Formally, we relate the permeability ! to p using a convex, decreasing, and nonnega-
tive functiona : [0,1] — R, U{+}, defined as

a(p)=p*-1

Modelling the Stokes flow, we are interested only in the twineare values of perme-
ability, a=* =0, ora~! = 4. For this purpose, we will introduce the following subset
of 2. -

H ={peH|pec{01l}ae. inQ}.

However, both from the analytical and computational poaftsiew, it is impossible to
state the control problem in the séf, because it is nonconvex, and not wedlkdjosed.
Therefore, we first study the properties of the relaxed cbpttoblem posed over the set
.

In the rest of the paper, we will use the symbmlfor A C Q to denote the charac-
teristic function ofA: xa(x) = 1 for x € A; xa(x) = 0 otherwise. Also, fou € H}(Q),
we define a seQp,(u) := {x € Q | u(x) # 0}. Finally, letQ(u) C Q be such thati)
x€Q(u) = Vye Q\Q(u) :u(x)-u(x) > u(y)-u(y), and(ii) |Q(u)| = y|Q|.

3.2.2 Weak formulation

To state the problem in a more analytically suitable way, tanisthcorporate the special
casea = + into the first equation of the system (3.1), we introduce akWeemulation
of the equations. Let us consider the set of admissible fldacitees and test functions

% ={veHYQ)|v=gonrl},

¥ ={veHYQ)|v=0o0nT},
and pressures _

13(@) = {qe (@) | [ a=0}.

Then, the weak formulation of (3.1) reads as follows: far L?(Q), compatibleg €
HY/2(T), andp € # find (u, p) € % x L(Q) such that

v/ EIu-EIv+/ a(p)u-v—/ pdivv:/f-v, Yvevr,
Q Q Q Q

/f.zqdivu =0, vge L3(Q)

(In the system above we use the usual conventiod = 0.)

Allowing designs with zero permeability significantly ikases the complexity of the
control problem. From the purely technical side, the ingggermeabilitya may be infi-
nite on sets of positive measure, and thus does not belomy tf#he common functional

(3.2)
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spaces. Even worse, internal walls that do not permit floviis thie given boundary con-
ditions might appear as limits of admissible designs, n@akie design space not closed.
The latter difficulty is demonstrated in the following exdmp

Example 3.1 (Diminishing permeability). Let g be some compatible non-zero bound-
ary conditionf be arbitrary inL?(Q). Letpx = 1/kin Q, p =0in Q, so thatox — p in
L*(Q) ask — «o. It is not difficult to check (this follows from the standattebry for the
Stokes equations as well as from the results in [BoP03])ftradachk = 1,2,..., there
is a solution(u, px) to (3.2). However, since(p) = + in Q, from the first equation
in (3.2) it follows thatu = 0in Q, which is clearly not compatible with the boundary con-
ditions. In other words, there is no soluti¢m, p) to (3.2) corresponding to the limiting
controlp, which means that the set of admissible controls is not dlesen in the strong
topology ofL*(Q)!

This is in vast contrast with the sizing case, which can be atied by requiring
p <p<p,a.e.inQ, for some constants@ p < p < 1. Under these conditions, Borrvall
and Petersson [BoP03] show that the set of admissible dengr@losed in the weak
toplogy of L*(Q). (In fact, the cas@ = 1 or a = 0 is not allowed in the cited work;
however, the arguments used there work for this case as a@se, owing to Fredrichs’
inequality, the semi-norm- |; is equivalent to the norm dfi*(Q) in the problem we
consider; see also Theorem 3.4).

Example 3.1 demonstrates that the lower semicontinuithefdbjective functional
alone is not sufficient for the topology optimization of thay-Stokes flow to possess
optimal solutions; e.g., take the problem of minimizing thelume of the flow” [, p to
recover a situation similar to that of Example|3.1. Hovewénge objective functional also
enjoys an inf-compactness property w.r.t. the set of adbiéssontrols, every minimizing
sequence converges, thus making the control problem wskgh In what follows we
establish that the power functional, introduced below tifier Darcy-Stokes flow is both
lower semi-continuous and inf-compact, thus extendingekelts of [BoP03] from sizing
to topology optimization.

Let /'V - % — R denote the potential power of the Stokes flow:

/Y(u):%/glju-l]u—/gf-u.

Let us further define the additional power dissipatigh” : J# x % — RU {4}, due
to the presence of the porous medium:

7o =75 [ a@u-u

Finally, let ¢ (p,u) = _#“ (u)+ _#7(p,u) denote the total power of the Darcy-Stokes
flow.
Assuminga(p) < +, one can derive the variational formulation of the systerh)(3

(cf. [BoPO03]):
(p(p) = minj(pvu)7 (3.3)

ue% -
s.t. divu = 0, weakly inQ,
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the system (3/2) being the first order necessary optimaditgitions for|(3.8). In particu-
lar, the pressurp € L%(Q) is defined as a Lagrange multiplier for the constraintdivO.
In what follows, we will denote the feasible set of the prablg8.3) byZi.

Now, assume that for a givem € # there is a solutionu € H1(Q) to the varia-
tional problem[(3.3). Define the new domdy,(u) = {x € Q | u(x) # 0}. Clearly,
a < +o, a.e. inQy, andu solves the variational problem (3.3) in the dom&ip,(u)
with the boundary conditions =g onTl, u=0o0ndQn,(u)\T. Therefore, there must
be an associated pressyre Qn,(u) — R such that the paifu, p) solves the weak for-
mulation of the Darcy-Stokes equation in the dom@j(u) with the already described
boundary condition. (In particular, i&r = 0 a.e. inQnz(u), then(u, p) is a weak solu-
tion to the Stokes equation in the dom&g(u).) With this interpretation, we will use
the variational formulation (3.3) of the problem instead@P) in the development that
follows.

3.2.3 Objective functional

The objective functional in our problem will be to minimizeettotal potential power of
the flow, which in the case df= 0 amounts to minimizing the power dissipated by the
flow. (The same problem can be interpreted as a minimizatidgheoaverage pressure
drop, provided = 0 andg = gn [BoP03].)

Therefore, the optimization problem we consider can beevrias follows:

min ®(p), (3.4)
where@ : 7# — RU{+w} is defined in[(3.8).

As has been announced above, with this functional the ciqmitsblem (3.4) possesses
optimal solutionsdespitethe fact that the set of admissible controls is not closed (se
Corollary 3.5). Furthermore, in contrast to the situatiothie case of linear elasticity, the
“discrete” problem of minimizing the total power of the Séskflow with controls insZ
possesses optimal solutions. However, special approximggchniques are necessary to
find them (see Sections 3.5 dnd|3.6).

3.3 Existence of optimal solutions

In this section we prove that the problédm (3.4) admits opttsohitions; see Theorem 3.4
and its Corollary. However, we need a few auxiliary resuftst fi

Proposition 3.2. The function h [0,1] x RY — R, U{+w} defined as tx,y) = x"1y-y
with the convention8 1 = +0 and+o - 0= 0 is convex and lower semicontinuous.

Proof. The proof is elementary and can be found in [Rac70, p. 83]. O

Lemma 3.3. Let{(px, Ux)} C S x Zgiy be such that:

o liminfy_ 1w _# 7 (px, Ux) = C, for some constant € +oo;
o W-limg_10px=pinL2(Q);

o W-|imk_>oo Ug=u in Hl(Q).
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Then, the paifp,u) € 57 x %y, and_¢ 7 (p,u) <C.

Proof. The first claim is obvious.

Since o a(pk)uk- Uk = Jo h(pk, Uk) — [ Uk - Uk, whereh is defined in Propositian 3.2,
and the last integral convergesfgu - u, it remains to estimate limipf...« o h(ok, k).
The weak lower semicontinuity ¢p,u) — [, h(p,u) follows from the (pointwise) con-
vexity and lower semicontinuity df (Proposition 3.2), Fatou's Lemma and Corollary 2.2

in [EKT99]. a
Now we are ready to establish the existence result.

Theorem 3.4 (Existence of optimal solutions).The optimization problem

i . 3.5
(o) x S (p;u) -

possesses at least one optimal solufiph, u*).

Proof. Let ug be the solution to the Stokes problentin(i.e., the solution td (3!3) corre-
sponding too = 1 in Q); setpg = y/|Q|. Then(pg,Ug) € H x %, and 7 (po,Ug) <
+oo0. Furthermore, for allp,u) € ¢ x %y it holds that_# (p,u) > _#(1,ug) > —oo,
i.e., the problem (3/5) is feasible and is proper w.r.t. its feasible set.

The set# is weakly' compactinL®(Q), and the se¥, is weakly closed itH1(Q).

Owing to the weak lower semicontinuity oy"” in HY(Q) (cf. [Dac89, Theo-
rem 2.3]), and lower semicontinuity oy—@ in the weak xweak topology ofL*(Q) x
H(Q) (cf. Lemmd 3.3), it remains to show that every minimizingsage{ (pox, ux) }
of (3.5) has bounded second components.

The valid inequality +e > limsup._, ., # (Pk,Ux) > limsup_,_ ., 7 (1,ux) =
limsup_... .7~ (ux) implies that{|uy|1 } is bounded. Sinc® is bounded, andy|r = g,
Fredrichs’ inequality implies thdt||uk||} is bounded. O

Corollary 3.5. The optimization probler{8.4) possesses at least one optimal solution.

Proof. Let (p*,u*) be optimal solution to (3.5); thep;" is optimal in (3.4). O

3.4 Existence of black-white solutions

From the engineering point of view, it is important to find iopa! solutions to the prob-
lem (3.4) that also lie in7. Such optimal solutions are traditionally calleero-one or
black-white solutions in the topology optimization literature. Zeyoe optimal solutions
are easy to interpret and to manufacture (e.g., one doegadta include microstructures
into the final design in linear elasticity, or materials witirying porosity in Darcy-Stokes
flow mechanics).

Letu* be a flow that is optimal in the problem (3.4). We can alwaysikdn optimal
controlp* for this flow as a solution to the following opimization prefi:

ggLQ/(p,u*)- (3.6)
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For the problem|(3.6) to admit optimal solutions at the axgepoints of the control
set 7, i.e., in 7, it is necessary for the inverse permeabilityto depend orp in a
concaveway. At the same time, the lower semicontinuity of the objectunctional #
depends on the fact that (in fact, h, cf. Lemmad 3.8) depends on its arguments in a
convexmanner. Clearly, there is no function mappifgl] onto [0, 4] satisfying both
requirements. Therefore, we need to specify the requirethahthere must be at least
one solution to (3.4) in7 as an additional constraint. As will be shown in Theofem 3.6,
this can be achieved by adding a requirement of zero enesgjpdiion due to the flow
through the porous material, i.ej@(p,v) =0.

On the other hand, in the case of the sizing optimization lprab considered
in [BoP03], the design spac#” describes inverse permeabilitiesvhich belong to the
bounded subseff0 < a < a < T < 4w} of L*(Q). Therefore, one has a freedom to
choose an affine mapping (that is, both convex and conaa%()p) =0+ (a-a)p
to describe the dependence of the inverse permeabilityeddhkign; with such a choice,
there is always an optimal soluti@t A to the sizing optimization problem (cf. Corol-
lary 3.1 in [BoP03]). Hovewer, the zero-one optimal solnfi@btained in [BoP03] are
not black-white in the traditional interpretation (i.elatk denotes solid material, and
white is its opposite: void in linear elasticity, or flow regiin flow mechanics), but rather
“dark-grey — light-grey”! Namely, they are composed of twargus materials with high
and low permeabilities, respectively. A priori, it is noéal how close they are to the real
black-white solutions (if any of the latter exist).

Therefore, our further goals are as follows. In this sectisea show how to set up,
in an analytically suitable manner, an optimization prabl®r minimizing the poten-
tial power of the Stokes flow that possesses black-whitetisols. This problem is not
suitable for numerical computations though, because the@ee solution requirement
is posed as a complementarity condition between the iny@saeability and the veloc-
ity of the flow. (Complementarity conditions are known to geate highly non-convex
feasible sets, which often violate standard constrainiifigetions [LPR96] and are there-
fore extremely hard to solve to global or even local optitygliAs a remedy, in the two
subsequent sections we propose two computational appsaeithe zero-one problem:
one is based on a penalty function, with the viscosity of tbhes fblaying the role of a
penalty parameter; the other one is based on the aforemedtidark-grey — light-grey”
approximations.

Theorem 3.6 (Existence of 0—1 solutions)The optimization problem

min 7 (u),
(P.W) €A X Uiy (3.7)

st. _#7(p,u)=0,
possesses at least one optimal solufjpru*) € X Uiy

Proof. The constraint of the problem (3.7) can be equivalentlytemias # 7 (p,u) < 0,
which, together with Lemma 3.3, implies the closedness efitfasible set of the prob-
lem (3.7) in the weak x weak topology ofL*(Q) x H1(Q). Therefore, following the
proof of Theorem 3.4, we can establish existence of the @btsnlution (p*,u*) €
A x Ug, provided there is at least one solution that is feasibl@in)(
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To construct a feasible solution, we choose a closedset Q, such thafQq| =
(1—y)|Q| andQ\ Qo is connected and has a Lipschitz continuous boundary.utet
be the Stokes flow i \ Qqp with boundary conditions” = g onT andu” = 0 on
9(Q\ Qo) \T; setp” = Xq\q,- When, 77 (u”) < +eand _#7(p” ,u”) =0.

Now, let p = Xq,,(ur), WhereQnz(u*) = {||u*]| # 0}. Then, [0 < [op* and
/W(ﬁ,u*) = 0, yielding an optimal solutiop,u*) € H % Uiy - ]

We would like to stress the fact that, owing to Theorem 3.6ef@ry optimal solution
to (3.7), there is an optimal solution to the following zemoe problem
min
(P, U)EL™ (Q) X iy
p(x) =0 = u(x) =0,a.e.inQ,
u(x) #0 = p(x) =1,a.e.inQ,

|p=val
Q

having the same objective value. Therefore, every optimlation to (3.8) is also optimal
in (3.7). In this sense, the problems (3.8) and (3.7)eayeivalenti.e., neither one is a
relaxation nor a restriction of the other. Such an equivades a very important and
unique fact about the topology optimization of Stokes flowge recall that the zero-
one problem “as is” in linear elasticity is ill-posed, anther relaxation or restriction is
necessaryo guarantee the existence of optimal solutions (cf. thedpi&phical notes (8)
in [BeS03] for an extensive account of relaxation and retstm methods in topology
optimization in solid mechanics).

7 (u),

(3.8)
S.t.

3.5 Black-white solutions via increasing the viscosity

There is a school of thought arguing that under some circamast the viscosity and
permeabilitya 1 in the system(3.1) alone do not adequately describe theeStibdw
in porous media. An additional parameteris introduced into the first PDE as fol-
lows [NiB99]:

—vAu+ pa(p)u+0Op=Hf.

Now, the parameten is the viscosity of the flow, whiles is an “effective viscosity”.
Repeating the arguments of Section] 3.1, we then arrive dotlwving formulation of
the optimization problem (3.4):

; S 1
DB ? 1T 020) @9

Clearly, this is nothing but the exterior penalty reformiga of the problem/(3.7), with
the viscosityu playing the role of a penalty parameter. The arguments obiiérd 3.4 are
applicable to the problem (3.9) as well, so that there exigtanily of optimal solutions
{piup}, H>0to (3.9). From the standard theory for nonlinear prograchsTheo-
rem 9.2.2,/[BSS93)), it follows that every weak weak limit point of this sequence as
U — +oo (and there is at least one) is an optimal solution to (3.7).
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We note that the problem (3.9) does not contain any compligatate constraints,
and thus is much easier to solve than (3.7). While the pemadtthod might converge
quite slowly, and the approximating designs might contaiiteca large amount of porous
material with intermediate values of permeability, we kihis instructive to mention
this approach, owing to its clear mathematical and physitatpretations (compare with,
e.g., the most popular “SIMP” approach [BeS99] in the toggloptimization of elastic
materials, or the more material science-compatible “RAMthod/[StSO01]; see also the
discussion in [BeS03, p. 64]).

3.6 Black-white solutions as limits of “dark-grey — light-g rey
solutions

In this section we will approximate the zero-one problend)(8sing the aforementioned
two-value “dark-grey — light-grey” optimal controls oltaid in [BoP03]. To perform
such an approximation, we introduce two sequenfaeg} | 0 and{ay} 1 +oo, of extreme
inverse permeabilities. Further, we lgf = (ak + 1)L b= (ak+ 1)‘1 and define
an affine functiona ¥ : [p 5] — R so thata“¥(p ) =@y, a™(p,) = a,. To
simplify the discussion somewhat we assume that the seqyén,,ay)} is chosen
so that the |nequallt3oky+g (1—y) < yis satisfied. Then, we can also define the
approximating control sets# = {p € 2 | p, < p < py,a.e.inQ}, and 4, = {p¢€
A | pe{p,.Py}.ae. inQ}. Finally, we define 7,7 (p,v) = 1/2 [ a“¥(p)v-v, and
Flp.v) = 77 (V) + 77 (V).

The main result of this section is Theorem 3.9, establiskiiegconvergence (under
some arguably mild conditions) of the “dark-grey — lighegtapproximations towards
the black—white limits. We begin with some auxiliary result

The following lemma allows us to define a “limiting” designe A corresponding
to the limiting flowu, even though the sequence of “dark-grey — light-grey” aaatfpy }
might have no limit points i7Z” in the usual weaksense.

Lemma 3.7. Let {ux} C HY(Q) weakly converge ta € H(Q). Definepx = Py Xa(u,) +
P X2\Q(uy), @nd assume thai € S (i.e., [o ok < Y|Q[), and that

liminf 7(py,u —I|m|nf— a / Uk - U +ﬁ/ u -u}<C,
imi 7 (Px; Uk) T 2 12K foy T W] S

for some constant & +o. Then, there ip 4 such that

7 (B.u)=0. (3.10)
In particular, |Qnz(u)| < y|Q|.
Proof. The existence of limit points follows from the inclusioﬁ?k/c H,k=212,...,

and the wealkcompactness of the latter. Therefore, we will assume tihatoriginal
sequencé px} weakly* converges t@ € 7.
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The control functionoy is a solution to the following optimization problem with a
linear objective functional and wealkcompact feasible set:

max/ PU - U, (3.11)
peHJQ

Since{u - ux} converges strongly ih'(Q), from Proposition 4.4 in [BoS00] it follows
thatp must solve the following optimization problem:

max u-u 3.12
max [ pu-u, (3.12)
Further, since the objective functional of (3.12) is linéiarp), the problem possesses a
zero-one optimal solutiop € 7; we can always takp = Xq(u)-

Clearly,

2C > liminf | a(p)ug- uy = Iiminfﬁk/ Uy - U
ke Jq kot JO\Q(uy)
which implies that

0= liminf Uk U = lim /pkuk-uk:/ﬁu-u:/ u-u,
k—+e0 JQ\Q(uy) k—+0 /O Q Q\Q(u)

where we used the convergence of optimal values for the @nub[(3.111) to the one of
the problem((3.12) als goes to+ (again, by Proposition 4.4 in [BoS00]). We conclude
thatu =00onQ\ Q(u), which implies|(3.10). |

Corollary 3.8. In addition to the assumptions of Lemma 3.7, assume |fg{u)| =
y|Q|. Then, the sequendgy} converges t@ < 7 strongly in L1(Q).

Proof. The additional assumption implies that the problem (3.1®&spsses the only op-
timal solutionp = Xo(u) = Xa,,u)- This implies the weakconvergence of the sequence
{px} towardsp in L*(Q). Strong convergence in'(Q) then follows from Corollary 3.2

in [Pet99]. ]
Now, the main result of this section can be established.

Theorem 3.9 (Convergence of “dark-grey — light-grey” appraximations). Consider
the sequence of sizing optimization problems:

min v), k=1 ... 313
(p,V)Ej?@X!f]/diV/k(p7 )a R , ( )

Let{(p{,uf)} be a sequence of “dark-grey — light-grey” optimal solutidng3.13)(i.e.,
(P, ug) € %{x Uqiv, kK= 1,2,...), which exists by Corollary 3.1 in [BoP03]. Then, an
arbitrary weak limit pointu of the sequencgu;} € H1(Q) (and there is at least one) de-
fines a controp = xqu) €  such thatp,u) is an optimal solution to the proble(B.7).

If, in addition, |QnA(u)| = y|Q|, then{px} strongly converges tp in L}(Q).
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Proof. Let u” be the Stokes flow constructed in the proof of Theorem 3.6;pget
PiXanu?) T P X0\ Q(u?): Then,(px,u”) is feasible in[(3.13)k = 1,2,.... Therefore,
the following inequalities hold:

limsup_7(pg, up) < limsup_g(pw,u”)

Ko t-00 k—+00
< 77 W)+ i, 1/2ay[u” (| 2(q)

= /'y(u’”) < +o0,
This directly implies the boundedness of the sequengg; we therefore assume that
the original sequence weakly convergesitd-urthermore, owing to Lemma 3.7, the pair
(p,u), with p = Xq(u), is feasible in(3.7).
Let (p*,u*) € A x Ugy be an arbitrary zero-one optimal solution fto (3.7). By the
weak lower semicontinuity of# ", we have:

S0 ut) < 77 (p,u) < liminf 7 (uie) < liminf _7k(p, ui)-

On the other hand, lettingc = Dy Xa(u+) + P Xa\o(u), We obtain the reverse inequality:

St = 7 (ot ) = im ABou) 2 imsup £ oy, ).

owing to the feasibility of p, u*) in (3.13),k = 1,2,.... This establishes the optimality

of (p,u) in (3.7).
The last claim is a simple application of Corollary 3.8. O

Now we are ready to discuss the additional assumption of fEme3.9 (the as-
sumption of Corollary 3/8), which guarantees the strongveogence of the optimal
approximating controls. This condition necessarily hafdse flow volume constraint
Jop < y|Q| is active (binding) aeverycontrol that is optimal in (3.7). While we do not
know if this condition holds in every instance of the problé), it can always be sat-
isfied by decreasing the flow volume facigrif the convergence towards the flawwith
|Qnz(U)| < y|Q| is observed, and resolving the problem.

There is an obstacle, however, which might prevent this freonking in practice:
each of the approximating problems (3.13) is nonconvex, tratefore, we cannot ex-
pect them to be solved to global optimality by numerical athons. (Many structural
optimization problems are rather difficult to approximatedo the inherent nonconvex-
ity of the approximating problems; see [StS01].) Despits fhct, in realistic instances
of (3.7) we expect the flow volume constraint to be binding.

3.7 Bilevel programming in flow mechanics: a possible
generalization?

Assume that we are interested in the optimal control of theeyp&tokes equations with
respect to an alternative objective functior@l: 77 x H1(Q) — RU {»}, where #
denotes the abstract control set. Formally, we would likedlve the followingbilevel
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(cf. [LPR96, page 10]) programming problem:

min  F(p.u),

(pu)erHQ) (3.14)
s.t. ueargmin_# (p,v), .
VEUgiv

Similarly, if we are interested only in pure Stokes flows, ¢dipgimization problem can
be posed as follows:
min 7 (p,u),
(p,u)e# xHL(Q)

{ u € argmin_# (p,v), (3.15)
s.t

VEUgiv
77 (p,u)=0.

Of course, the minimization of the power function is the diesp problem one can
consider in flow topology optimization, owing to the facttkae can join the lower-level
and upper-level optimization problems into one: then, titevbl program[(3.14) reduces
to (3.5). This fact allows us to minimize the objective fuonal.# = _# simultaneously
w.r.t. (p,u), resulting in a problem with an inf-compact, |.s.c. funotid(w.r.t. the weak
x weak topology of. *(Q) x H(Q)) that, thus, possesses optimal solutions. In the bilevel
case, the mapping — argmin., 7 (p,v) is not closed in the weaklyx weakly
topology of L*(Q) x H(Q). The next example shows that this mapping is not closed
even in the strong topology &f (Q) x H1(Q), which in particular prevents us from using
the weak topology ofBV(Q) (or evenSBV(Q), cf. [AFP0Q]) for the design space of the
problems/(3.14) and (3.15).

Example 3.10 (Disappearing wall in the driven cavity flow prdlem). Let
Q=(01)x(-1,1)cR%, Q, =(0,1)x(0,1),Q =Q\Q,,f=0inQ, g=(1,0)
on the “upper” boundary (the line connecting the poif@sl) and (1,1)), andg =10
otherwise. Definel,. to be the solution to the “lid-driven cavity flow” problem ésee.g.,
[Jia98, page 146]) iR, ,u; =0inQ_.

Consider a sequencigox} C L*(Q) NBV(Q), with px = 1 — X(1,0)x(~1/k0) IN Q,
k=1,2,.... The solution to the Darcy-Stokes problem (3.2) in this dasg = u.;
thus{(px, ux)} — (1,u) strongly inLY(Q) x H(Q). At the same time, the flow corre-
sponding top = 1 in Q is the solution to the driven cavity flow problem @&, which is
not equal tau... Thus, the mapping — argmin,.4,, J(p,v) is not closed even in the
strong topology ot.}(Q) x H1(Q), even though limsup. .., .7 (pk, Uk) < +.

Now, defineZ (p,v) = [|1-pllsv(a) + [V = Ut[lhyq) # ={p €BV(Q) |0<p <
l,a.e.inQ}. Then, the sequenclpk,ux)} is a minimizing sequence for both prob-
lem (3.14) and (3.15), which does not converge to a feasibiet jof either of the prob-
lems. Therefore, the classic “flow tracking problem” posedaebilevel topology opti-
mization problem of Darcy-Stokes flow has no solutions.

If we restrict the set of admissible controls so that p > 0in Q, the problem (3.14)
becomes well-posed for every enough continuous objeatinetfonal; however, making
such a restriction we arrive at a less interesting for usgizase. Therefore, the problem
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of choosing practically interesting and well-posed foratians of the topology optimiza-
tion of Stokes flows with objective functionals other thae tiotal power_# remains
open.

3.8 Conclusions and further research

We have shown that the topology optimization problem of tledy-Stokes equations
w.r.t. total power minimization admits optimal solutioreyen if the limiting zero and
infinite permeabilities are included in the design domaine Neve further established
that the problem of finding a zero-one optimal control, oot pure Stokes flow, can be
set up in a well-posed way; no additional restriction teghies are necessary in contrast
with the case of linear elastisity (cf. [BeS03]). Two teajunés were proposed for solving
the zero-one optimal control problem. We have also showtthiestopology optimization
problemw.r.t. alternative functionals might be ill-posadd might lack optimal solutions.

It would be particularly interesting to study the zero-omedlogy optimization prob-
lem of Navier-Stokes or Euler flows. For the Navier-Stokew$lowhich are of much en-
gineering interest, one can take the same design paraatitnas for the Stokes flows.
The problematic part, as it is typical in topology optimipat is to establish the inf-
compactness property of the chosen objective functiontheset of admissible designs.
The theory for the sizing case is straightforward, and oméyrtumerical part needs to be
investigated. For the Euler flows, even the design paranagion is unclear, partly due to
the fact that flows of inviscid fluids through porous mediar@weso well investigated in
the literature.

As for the Stokes flow, the further study of bilevel optimipatproblems might be
interesting, as well as the consideration of alternatiwe Houndary conditions (cf. [Jia98,
Section 8.2.2]).
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Paper 4

TOPOLOGY OPTIMIZATION OF SLIGHTLY
COMPRESSIBLE FLUIDS

Anton Evgrafov *

Abstract

We consider the problem of optimal design of flow domains favir—Stokes flows in order to
minimize a given performance functional. We attack the fmobusing topology optimization tech-
niques, or control in coefficients, which are widely knowrstructural optimization of solid struc-
tures for their flexibility, generality, and yet ease of usd ategration with existing FEM software.
Topology optimization rapidly finds its way into other aredoptimal design, yet until recently it
has not been applied to problems in fluid mechanics. The saaf¢opology optimization methods
for the minimal drag design of domains for Stokes fluids ($eestudy of Borrvall and Petersson
[Internat. J. Numer. Methods Fluids, vol. 41, no. 1, pp. WA122003]) has lead to attempts to use
the same optimization model for designing domains for inp@ssible Navier—Stokes flows. We
show that the optimal control problem obtained as a residtioh a straightforward generalization
is ill-posed, at least if attacked by the direct method ofghls of variations.

We illustrate the two key difficulties with simple numerieatamples and propose changes in
the optimization model that allow us to overcome these dilfies. Namely, to deal with impenetra-
ble inner walls that may appear in the flow domain we sligtelgx the incompressibility constraint
as typically done in penalty methods for solving the incoasgible Navier—Stokes equations. In
addition, to prevent discontinuous changes in the flow duetyg small impenetrable parts of the
domain that may disappear, we consider so-called filtersijds, that has become a “classic” tool
in the topology optimization toolbox. Technically, howeveur use of filters differs significantly
from their use in the structural optimization problems itidsmechanics, owing to the very unlike
design parametrizations in the two models.

We rigorously establish the well-posedness of the proposedel and then discuss related
computational issues.

Keywords. Topology optimization, Fluid mechanics, Navier—Stokes/flbomain identifica-
tion, Fictitious domain.
AMS subject classification.76D55, 76N25, 62K05, 49320, 49J45.

“Department of Mathematics, Chalmers University of Techggl SE-412 96 Goteborg, Sweden, e-mail:
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4.1 Introduction

THE optimal control of fluid flows has long been receiving considide attention by
engineers and mathematicians, owing to its importance imyragplications involv-
ing fluid related technology; see, e.g., the recent mondgrfpun03, MoP01], and arti-
cles [Fei03, Ton03b, Ton03a, vBS02, ChG02, GuM02, Kim01M®eK, OkK00, DzZ99,
IGuK98, DRSS96, Sue96, BoB95, NRS95, St$94, BeD92, BFC®8iiding the pio-
neering works of Pironneau [Pir73, Pir74] on the optimatignditions for shape opti-
mization in fluid mechanics. According to a well-establidlotassification in structural
optimization [BeS03, page 1], the absolute majority of veadlealing with optimal design
of flow domains fall into the category of shape optimizatiq®ee the bibliographical
notes (2) in [BeS03] for classic references in shape opétitn.) In the framework
of shape optimizationthe optimization problem formulation can be stated asved!
choose a flow domain out of some family so as to maximize ancegsd performance
functional. The family of domains considered may be as rglhat of all open subsets
of a given set satisfying some regularity criterion (seg, f~ei03]), or as poor as the
ones obtained from a given domain by locally perturbing s of the boundary in a
Lipschitz manner (cf. [Ton03b, GKM00, GuK98]). Unfortuedt, it is typically only the
problems in the latter group that can be attacked numeyidah the other handppology
optimization(or, control in coefficients) techniques are known for thilgkibility in de-
scribing the domains of arbitrary complexity (e.g., the f@mof connected components
need not to be bounded), and at the same time require réyatielerate efforts from the
computational part. In particular, one may completely dveimeshing the domain as the
optimization algorithm advances, which eases the integratith existing FEM codes,
and simplifies and speeds up sensitivity analysis.

While the field of topology optimization is very well estadilied for optimal design
of solids and structures, surprisingly little work has bdene for optimal design of fluid
domains. Borrvall and Petersson [BoP03] considered thHeaptiesign of flow domains
for minimizing the total power of the incompressible Stoews, using inhomogeneous
porous materials with a spatially varying Darcy permegbiénsor, under a constraint on
the total volume of fluid in the control region. Later, thigpapach has been generalized
to include both limiting cases of the porous materials, pere solid and pure flow re-
gions have been allowed to appear in the design domain aulkh ofshe optimization
procedure [Evg03]. (We also cite the work of Klarbring efKPTKO03], which however
studies the problem of optimal design of flow networks, wdasign and state variables
reside in finite-dimensional spaces; in some sense thisasalogue of truss design prob-
lems if one can carry over the terminology and ideas from tka af optimal design of
structures and solids.)

However, applications of the Stokes flows are rather limitetiile the Navier—
Stokes equations are now regarded as the universal basisisbfnfechanics [Dar02].
Therefore, it has been suggested that the optimization hprdposed by Borrvall and
Petersson [BoP03] (with straightforward modifications),particular the same design
parametrization should be used for the topology optimiratf the incompressible
Navier—Stokes equations [GHO3]. Essentially, in this miade control the Brinkman-
type equations including the nonlinear convection termig@d] (which will be referred
to as nonlinear Brinkman equations in the sequel) by vargiogefficient before the ze-
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roth order velocity term. Setting the control coefficienz&yo is supposed to recover the
Navier—Stokes equations; at the same time, infinite valtidseccoefficient are supposed
to model the impenetrable inner walls in the domain. In $&64.3 we illustrate the dif-
ficulties inherent in this approach, namely that the desigfiew mapping is not closed,
leading to ill-posed control problems.

It turns out that if we employ the idea difter [Sig97, SiP98] (which has become
quite a standard technique in topology optimization, semu[®, BrT01] for the rigorous
mathematical treatmeni) additionto relaxing the incompressibility constraint (which
is unique to the topology optimization of fluids) we can ebgibthe continuity of the
resulting design-to-flow mapping, and therefore the eristeof optimal designs for a
great variety of design functionals; this is discussed icti8a[4.4. Not going into details
yet, we comment that our use of filters significantly differsnfi the traditional one in
the topology optimization. Namely, not only do we use filteygorbid small features
from appearing in our designs and thus to transform weagkgesign convergence into
a strong(-er) one (cf. Proposition 4.5), but also to veriytain growth conditions near
impenetrable walls [see inequality (4.4) and Propositi@Y} which later guarantees the
embedding of certain weighted Sobolev spaces into classis (see inequality (4.14) in
the proof of Proposition 4.12), and finally allows us to prtive continuity of design-to-
flow mappings in Sectidn 4.5. The existence of optimal desifprmally established in
Section 4.6, is an easy corollary of the continuity of theigie¢o-flow mappings.

Some computational techniques are introduced in Setién Mamely, in Subsec-
tion/4.7.1 we discuss a standard topic of approximatingdpelbgy optimization prob-
lems with so-called sizing optimization problems (alsownas ‘c-perturbation”), which
in our case reduces to approximation of the impenetrablis weéth materials of very low
permeability. In Subsection 4.7.2 we touch upon technigiraed at reducing the amount
of porous material in the optimal design. We conclude theepéy discussing possible
extensions of the presented results, open questions, atieérfuesearch topics in Sec-
tion/4.8. Proofs of some results are found in Appendix 4.A.

4.2 Prerequisites

4.2.1 Notation

We follow standard engineering practice and will denotémeguantities, such as vectors
and vector-valued functions, using theld font. However, for functional spaces of both
scalar- and vector-valued functions we will use regulat.fon

Let Q be a connected bounded domainRst, d € {2,3} with a Lipschitz continu-
ous boundary . In this domain we would like to control the nonlinear Brinkmequa-
tions [AlI90a] with the prescribed flow velocitigson the boundary, and forcéacting in
the domain by adjusting the inverse permeabititpf the medium occupyin@, which
depends on the control functign

—VAu+u-Ou+oa(p)u+0Op=Hf, .
divu=0 [’ ’ (4.1)

u=g, onl.
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In the system[ (4]1) is the flow velocity,p is the pressure, and is the kinematic vis-
cosity. Of course, owing to the incompressibility wf the functiong must satisfy the
compatibility condition

Jan=o 4.2)

wheren denotes the outward unit normal.df(p(x)) = + for somex € Q, we simply
requireu(x) = 0 in the first equation of (4.1).
Our control set’Z is defined as follows:

A ={pel®(Q)|0<p<Llae. inQ,/ p <VvQl},
Q

where 0< y < 1 is the maximal volume fraction that can be occupied by thd.flavery
elementp € 77 describes the scaled Darcy permeability tensor of the mediua given
pointx € Q in the following (informal) way:p(x) = 0 corresponds to zero permeability
atx (i.e., solid, which does not permit any flow at a given pointhjle p(x) = 1 corre-
sponds to infinite permeability (i.e., 100% flow region; naustural material is present).
Formally, we relate the permeability ! to p using a convex, decreasing, and nonnega-
tive function (cf. [BoP03, EvgO3]y : [0,1] — R4 U{+w}, defined as

a(p)=p*-1

In the rest of the paper we will use the symlgalfor A C Q to denote the characteristic
function of A: xa(x) =1 forx € A; xa(x) = 0 otherwise.

4.2.2 Variational formulation

To state the problem in a more analytically suitable way angh¢orporate the special
casea = + into the first equation of the system (4.1), we introduce akWeemulation
of the equations. Let us consider the sets of admissible fedacities:

U ={veHYQ)|v=gonl},
Uiy ={Vv €% | divv =0,weakly inQ}.
Let 7 7 9/ — R denote the potential power of the viscous flow:

/y(u):%/g;lju-lju—/gf-u.

Let us further define the additional power dissipatigh’ : /¢ x % — RU{+o}, due
to the presence of the porous medium (we use the standardmimv 0 +o = 0):

7w =3 [ atp-u

Finally, let_# (p,u)= 7 (u)+ _#7(p,u) denote the total power of the Brinkman flow.
Then, the requirement(p) = +o = u=0"is automatically satisfied ifZ 7 (p,u) <
+00,

We will use epi-convergence of optimization problems as &rtteeoretical tool in
the subsequent analysis, thus it is natural to study thevitlg variational formulation
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(cf., e.g., |[Evg03]) for Darcy-Stokes flows [i.e., obtainey neglecting the convection
termu - Ou in (4.1)]: forf € L2(Q), compatibleg € HY2(I"), andp € 7, find u € %y
such that

u € argmin_#(p,v).

VEUgiv
Naturally, taking convection into account, this can be galiwed to the following fixed
point-type formulation of( (4./1) (see Subsection 4.5.2 fu tigorous discussion of its
well-posedness): fdre L?(Q), compatibleg € HY/2(T"), andp € .2 find u € %y, such
that
ue argmin{ /(p,v)+/ (u-l:lu)-v}. (4.3)
Q

ve DZ/div

4.3 Problems with the existing approach

When we allow impenetrable walls to appear and to disappetiiei design domain, we
create two particular types of difficulties, each related tmrresponding change in topol-
ogy (see Subsection 4.3.1 dnd 4.3.2). We note that in thantgizase, which can be
modeled by introducing an additional design constrpipt €, a.e. inQ (for some small

€ > 0) these difficulties do not appear. (In fact, it is an easy@se to verify that under
such circumstances the design-to-flow mapping is closet sinong convergence of de-
signs, e.g., i.}(Q), andH(Q)-weak convergence of flows.) Such a distinct behavior
of the sizing and topology optimization problems may inthcénat the former is not a
useful approximation of the latter in this case.

4.3.1 Disappearing walls

For the sake of simplicity, in this subsection we assumettigabbjective functional in our
control problem (which is not formally stated yet) is the gowy? of the incompressible
Navier—Stokes flow. This functional is interesting fromesdt two points of view. Firstly,
in many cases the resulting control problem is equivalettieéaninimization of the drag
force or pressure drop, which is very important in enginegapplications [BoP03]. Sec-
ondly, while it is intuitively clear that impenetrable inmealls of vanishing thickness
change the flow in a discontinuous way, for the Stokes flowsdted potential power
is lower semi-continuous w.r.t. such changes, which allaws$o apply the Weierstrass
theorem and ensure the existence of optimal designs (c§J&vTheorem 3.3]). In this
subsection we consider two examples illustrating the discaity of the flow as well
as non-lower semicontinuity of the power functional in tlase of the incompressible
Navier—Stokes equations; this means that the correspguedimtrol problem of minimiz-
ing the potential power is ill-posed, at least from the pointiew of the direct method of
calculus of variations.

Example 4.1 (Infinitely thin wall). We consider a variant of the backstep flow with
v = 1.0-10"3 (which corresponds to the Reynolds number=R&000), as shown in
Figure 4.1. We specify on the inflow boundary to b&.25— (y — 0.5)2,0.0)!, on the
outflow boundary we requiray = 0 as well asp = 0; on the rest of the boundary the
no-slip conditionu = 0 is assumed. We consider a sequence of the domains containing
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Fig. 4.1: Flow domain for the backstep flow.

thin but impenetrable wall of vanishing thickness (as showfigure 4.1 by dashed line).
The limiting domain is the usual backstep shown with thedslitie. Direct numerical
computation in Femlab (see Figure 4.2 showing the flows) shinat for the domains
with thin wall we have # ~ 0.8018, while for the limiting domain#? ~ 0.8263. This
demonstrates the non-lower semicontinuity of the total grofunctional in the case of
incompressible Navier—Stokes equations.

We note that while the “jump” of the power functional may seeegligible in this
example, other examples may be constructed where this jsimpich bigger.

It may be argued that in the example above the thin wall mayubstguted by the
complete filling of the resulting isolated subdomain withpemetrable material, and the
following example is more peculiar and demonstrates thatamecontrol the behavior of
the Navier—Stokes flow with an infinitesimal amount of matikrit is interesting to note
that the example is based on the construction of Allaired@d], which in some sense is
“opposite” to our design parametrization. Namely, we tryctmtrol the Navier—Stokes
equations by adjusting the coefficients in the nonlineaniBrian equations, while the
sequence of perforated domains considered in Example 4.péen used to obtain the
nonlinear Brinkman equations starting from the Navierk8sequations in a periodically
perforated domain as a result of the homogenization process

Example 4.2 (Perforated domains with tiny holes).We assume that the bounddrys
smoothand impenetrable (i.e., the homogeneous boundary condigie= O hold), and
that the viscosity is large enough relatively to the foréeo guarantee the existence
of a unigue solution to the Navier—Stokes systen®inLet Q¢ denote a perforated do-
main, obtained fronQ by taking out spheres of radiug(e) with centerseZ9, where
lime_.,orq(€)/€ = 0; see Figure 4/3. LéU®, p¥) denote a solution to the Navier-Stokes
problem insideQ? with homogeneous boundary conditidiifs= 0 on dQ¢. We extend
u¢ onto the wholeQ by setting it to zero inside each sphere; we further denote tiiis
extended solution. For every smalt> 0 it holds thatu® solves the problem (4.3) for
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Fig. 4.2: Backstep flow: Example 4.1. (a), (b} andy-components, respectively, of
the flow velocity when the impenetrable wall has arbitrary jpositive thick-
ness (only the part of the domain with nontrivial flow is showt), (d): x-
andy-components, respectively, of the flow velocity as the ingteable wall
disappearsNote the different color scales

% = Xqe. Allaire has shown that depending on the liGit= lim_, org(g)/3
ford =3, 0rC=lim._,0—&%log(rq(¢)) for d = 2, there are three limiting cases:
C =0: {uf} converges strongly it1(Q) towards the solution to the Navier—
Stokes problem in the unperforated dom@iri.e., the solution to the prob-
lem (4.3) corresponding to = 1 (see[[All90b, Theorem 3.4.4));
C = +oo: {uf} converges towards O strongly H'(Q) (in fact, there is more infor-
mation abouf u®} available, see [AlI90b, Theorem 3.4.4]);
0< C < +oo: {u¢} converges weakly itH!(Q) towards the solution to the nonlinear
Brinkman problem in the unperforated domd i.e., the solution of
the problem/[(4.8) corresponding @ = o, for a computable constant
o(d,v,C) > 0 (see/[All90a, Main Theorem]).
We note that in all three cases the sequence of degjghjs strongly converges to zero
in L1(Q), while only in the cas€ = 0 the corresponding sequence of flows converges to
the “correct” flow. As for the other two cases, we can eithenpletely stopC = +) or
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2rE)

(b)
Fig. 4.3: The perforated domain (a) and a periodic cell (b).

just slow (0< C < +) the flow using only infinitesimal amounts of structural nretke
(recall thatrq(g)/e — +0). Moreover, the sequence of perimeterspéfconverges to
zero, and therefore the perimeter constraint cannot eafibre convergence of flows in
this case (contrary to the situation in linear elasticity,[BeS03, p. 31]). In the same
spirit, the regularized intermediate density control metitonsidered by Borrvall and
Petersson [BoP01] classifies the desigfisas regular for all enough smaill> 0 (since
they are indeed close to a regular desigs 0 in the strong topology dfP(Q), 1< p <
); thus the latter method also fails to recognize the patfiotd cases illustrated in the
present example.

4.3.2 Appearing walls

Walls that appear in the domain as a result of the optimingtimcess may break the
connectivity of the flow domain (or some parts of it), so thed incompressible Navier—
Stokes system may not admit any solutions in the limiting dionfresp., some parts of
it). While obtaining such results may seem to be a failuréhefdptimization procedure,
completely stopping the flow might be interesting (or evetimal) with respect to some
engineering design functionals.

The following example is purely artificial and its only puggois to demonstrate the
possible non-closedness of the design-to-flow mapping wkenwalls appear in the do-
main. It essentially repeats [Evg03, Example 2.1], but vetuide it here for convenience
of the reader.

Example 4.3 (Domain with diminishing permeability). Let Q = (0,1)?, g = (1,0)},
andf = 0. Let furtherpc=1/kin Q, k=1,2,..., p=0inQ, so thatox — p, strongly in
L®(Q) ask — . Then,u = (1,0)! is a solution of the problem (4.3) for &= 1,2,...;
clearly,(px,u) — (p,u), strongly inL®(Q) x H1(Q). Atthe same time, it is not difficult to
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verify that the problem (4]3) has no solutions for the limitidesignp, which means that
the design-to-flow mapping is not closed even in the stropgltmy of L (Q) x H1(Q)!

The problem related to the appearence of walls completeppstg the flow in some
domains has been solved for Stokes flows by (implicitly)adtrcing an additional con-
straint_# (p,u) < C, for a suitable consta@. Owing to the coercivity of # onH(Q),
this keeps the flows in some bounded set. However, in viewehtm-lower semicon-
tinuity of the power functional for the Navier—Stokes flovge¢ Example 4.1), this set is
not necessarily closed, making the problems with appeavadts much more severe in
the present case.

We consider the next example in some detail, even thoughqjtiite similar to the
previous one, because we will return to it later in Subsectid.2.

Example 4.4 (Channel with a porous wall). We consider a channel flow at Reynolds
number Re= 1000 ¢ = 1.0-103) through a wall made of porous material with van-
ishing permeability appearing in the middle of the chanseé(Figure 4.4). We specity

no-slip y
1
N
S 3 £
k= s 3
o
| s X
-1 -25 0 .25 1

slip (symmetry)

Fig. 4.4: Flow domain of Example 4.4.

on the inflow boundary to bgl — y?,0.0)!, on the outflow boundary we requivg = 0 as
well asp = 0; on the rest of the boundary the no-slip conditioa: 0 is assumed except
that on the “lower” edge we have slip (i.e., only= 0) due to the symmetry.

We choose so thata(p) =0 onQ1 UQz anda(p) = a on Q,, wherea assumes
values 10, 1.0-10?, 1.0- 10%, 4. The corresponding flows (calculated in Femlab) are
shown in Figure 4J5; the incompressible Navier—Stokes Iprabn the last (limiting as
a — +) domain admits no solutions.

To summarize, even though the sequence of degigns Xo,uq,, strongly inL”(Q),
the corresponding sequence of flows does not converge tootliedrresponding to the
limiting design, simply because the latter does not exist.
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Fig. 4.5: Incompressible flow through the porous wall: ¢a}= 1.0, (b)a = 1.0-10?, (c)
a=10-10% (d) a = +oo.

4.4 Proposed solutions to the difficulties outlined

Difficulties inherent in the straightforward generalipatof the methodology proposed by
Borrvall and Petersson [BoP03] for Stokes flows to incomgilbds Navier—Stokes flows
have been outlined in Section 4.3. One possible solutiomgwdllows us to avoid these
difficulties, is simply to forbid topological changes andgerform sizing optimization,
interpreting optimal designs as distributions of porougemals with spatially varying
permeability (cf. [AlI90a, All90b]; see also [Hor97]). Aslhias already been mentioned
the resulting designs may or may not accurately describddheins obtained by substi-
tuting the materials with high permeability by void, and gsbawith low permeability by
impenetrable walls. Furthermore, if we decide to keep threg®material, it is question-
able whether such designs can be easily manufactured asd thuinclear whether they
are “better” from the engineering point of view. Thus we dé@mploy this approach but
instead try to slightly modify the design parametrizatienweell as the underlying state
equations with the ultimate goal to rigorously obtain a etbslesign-to-flow mapping
while maintaining a clear engineering/physical meaningwfoptimization model.
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4.4.1 Filters in the topology optimization

In both examples in Subsection 4.3.1 we constructed theesegs of designs having very
small details, which disappear in the limit. Using the notad a filter [Sig97, SiP98] we
can control the minimal scale of our designs; we will emploig technique, which has
become quite standard in topology optimization of lineathstic materials [BeS03].
Following Bourdin [Bou01], and Bruns and Tortorelli [BrTDive define dilter F :
RY — R of characteristic radius R- 0 to be a function verifying the following properties:

FeCo(RY),  suppF €Br,  SUpPF is convex

F >0inBg, F=1
Br
whereBR denotes the open ball of radiRxcentered in origo. We denote the convolution
product by ax sign, i.e.

(F*p)(x /ny )dy.

Owing to the Lipschitz continuity of, F * p is a continuous function (cf. [Bre83, Propo-
sition 1V.19]).

In order to compute the convolution between the filter andrargdesigrp the latter
must be defined not only a®, but also on the whole spa@. Therefore, in the sequel
we consider the following redefined design domain:

A ={pel*®RHNLYRY |0<p<1lae. ian,/dp <V},
R

for a givenV > 0.
One of the consequences of the fact tRas Lipschitz continuous ifRY and not just
in Br is that the following importangrowth conditionis verified (see Proposition 4.27):

(F * Xga\supe ) (X) < CIXJ?, (4.4)

as|x| — 0, for some appropriate constaht> 0, which implies thatr((F « p)(-)) grows
at least as fast as dig(-, { F x p = 0}) arbitrarily near to impenetrable walls. It is this
condition that allows us to prove an approximation resulbp@sition 4.12, which is in
turn the key ingredient in the proof of our closedness theare

For notational convenience we sgtF (p,u) = ¢ (F xp,u). As a consequence of
the introduction of the filter, we can demonstrate the foitaysimple claim, which trans-
lated to normal language says that impenetrable walls ¢atisappear in the limit. In
the following Proposition, Limsup is understood in the seo$ Painlevé-Kuratowski,
see [AuF90, Definition 1.4.6], or [BoS00, Definition 2.52].

Proposition 4.5. Consider an arbitrary sequence of desidm} C .27, such thato, —
p, weakly in lfloc(Rd), for somep € 77 . Define a sequenc{eﬁ‘é} of subsets of2 as
Qf = {x € Q| (Fxpo)(x) =0},
={xeQ|(Fxp)(x)=0}.
Then,Limsup,_., Q5 C QY UT.
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Proof. Letl C N be an infinite subsequence of indices, such that for sqmeQ¥, k € I,
there existx € RY such thak = limy¢; xc. We know thapy = 0 a.e. orxy + suppF, ke |.
Then,p =0 a.e. orx+ supgF, i.e., (F x p)(x) = 0. Clearly,x € clQ, which finishes the
proof. O

Remark 4.6. The convergence of flow domaifs\ QS induced by the weak convergence
of designs (which implies strong convergence of filteredgtes can be compared to the
convergence of domains in some topology defined for set cgavee, e.g., the comple-
mentary Hausdorff topology. It is known, in general, that thtter topology is weaker
(see, e.g., [S0Z92, Section 2.6.2]). However, such a coisgrais not quite fair in the
present situation, where the domains we deal with can beratiegular (e.qg., lie on two
sides of their boundaries), and, more importantly, the dosia the sequence may have
different connectivity compared to the “limiting” domain.

Later we will see that we need even stronger convergenc@fofs QF to obtain
closedness of the design-to-flow mappings.

The use of filtered desigis+ p in place ofp in problem|(4.3) allows us to overcome
the difficulties caused by disappearing walls. While we yiéhe formal statement of this
fact until Section 4.5, at this point we can consider an exartiat illustrates the effect
of using filters.

Example 4.7 (Example 4.2 revisited).Consider an arbitrary filteF and a sequence of
designs{ps} defined in Example 4.2. Let for every> 0 extend the definition ops
(that has been defined only @) by settingps(x) = 1 for all x € (Q + suppF) \ Q, and
ps(x) =0 forall x € RY\ (Q+ suppF). ThenF x p. — 1 ase — +0, uniformly in clQ,
and the corresponding sequence of flows converges to a pwierNatokes flow in the
domainQ (caseC = 0 in Examplé 4.2).

4.4.2 Slightly compressible fluids

While it seems difficult to imagine a reasonable cure for Epke.3, because the limiting
flow must be zero o2 with nonzero trace o, we can at least try to get a closed
design-to-flow mapping if impenetrable walls do not appear ¢lose to the boundary
with non-homogeneous Dirichlet conditions on velocityireExample 4.4. The difficulty
in the latter example is that in our model the porous wall doeisstop, or slow, the
incompressible fluid while we use material with positiverpeability. At the same time,
the limiting domain does not permit any incompressible flavotigh it, because it is not
connected.

We can solve this problem by relaxing the incompressibitiyuirement divu = 0 in
the system| (4.1) [of course, we do not need to require the atibility condition {4.2)
in this case]. For example, we may assume that the fluglightly compressiblei.e.,
choose a smalbh > 0 and let diw+ dp = 0. In fact, it is known that for a fixed domain
admitting an incompressible flow, the difference betweerdyular incompressible and
slightly compressible flows is of ordéy; i.e., we change model only slightlydfis small
enough. The slightly compressible Navier—Stokes equsioa often used as approxima-
tions of incompressible ones in so-callgehalty algorithm§Gun89, Chapter 5]. On the
other hand, with the gained maturity of mixed finite elemeptmods, the incompressible
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system can be equally well solved to approximate the beha¥islightly compressible
fluids [TemO01].

Whether one considers slightly compressible Navier—&téikéls to be the most suit-
able mathematical model of the underlying physical flow (Beenark 4.9) or just an
accurate approximation of the incompressible Navier-&taquations, we make an as-
sumption of slight compressibility because it allows usdbiave the ultimate goal of this
paper: to obtain a closed design-to-flow mapping. Againageg the precise formula-
tions until Section 4.5, we revisit Example 4.4 to illustraur point.

Example 4.8 (Example 4.4 revisited) We choosed = 1.0- 102 and resolve the flow
problem of Example 4.4 fow € {1.0,1.0-10%,1.0-10%, + }. The corresponding flows
(calculated in Femlab) are shown in Figure 4.6; in contraish whe incompressible
Navier—Stokes case we can see the convergence of flows asndocoaverge (i.e., as
o increases) to a limiting flow, which exists in the comprelgsiase. Note that for small
values ofa andd the incompressible and the slightly compressible flows kioiilar.

1 1 1 e
0.8 0.8 08 0.8
0.6 06 06 0.6
0.4 04 04 0.4
0.2 02 02 0.2

C_J1 0 0

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0

(d)

Fig. 4.6: Compressible flow through the porous wall: ¢a)= 1.0, (b)a = 1.0-10?, (c)
a =1.0-10% (d) a = +o. Compare with Figurie 4.5.

Remark 4.9. It is known that the pseudo-constitutive relation di dp = 0 lacks an
adequate physical interpretation for many important ptatdlows (e.g., see [HeV95)).
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In particular, there is no physical pressure field compatiith the flow shown in Fig-
ure/4.6 (d). On the other hand, the pseudo-constitutivéioelaesulting from the penalty
method can still be used as a mathematical method of gengriddws approximating
those of incompressible viscous fluids. Moreover, the idealaxing the incompressibil-
ity contraint may also be useful for topology optimizationfiuid dynamics where the

corresponding relation div+ dd p/dt = 0 is known to be physical.

4.5 Continuity of the design-to-flow mapping

451 Stokes flows

We start by showing the closedness of the design-to-flow imggdpr slightly compress-
ible Stokes flows with homogeneous boundary conditions,thed show the necessary
modifications for the inhomogeneous boundary conditioms.tire compressible Stokes
system the variational formulation is as follows. Giver 27, find the solution to the
following minimization problem:

min{/F(p,v)+(25)1/Q(divv)2}. (4.5)

vewu
We note that in the case of homogeneous boundary conditieewe? = H3(Q).

Remark 4.10. Since the condition div = 0 is violated, we should replace the term
Jo |0uj? in the definition of 7~ with [ |E(u)|?, whereE(u) = (Ou+ Out)/2 is the
linearized rate of strain tensor (df. [Gun89, Section 4.BPwever, both quadratic forms
give rise to equivalent norms dﬂl&(Q) (cf. [CaK84, Bre83]) and thus do not affect our
theoretical developments in any way. Therefore, we chamkedp the definition oy'y
for notational simplicity.

In fact, one can go one step further and replace the fgrilu|? with [, 22(|E(u)|),
where & is a positive convex function verifying certain growth asgtions, thus in-
cluding non-Newtonian flows into the discussion [FuS00, iiéis 3 and 4]. For some
functionals this will not affect the discussion, while fahers (e.g., Prandtl-Eyring flu-
ids) we must reconsider the very basic problem statemeut$ [as[(4.5)]. Therefore, in
this paper we consider Newtonian fluids only (that is, theeca&x) = x?) and discuss
possible extensions in Section 4.8.

Proposition 4.11. For every desigm € 57 the optimization problerfé4.5) has a unique
solutionv € H(Q) whenever its objective functional is proper w.#., in particular if
U =H}Q).

Proof. See Appendix 4.A. O

The proof of the main theorem of this section, Theorem 4.18clestablishes the
continuity of the design-to-flow mapping in the case of Swokew with homogeneous
boundary conditions, heavily depends on the following agnation result. Its proof
can be found in the Appendix 4.A.
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Proposition 4.12. Letu € H3(Q), p € 2, and_#F (p,u) <M < +oo. Define als®g =
{x€ Q| (Fxp)(x)=0}. Then, there exists a sequereg} C H}(Q) such that:
(i) suppuk € (Q\ Qo);
(i) limk_ ;e Uk = U, strongly in H(Q);
(i) limsup_ .o " (p,u) <M.

Theorem 4.13. Consider a sequence of desigfi} € ¢ and the corresponding se-
quence of flowguy} C H3(Q), k= 1,2,... (i.e., uk solves the problen.5) for py).
Assume thap, — po, strongly in 1(Q + Bg), anduy — uo, weakly in H(Q). Then,uo

is the flow corresponding to the limiting desigs

Proof. Throughout the proof we denote the optimal value of the ogtition prob-
lem (4.5) for a given desigp as valp). Owing to the weak lower-semicontinuity of

(cf. [Evg03, Lemma 3.2]) and the weak lower-semicontinoity/, (divu)? (cf. [EKT99,
Corollary 2.2]) we have that

val(po) < _#F (o, o) + (28)~* /Q (divuo)? < liminf val(py). (4.6)

If we can also show that vigdp) > limsup,_,., val(pk), then since vdjpg) < +oco (ow-
ing to Proposition 4.11) we must have equality througho#iB), which means thaty
solves|(4.5) foipo.

Without any loss of generality, we assume that(pgl = limy_.., val(px). Let U
be the optimal solution of (4.5), and consider a sequgmge C H3(Q) constructed in
Proposition 4.12 fopp andup. Due to the properties dfug}, for everye > 0 there exists
N(¢g) € N such that for alh > N(¢) it holds that

val(po) +& > 7" (po,u3) + (20) * [ (aivup)? (4.7)

Moreover, strong convergence pf together with Lipschitz continuity of imply uni-
form convergence of * py towardsF x pg on clQ (cf. [Bre83, Théoréme IV.15]). Since
ug € Q\ {xe Q| (F*po)(x) =0}, it holds thata (F * px) uniformly converges towards
a(F «pg) on suppug, and thus there iK(n, €) € N such that for alk > K(n, €) we have

I (po.u) +(28) 7 [ (@ve)?+ > 77 (pud) + (20) [ (divup)? > val(py).
Q Q
(4.8)
where the last inequality is due to the feasibilityugfin (4.5) for the desigmy. Combin-
ing (4.7) and[(4.8), and lettingrow to infinity in the latter we get

val(po) + 2¢ > Ilim val(py).
Finally, lettinge go to zero, we finish the proof. O

Remark 4.14. Theorem 4.13 shows the epi-convergence of the objectivetibmals
of the p-parametric optimization problem (4.5) as the parameteongly converge in
LY(Q +Bg) (cf. [BoS00, p. 41]).
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Remark 4.15. We use strong convergence on the space of designs in orderaie g
antee the Lipschitz continuity (cf. [AuF90, Definition 154). of the family of walls
{xe Q| (F=*p)(x) =0}, parametrized bk € N, which is a stronger property than
upper-semicontinuity (cf. Proposition 4.5). We need Liptccontinuity to justify [(4.8).

In the case of non-homogeneous boundary conditions, thef gaessentially the
same provided we can keep the walls away from the region®dfdlindary where injec-
tion/suction of the fluid is performed; see Subsection 4aéh@ Examplé 43 for motiva-
tions.

Theorem 4.16. Consider a sequence of desigfis} € 5 and the corresponding se-
quence of flow$uy} € %, k=1,2,... (i.e.,ui solves the problerfd.5)for py). Assume

that px — po, strongly in L1(Q 4 Bg), anduy — ug, weakly in H(Q). Further assume

that for some positive constardsrt it holds that

inf{ (F*p)(x) | ke N,xe QN (suppy+B¢) } > T. (4.9)

Then,uq is the flow, corresponding to the limiting desigg (i.e., up solves the prob-
lem (4.5)for pg).

Proof. Let w € % be a function with supw € QN (suppg+ B¢). Then, owing to the
additional condition (4.9), the objective functional off#is finite when evaluated at,
for everypy, ke N, as well as fopg. Therefore, for everpy, ke N, (resp., for the limiting
designpg) the optimization problem (4.5) admits a unique optimalifioh, which can be
written asuy = w + Vi, vk € H3(Q) (resp.lio = W+ Vo, Vo € H3(Q)).

The epi-convergence of the mappingsd(Q) > v — #F(p,w + v) +
(26)71 [o(div(w + v))? as the parameters strongly converge inL1(Q + Br) keep-
ing (4.9) true, can be shown exactly as in the proof of Thectel. The latter implies
the claim. O

Remark 4.17. We note that the conditio(9) is automatically verified for Stokes prob-
lems with homogeneous boundary conditions, because thaunfiis taken over the
empty set in this case (supp= 0).

45.2 Navier—Stokes flows

In the case of the Navier—Stokes equations things get muck ownplicated, because
we do not seek a minimizer of some functional anymore, and amat apply epi-
convergence results directly. Nevertheless, we can atiliem to show the closedness
of the design-to-flow mappings even in the Navier—Stokes.cas

We introduce a general fixed-point framework related to tp&nozation prob-
lem {4.5), and then show (at least for the case of homogernmausiary conditions) that
the slightly compressible Navier—Stokes equations carohsidered in this framework.

LetA(u,v) : 7 x % — R be a weakly continuous functional, and consider the prob-
lem of finding a fixed point of the point-to-set mappifyy: % = % defined forp € 7
as

To(u) = argmin{/F(p,v) + (26)‘1/Q(divv)2+A(u,v)}. (4.10)

iS4
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Theorem 4.18. Consider a sequence of desigfi} € ¢ and the corresponding se-
quence of fixed pointa} C %, k=1,2,... (i.e.,ux € Ty (uk) for Ty, defined by(4.10))
Assume thab, — po, strongly in L1(Q 4 Br), ux — U, weakly in H(Q), and T(up) # 0.
Further assume that for some positive constantsthe condition(4.9)is satisfied. Then,
Ug € Tpy(Uo).

Proof. It is enough to show that the objective functionals of theap@tric optimization
problems|(4.10) epi-converge s, Ux) converge toward$po,up). This follows from
Theorem 4.1B, the continuity &, and [RoW98, Exercise 7.8.(a)]. o

Remark 4.19. In fact, weak continuity oA(u,Vv) is an unnecessarily strong requirement.
We can repeat the arguments of Theofem 4.13 with straighdiml modifications and
prove Theorer 4.18 under the following weaker assumption& o
(i) A(u,u) <liminfy_. A(ug, ux) whenevewuy — u, weakly in%/; and
(i) A(u,v) > limsup_,.,A(uk,vk) wheneveruy — u, weakly in %, and vy — v,
strongly in% .

As an example application of Theorém 4.18, we consider dcpdat penalty for-
mulation of the incompressible Navier—Stokes equatiorte Womogeneous boundary
conditions studied in [CaK84]. A more general treatmenfisaurse possible, including
inhomogeneous boundary conditions and variants of sliglainpressible Navier—Stokes
equations; the main difference is in the number of techrde#dils to be covered.

To put the penalty formulation considered|in [CaK84] (of s®) without the control
terma) into the framework of (4.10) we define

A(u,v):/f.z(u-lju)-v+2’l/9(u-v)divu. (4.11)

We note that the last integral adds an additional stabiithé penalty algorithm [CaK84]
and identically equals zero in the incompressible case; aretisus expect that the ef-
fects of its presence can be almost neglected in the sliglottypressible case. Owing
to [CaK84, Lemma 2.7], the function® defined in [(4.111) is weakly continuous on
HE(Q) x H3(Q), and in order to apply Theorem 4.18 it remains to establisaraogue
of Proposition 4.11.

Proposition 4.20. With % = H&(Q) and A defined by4.11) the fixed-point prob-
lem (4.10)admits solutions for every € 7.

Proof. The functionalA(u, -) is linear and continuous dﬂ&(Q). Applying Lemmad 4.29
to the “force” (f,-) + A(u,-) € H=1(Q), we conclude that for every € .7# the operator
Tp(u) is single-valued and completely continuous.

Now, assume that = aT,(w) for somew € H}(Q) and 0< o < 1. Then, using
the fact thatA(aw,bw) = a?bA(w,w) = 0 for all a,b € R, where the last equality is
by [CaK84, Lemma 2.4], and evaluating the objective funciid (4.10) ato~w (the
optimal solution) and € H&(Q) we get the inequality

v 21/-2i/ 2,&/’.<
20_2/Q||:|W| +2026 Q(dlvw) +202 QG(F*p)|W| p Qf w <0,
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which implies thaq|w||H&(Q) < CJ[f[[2(q) holds, for some constaftindependent ob.

An application of the Leray-Schauder Theorem (cf. [GrD08, Eheorem 5.4]) concludes
the proof. O

Remark 4.21. While the mappingp,u) — T,(u) is in many cases single-valued for
every pair(p,u), there might be more than one solution to the fixed point goi|4.10)
with this operator. In other words, we do not assume thatdhepcessible Navier-Stokes
system admits a unique solution.

Remark 4.22. We can use another popular weak formulation of slightly caagible
Navier—Stokes equations (e.g., see [LCW95]), identifying

A(u,v)—%(/g(uﬂu)-v/Q(u-IZIv)~u>.

Our results hold even in this case without any changes.

Remark 4.23. Of course, the fixed-point framework (4]10) is not boundeN&avier—
Stokes equations. For example, putting, for same R¢,

Adu,v) = /g.}(uo-Du) -V,

we can show continuity results for Oseen flows [Gal94]. Tihietof flow is probably not
very interesting in bounded domaifds but illustrates the possible uses of the fixed-point
formulation [(4.10). Finally, we note that settidg= 0 we recover the original Stokes
problem.

4.6 Existence of optimal solutions

4.6.1 Ensuring strong convergence of designs and
condition (4.9)

The results established in Section 4.5 all require stromgexgence of designs It (Q +
Br). In order to guarantee convergence we need to embed ouotoftrinto some space
that is more regular thald® (RY) N L1(RY). The most appropriate choice, in our opinion,
is the spaceSBV(Rd) (cf. [AFPO0OQ]), which is typically used for perimeter coratred
topology optimization (see [BeS03, p. 31] and referencessih; see also [FGR99, Pet99,
HBJ96]). Other choices are possible, including*(R9) NL2(RY) (that is, imposing
“slope constraints” on the design space; see [PeS98], sofBbr01] BoC03]). Bounds
on the perimeter, or slope, may be introduced into the pmladigectly as constraints, or
added as penalties to the objective function.

Regardless of the particular method used, we get the rehpir@perty: px — p,
weakly in.2Z, impliespx — p, strongly inL!(Q +Bg), allowing us to establish the closed-
ness of the design-to-flow mappings.

As for the condition[(4.9), it can be easily verified if we raguin addition that every
designp € 7, satisfying the bounds €@ p < 1, a.e. orRY, also satisfiep > 1, a.e. on
suppy + Bry¢, for some positive constantst.
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4.6.2 An abstract flow topology optimization problem

Now we are ready to formally discuss the well-posedness atatract flow topology
optimization problem:

min.7 (p,u),
(p,u)

{<p,u>ex @.12)
.t
ueTp(u).

The previous results imply the following theorem.

Theorem 4.24. Let 2 be a nonempty weakly compact subsetfx % < SBV(RY) x
H1(Q), and let for allp € .7 the assumptio4.9) be verified(see the discussion in Sub-
section 4.6.1 We also assume that{vhich defines the mapping Via (4.10)]enjoys the
conditions of Remarfk 4.19, and that for everyg .2# the fixed-point problent4.10)ad-
mits solutions. Finally, leZ : SBV(RY) x H1(Q) — R be weakly |.s.c. Then, there exists
at least one optimal solution to the abstract flow topologgrjzation problen(4.12)

Proof. Essentially this is a Weierstrass Theorem adapted to ogifgpeotation, because
the hypotheses and Theorem 4.18 imply that the feasiblef{t1#) is nonempty and
weakly compact. ]

Remark 4.25. If the assumptions of Theordm 4.24 about the flow model arsfigat, we
may set

7 ={(p.u) € Zox ¥ |9(p,u) <C},

where 25 is a nonempty weakly compact subset.4f ¢ SBV(RY) verifying condi-
tion (4.9),4(p,u) is an arbitrary weakly |.s.c. functional, which is in additicoercive in
u, uniformly w.r.t.p, andC € R is an arbitrary constant but such th#t=~ 0.

In particular, we may s&¥ = #,0r% = ¢F (cf. [Evg03, Lemma 3.2)).

At last, we note that assumptions of Theofem 4.24 about thalsitity of the fixed-
point problem for every feasible designare verified in many practical situations. For
example, we have shown that they are satisfied for Stokesiegagsee Proposition 4.11
and Remark 4.23) and for Navier-Stokes equations with hemegus boundary condi-
tions (see Proposition 4.20).

4.7 Computational issues

In this section we briefly discuss two topics that are stashdatopology optimization

with specialization to flow topology optimization problemBhroughout the section we
will use problem/(4.12) as a model example, and we assumehbaissumptions of
Theorem 4.24 are verified without further notice.
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4.7.1 Approximation with sizing optimization problems

Clearly, no finite element software can be applied to the lpra(4.10) ifa (F « p) is
allowed to become arbitrarily large; from the practicalrgaif view the theory of Sec-
tion[4.5 implying the existence of optimal solutions(to @).is pointless, unless we can
describe a computational procedure capable of finding apedions of these optimal
solutions. In fact, once we have proved Theorem 4.18 therlgthal can be easily ac-
complished. For arbitrarg > 0, consider the set; = {(p,u) € Z | p > €,a.e}, i.e.,
only designs with porosity uniformly bounded away from zare allowed, implying in
particular the uniform bound (F x p) < e~ — 1, for every(p,u) € 2.

Then, the following easy statement holds.

Proposition 4.26. Assume that the sequenc#; } is lower-semicontinuous in Painlevé-
Kuratowski sens@opology in# x % being the strong oenamely

Liminf 2z = 2, (4.13)
£—+0
(in particular, Z¢ # 0 for all small € > 0). Let further, for every smalf > 0, (pg,Ug)
denote a globally optimal solution of an approximating desh, obtained fron{(4.12)
substitutingZ; in place of 2. Then, an arbitrary limit point of (p¢,us)} (and there is
at least ongis a globally optimal solution of the limiting proble(.12)

Proof. All claims easily follow from the uniform inclusior?; Cc 2, Theorems 4.24
and 4.18, and finally [BoS00, Proposition 4.4]. O

The assumption (4.13) is probably easier to check in evenycpéar case rather than
to develop a general sufficient condition implying it; we ymhention that for typical
constraints in topology optimization, such as constrantgolume and on the perimeter,
it is easily verified.

In general, there is a substantial amount of literature entdpic of approximation
of topology optimization problems using sizing ones. ($extibliographical notes (16)
in [BeS03] for a survey of the situation in the topology opfiation of linearly elas-
tic materials; also see [Evg03, Section 6] for results ominpressible stokesian flows,
and [KPTKO03, Appendix A.2] for a similar problem arising ihet design of flow net-
works.) Cases of interest in such literature are when sontteeainderlying assumptions
of Proposition 4.26 are violated, such as the compactness of 2%, or the assump-
tion (4.13); in some particular situations it is nevertlssl@ossible to prove statements
similar to Propositioh 4.26. We do not try to generalize asult in this direction, be-
cause computationally the problem (4.12) is already exttgrdemanding for realistic
flows, and complicated constraints violating (4.13) arallyanecessary in practical situ-
ations.

4.7.2 Control of intermediate densities

Starting with the problem of distributing the solid maténeside a control volume so as
to minimize some objective functional dependent on the flegvexpect an optimal design
of the typep = xa, WhereA C Q is a flow region (“black—white” designs). Usually, this
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is a very naive expectation [BeS03, Section 1.3.1]; howeliere are some exceptions,
such as the minimum-power design of domains for Stokes fl@e£03, Evg03], or the
design of one-dimensional wave-guides for stopping waspggation [Bel03].

However, if we use a filter, it is simply impossible to obtajtimnal distributions of
material assumingnly values zero or one (not counting the trivial desifnsp = 0 and
Fxp =1), becaus€ x xa is a continuous function, and the “edge@ will be “smoothed
out” by the filter. One possible way to reduce the amount obpsmaterial in the final
optimal designF * p is to use a filter of a smaller radius. This may or may not work
as expected — since the control problem (4.12) is non-cqgritiexoptimal designs may
change significantly as we vary the radius only slightly.

Another possibility is to add a penalty term/@(F * p,u), for some positiveu,
requiring that the power dissipation due to the flow througg porous part of the do-
main should be relatively small [Evg03, Section 5]. We muatmthat increasing penalty
¢ might lead to unexpected results, because as we have alneawtjoned, the pres-
ence of the filterequiresthe presence of porous regions in the domain (except foalriv
cases), thus the sequence of designs may converge to eithef those trivial designs, or
u/@(F * p,Uu) may grow indefinitely. Therefore, suitable valuesiaghould be obtained
in each case experimentally.

At last, various restriction or regularization techniqtlest are designed to control the
amount of “microstructural material” in topology optimtian of linearly elastic struc-
tures may be used for similar purposes in our case. We alneahyioned the regular-
ized intermediate density control method [BoP01]; othesgildle choices may be found
in [BeS03, hibliographical notes (8)].

4.8 Conclusions and further research

We have considered the topology optimization of fluid doreaina rather abstract set-
ting, and established the closedness of design-to-flow ingpgor a general family of
slightly compressible fluids, whose behavior is charazgetby the fixed-point formula-
tion (4.10). We used the notion of epi-convergence of o@atidon problems as a main
analytical tool (cf./[[BoS00, Proposition 4.6]) that alloussto treat very ill-behaving func-
tionals, which arise due to the fact that we allow compleitelyenetrable walls to appear
in the design domain.

It is of course of great engineering interest to perform nrcaé experiments with
topology optimization of slightly compressible fluids foanous objective functionals,
theoretical foundations for which are established in tlsipgr. Provided a stable solver
of the underlying flow problem is available, it should not bdifficult task to combine
it with the optimization code; in the end, the ease of intégrawith FEM software is
one of the main reasons why topology optimization techrscare widely accepted and
still gain popularity in many fields of physics and enginegriBeS03]. In fact, one such
successful attempt of integrating topology optimizatiathviemlab is done for incom-
pressible Navier—Stokes fluids [GHO03]. Unfortunately,ted time of writing this code
was not available to the author. We hope to be able to perfammenical computations in
the near future.

The motivation for relaxing the incompressibility requirent is found in Sec-
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tion[4.3.2; however, if one is not convinced, and for the sakeompleteness it would
be interesting to prove the main approximation result, Bsapn/4.12, for divergence-
free functions, from which the rest of the theory shoulddwilfor incompressible fluids
as well.

The method we used is of course not bound to Newtonian fluidsedms that our
results should hold for many common non-Newtonian fluidsluiding power-law, Bing-
ham, and Powell-Eyring models (cf. [FuS00, Chapter 3])hwiit any major modifica-
tions (cf. Remark 4.10). Additional work is obviously nedder fluids of Prandtl-Eyring
type [FuS00, Chapter 4]; we however feel that the speciatrment this (mathematically)
exotic type of fluids deserves lies well outside the scopéisfiaper.

At last, but not the least, we feel it is important to estdbtise existence of solutions,
or construct a disproving counter-example, for the “orddfiproblem of power minimiza-
tion for incompressible Navier—Stokes fluids without the affiltered designs. While we
have shown that this problem looks ill-posed and is probahbuitable for practical nu-
merical computations, knowing whether optimal solutioxistevould greatly contribute
to the deeper understanding of Navier—Stokes flows andtaffedurther developmentin
the area of topology optimization of fluids.
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4.A  Appendix

Proposition 4.27. Under the assumptions on the filter F made in this paper thelieon
tion (4.4)is satisfied.

Proof. Let |x|] = h and define§, = {y € suppF | distly,dsuppF) < h}. |§] <
hs#g_1(0 suppF), where s23_1(0 suppF) is the Hausdorff measure afsupp- (i.e.,
perimeter ofd suppF). Moreover, sup.q F(y) < Lh, whereL is the Lipschitz constant
for F. Thus,

(F * X\ suppe ) () < /Sh F < h2L#_1 (0 SUpfF). o
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Proof (of Proposition 4.11)The function% > v — _#F(p,v) + (26)~1 [y (divv)? is
strongly convex and l.s.c. (in particular, owing to Poircarequality [Bre8B, Corol-
laire IX.19]). Of course, if it is also proper w.r& we get both existence and uniqueness
of solutions. In particular, the last property holds in tlase) € % . O

We will make use of the following statement, which can be fibum the proof
of [Kuf80, Theorem 9.7]. We remark th& needs not to be regular for this to hold
(cf. [Tri78, Section 3.2.3]).

Lemma 4.28. LetQ ¢ RY be a bounded domain. Then, for every 10 there is a cut-off
function F, € C3(Q) such that:
(i) 0<F <1,
(i) Yx € Q: |OF,(x)| < Cih~! for a suitable constant C> 0, and
(i) Fr=10nQ\ Qp, whereQ, = {x € Q| dist(x,dQ) < h}.
We can alwaygand in fact wil) assume thatfe C3 (RY), extending Fby zero orR%\ Q.

The proof of the Proposition 4.12 essentially mimics theopraf [Kuf80, Theo-
rem 9.7]; however, we adapt it to our notation. The most irtgardifference is the
fact that the specific growth condition holds not on the whmandary of our domain but
rather only on part of it, therefore we cannot apply the citexbrem directly.

Proof (of Proposition 4.12) We apply Lemma 4.28 to a s€@ + Br) \ Qo to obtain a
family of “cut-off” functions {F,} C C5((Q+Br) \ Qo), h> 0, and seti, = F,u on Q.

Definingun in such a way implies thaftun} € H3(Q) and clearly gives u§) and the
uniform estimation/g, a (F * p)|un|?> < [ a(F % p)|uj?. Thus it suffices to verifyii) to
obtain(iii ) as well.

DefineQn = {x € Q\ Qo | dist(x,Qp) < h}. Sinceu —up = (1— Fy)u, Ou— Oup =
(1-F)0Ou—-0(1—F,)-u, and suppl — ) C Qy, itis necessary to estimate the differ-
ences only oy,

im flu— up2 <Iim/ 1—F)2ul2 =
h*}+0||u uh|||_2(Q) = heto Qh( Fh) |U| O;

because & F, < 1,u € HY(Q), and|Qp| — 0 ash — +0.
Similarly,

: B 2. g L EN2IAG2 L 201,12
Jim 10U Ounl ) < fim [ (1R 00+ fim [ OR o

and the first limitis zero, as before, sincg®, < 1,u € H1(Q), and|Q,| — 0 ash — +0.
We estimate the last integral as

| ORPuE<c? [ nfuP<cict [ aFpuf  @14)
Qn Qn Qn

where the constar@; is given by Lemma 4.28, and the last inequality holds owing to
the filter growth condition (4.4). Owing to the bound " (p,u) < +oo, the last integral
converges to zero dsdoes, and thus the proof is complete. O

The following fact is very well known for elliptic forms; wenty show that possible
infinite values ifa do not change it.
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Lemma 4.29. For everyp € 7,

H1(Q) > f = argmin !/ Ov-Ov4 — (divv)2+}/ a(Fxp)v-v—(fv) ¢,
veH(Q) 2Jo 20 Jo 2Ja
0
where (-,-) denotes the canonical pairing between the ) and H(Q) is single-
valued, linear, and completely continuous.

Proof. Both existence and uniqueness follow from Proposition/4itli an easy exercise
to verify the linearity off — u(f). Furthermore, comparing objective functionalsiét)

and at0, and using Poincaré inequality [Bre83, Corollaire 1X.19 get the inequality
Hu(f)Ha&(Q) < C{f,u(f)), for someC independent of. Of course, it implies complete

continuity at zero, which owing to the linearity is equivatiéo complete continuity at
every point. ]
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