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ABSTRACT

We present four papers. The common theme is real-rootedness and unimodality of
polynomials occurring in combinatorics.

In the first paper we introduce a new class of labeled posets, sign-graded posets,
which contains the class of graded naturally labeled posets. We prove that the
Eulerian polynomial (W-polynomial) of a sign-graded poset has symmetric and
unimodal coefficients. This verifies the motivating consequence of the Neggers-
Stanley conjecture on real zeros for this class of posets. It also extends a recent
result of Reiner and Welker who proved unimodality of the Eulerian polynomials
of naturally labeled graded posets by associating to each graded poset a simplicial
polytopal sphere. By proving that the Eulerian polynomial of a sign-graded poset
has the right sign at —1 we are able to prove the Charney-Davis conjecture for
these spheres (whenever they are flag).

In the second paper we refine a technique used in a paper by Schur, from 1914, on
polynomials with real zeros. This amounts to an extension of a theorem of Wagner
on Hadamard products of Pdlya frequency sequences. We also apply our results
to polynomials for which the Neggers-Stanley conjecture is known to hold. More
precisely, we settle interlacing properties for E-polynomials of series-parallel posets
and column-strict labeled Ferrers posets.

The third paper is a continuation of the second. It is concerned with linear operators
that preserve the Pdlya frequency property and real-rootedness. We apply our
results to settle some conjectures and open problems in combinatorics proposed by
Béna, Brenti and Reiner-Welker.

In the last paper we provide the first counterexamples to the Neggers-Stanley con-
jecture on real zeros. This conjecture asserts that the polynomial whose coefficients
count the linear extensions of a labeled partially ordered set by their number of de-
scents has real zeros only. We provide a family of labeled posets such that for any
integer M > 0 there is a labeled poset whose corresponding polynomial has more
than M non-real zeros.

Keywords and phrases: Neggers-Stanley conjecture, partially ordered set, linear
extension, Fulerian polynomial, real zeros, unimodality, Pélya frequency sequence
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ON UNIMODALITY AND REAL-ROOTEDNESS OF
POLYNOMIALS IN COMBINATORICS

PETTER BRANDEN

INTRODUCTION

Polynomials with real zeros occur frequently and naturally in analysis, combina-
torics, geometry and probability theory. It is a field with a rich history and math-
ematicians such as Cauchy, Fourier, Gauss, Hermite, Karlin, Laguerre, Newton,
Pélya, Schur, Sturm and Szegé have all contributed to the existing theory. Re-
cently, combinatorialists have taken greater interest in the subject of polynomials
with real zeros and log-concave and unimodal sequences. The reader should consult
the extensive surveys [11, 21] for examples and the rich variety of methods available.

Why should a combinatorialist want to know if the polynomials he/she is cur-
rently working with have real zeros only? One reason is that it entails several
inequalities among the coefficients. The Newton inequalities are the following. Let
ap+ a1z +---+aqz? € R[z] be a polynomial of degree d with real zeros only. Then,
fori=1,2,...,d—1:

The Newton inequalities imply that the sequence {a;}% is log-concave i.e., that
fori=1,2,...,d—1:

a; > ;1041
A sequence {a;}?_, is unimodal if there is an integer ¢, 0 < ¢ < n such that

ap < ap << Ge 2 Aoyl 20t 2 Ag

If the polynomial ag + a1z + - - - + agz? has real zeros only and the coefficients are
nonnegative then {ai}gzo has no internal zeros. The log-concavity property then
implies that {a;}%_, is unimodal. There is an infinite family of equalities among the
coefficients of a polynomial whose zeros are all real and nonpositive. A sequence
of real numbers {a;}$°, is a Pdlya frequency sequence if all minors of the matrix
(ai—j){%=o are nonnegative. The following characterization was first proved by
Edrei [14].

Theorem 1. Let f = ap + a1 + - -+ + agz? € R[z] be a polynomial with ag > 0.
Then the sequence {ag, a1, ...,aq,0,0,...} is a Pdlya frequency sequence if and only
if all the zeros of f are real and nonpositive.

For a treatment of Pdlya frequency sequences occurring in combinatorics the
reader should consult [10].
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1. THE NEGGERS-STANLEY CONJECTURE

One of the most famous conjectures on real zeros in combinatorics is the Neggers-
Stanley conjecture (also known as the Poset conjecture). This conjecture asserts
that certain polynomials associated to posets have real zeros only. Let P be a finite
poset of cardinality p and let w : P — {1,2,...p} be a bijection. The pair (P,w) is
a labeled poset.

A (P,w)-partition is a map o : P — {1,2,3,...} such that

e o is order reversing, that is, if z <y then o(z) > o(y),

o if z < yand w(z) > w(y) then o(z) > o(y).
The theory of (P,w)-partitions was developed by Stanley in [22]. This theory
encompasses topics including ordinary partitions, compositions, plane partitions,
Young tableaux, symmetric functions and quasi-symmetric functions. The number
of (P,w)-partitions o with largest part at most n is a polynomial of degree p in n
called the order polynomial of (P,w) and is denoted Q(P,w;n). Indeed, if ey (P,w)
denotes the number of surjective (P, w)-partitions o : P — {1,2,...,k} we have

Q(P,w;n) = kz;ek(zv,w) (Z)

The (P,w)-Eulerian polynomial, W (P, w;t), is defined by

W (P, w;t)
. n __ s Wy
Z QP,w;n+ 1)t" = Tt
n>0
The set, £L(P,w), of permutations w(z1),w(x2),...,w(xp) where z1,22,...,2, is

a linear extension of P is called the Jordan-Hoélder set of (P,w). A descent in a
permutation @ = w7y ---m, is an index ¢ such that m; > m;11. The number of
descents in 7 is denoted des(w). A fundamental result in the theory of (P,w)-
partitions, see [22], is that the (P,w)-Eulerian polynomial can be written as

W(Pwit)= Y e,
TEL(P,w)

The reason for the name (P,w)-Eulerian polynomial is that when (P,w) is a p
element anti-chain we recover the traditional Eulerian polynomial A,(¢), whose
coefficients count, the number of permutations in the symmetric group on p elements
by the number of descents. The Neggers-Stanley conjecture is the following:

Conjecture 2 (Neggers-Stanley). Let (P,w) be a labeled poset. Then all zeros of
W (P,w;t) are real.

It should be noted that the polynomial E(P,w;t) = > 1_, e, (P,w)t* is related
to W(P,w;t) via
. t
1+ t)’
so E(P,w;t) is real-rooted if and only if W (P, w;t) is. Moreover, all real zeros of
E(P,w;t) are necessarily in the interval [—1,0].

Conjecture 2 was formulated for naturally labeled posets by Neggers [18] in 1978.
(A labeling is natural if < y implies w(z) < w(y)). It was later generalized to
its current form by Stanley in 1986. It has been proved for some special cases by
Brenti [10] and Wagner [25].

E(P,w;t) = t(1 + )P 7' W (P,w
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In [6] we provide the first counterexamples to Conjecture 2. In fact, we prove that
for any integer M > 0 there is a labeled poset (P,w) such that W (P,w;t) has more
than M non-real zeros. Inspired by these counterexamples Stembridge [24] shortly
afterwards conducted a systematic computer search for counterexamples similar
in nature to those in [6]. Stembridge found counterexamples that are naturally
labeled.

Although Conjecture 2 is refuted in its generality the log-concavity and uni-
modality consequences of real-rootedness still remain open. A poset P is graded if
all maximal chains in P have the same length r. Here r is called the rank of P. The
first non-trivial result on unimodality of (P, w)-Eulerian polynomials was produced
by Gasharov [17]. He proved that if (P,w) is a naturally labeled poset of rank at
most 2, then W (P, w;t) is unimodal.

Reiner and Welker [20] later proved that the (P,w)-Eulerian polynomial of any
graded naturally labeled poset has unimodal coefficients. Their proof uses the
theory of f- and h-vectors of simplicial complexes. Let A be a simplicial complex
and let f; = fi(A) denote the number of faces of A of dimension i. The f-vector of
A is the vector (fo, f1,---,fa—1)- Let f—1 = 1. Define the numbers hg, h1, ..., hq
by:

d d
Zhimi(l + )%t = Zfi_w;i. (1)
i=0 =0

The vector (ho,hi,...,hq) is called the h-vector of A. Reiner and Welker [20]
associated to any graded naturally labeled poset (P, w) a simplicial polytopal sphere,
A,y (P), whose h-vector are the coefficients of the (P, w)-Eulerian polynomial. There
is a famous characterization of h-vectors of simplicial polytopal spheres due to
Stanley [23] and Billera-Lee [2, 3] known as the g-theorem. The g-theorem implies,
in particular, that such h-vectors are symmetric and unimodal. Hence, unimodality
of the (P,w)-Eulerian polynomials of graded naturally labeled posets follows from
the g-theorem and Reiner and Welkers construction.

In [7] we study a class of labeled posets which generalizes graded posets. Let
(P,w) be a labeled poset and let E = E(P) = {(z,y) € P x P : x < y} be the
edges of the Hasse-diagram of P. We associate a labeling € : E — {—1,1} to (P,w)

as follows
o < | 1w <w),
—1if w(z) > w(y).
We say that (P,w) is sign-graded, if for every maximal chain zo < 1 < --- < z,
the sum
n
Z e(xi—1, ;)
i=1

is the same. The common value of the above sum is called the rank of (P,w). Note
that if € is identically equal to 1, i.e., if (P,w) is naturally labeled, then a sign-
graded poset with respect to € is just a graded poset. Our main theorem in [7] is
the following.

Theorem 3. Suppose that (P,w) is sign-graded of rank r and let d =p—1—1r.
Then
[d/2] ' '
W(P,w;t) = Z ai(P,w)t' (1 4 )4=2,
i=0
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where a;(P,w) are nonnegative integers.

The polynomials t!(1+¢)9=2! i = 0,1,..., |d/2] are all unimodal and symmetric
with the same center of symmetry d/2. From the nonnegativity of a;(P,w) symme-
try and unimodality thus follow. This extends the theorem of Reiner and Welker
to sign-graded posets. Also, it generalizes the well known fact that the Eulerian
polynomials A, (¢) can be expanded as in Theorem 3, see for example [15].

As a bonus, Theorem 3 also answers a question raised by Reiner and Welker
in [20]. They asked whether the (P,w)-Eulerian polynomials of naturally labeled
graded posets have predictable signs at —1. This is related to the Charney-Davis
conjecture. (A simplicial complex A is flag if the minimal non-faces of A have
cardinality two.)

Conjecture 4 (Charney-Davis, [13]). Let A be a flag simplicial homology (d — 1)-
sphere, where d is even. Then the h-vector, h(A,t), of A satisfies

(-1)¥2h(A,-1) > 0.

As the h-polynomial of, A.,(P), associated to a graded naturally labeled poset
(P,w) is the (P,w)-Eulerian polynomial we have by Theorem 3 that

(—=D)¥2h(Avq, —1) = ags(P,w) >0,

so the Charney-Davis conjecture holds for A.,(P) (whenever it is flag). After the
completion of the first version of [7] we were informed that Gal [16] has conjectured
that if A is a flag simplicial homology (d — 1)-sphere, then its h-vector admits an
expansion

ld/2]

WA 1) =) ai (A (1 + )",

i=0
where a;(A) are nonnegative integers. This would imply the Charney-Davis con-
jecture and Theorem 3 can be seen as supporting evidence for Gal’s conjecture.

So what is left of the Neggers-Stanley conjecture? Log-concavity and unimodal-

ity of the polynomials W (P,w;t) and E(P,w;t) is still open in general. Partial
unimodality for W (P, w;t) for naturally labeled posets was recently obtained by
Athanasiadis [1] and partial unimodality for E(P,w;t) for naturally labeled posets
was recently obtained by Bjorner and Farley [4]. Tt should be mentioned that real-
rootedness is still open for sign-graded posets and in particular for the important
class of naturally labeled graded posets.

2. LINEAR OPERATORS ON POLYNOMIALS PRESERVING REAL-ROOTEDNESS

An important tool in proving that polynomials have real zeros only is to use
results on linear operators that preserve real-rootedness. There are a some classical
results in this area worth mentioning. The Laguerre-Pdlya class of entire functions
consists of all entire functions ¥ that have a representation of the form

o0
\I’(Z) — Cznefa2z2+bz H(]- +tkz)€7)‘tkz, (2)

k=1
where a,b,c,ty, € R, & € N, A € {0,1} and >, |[te[*™ < oco. Note that the
Laguerre-Pélya class includes all polynomials with real zeros. In fact, the members
of the Laguerre-Pdlya class are exactly those entire functions that are uniform limits
on compact subsets of C of polynomials with real zeros. Within the Laguerre-Pdlya
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class, those functions ¥ for which A = ¢ =0, b > 0 and #; > 0 in (2) are said to
be of type I. The functions of type I in the Laguerre-Poélya class are exactly those
entire functions which are uniform limits on compact subsets of C of polynomials
with real negative zeros.

Theorem 5 (Hermite-Poulain-Pélya). Let ¥ = 37 arz" be a formal power se-
ries with coefficients in R and let T : R[z] — R[z] be the linear operator defined
by

T(f) = aof(z) + ar f'(z) + asf"(x) +---,

Then T preserves real-rootedness if and only if U is in the Laguerre-Pdlya class.

A multiplier-sequence is a sequence of real numbers I' = {v;}22, such that the
corresponding linear operator T : R[z] — R[z] defined by

T(z) = vz,
preserves real-rootedness. Such sequences were characterized by Pélya and Schur [19].

Theorem 6 (Pdlya-Schur). Let T' = {v;}2, be a sequence of real numbers, and let

— 7
U(z) = Z k_]TZk’
k=0

be the exponential generating function of I.
Then T is a multiplier-sequence if and only if ¥(2) or ¥(—2) is a function of
type I in the Laguerre-Pdlya class.

The diamond product (of polynomials) was introduced by Wagner in [25, 26] and
is defined by

(k) (k)

This product is important in the theory of (P,w)-partitions. The disjoint union of
two labeled poset (P,w) and (@, i) is the labeled poset (P U Q,w U pu) where P U Q
is the disjoint union of the posets P and @ and w Ul i is any labeling of P U @ such
that

(Wl p)(z) < (WU p)(y)

if w(z) < w(y) or u(xz) < p(y). The importance of the diamond product comes
from the fact that

E(PUQ,wUp;z) = E(P,w;x)0E(P, p; ).

Hence, a sufficient condition for the Neggers-Stanley conjecture to respect disjoint
unions is the following theorem due to Wagner [26].

Theorem 7. Suppose that f and g are polynomials whose zeros all are in the
interval [—1,0]. Then so is the polynomial fOg.

An equivalent form of Theorem 7 was conjectured by Brenti [10].
In [8, 9] we study linear differential operators of the form

N
T =Y Qilx)D", (3)
k=0
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where D = d/dx and Q(z) is a polynomial with real coefficients. The symbol of T'
is the polynomial Fp(z,z) = Effzo Qr(z)z*F € Rlz, z]. In [9] we give sufficient con-
ditions on Fr(z,z) for T to preserve real-rootedness. We say that (3) is monotone
if for all f € R[z] we have degT(f) = deg f + deg Qo and the leading coefficient
of T'(f) has the same sign as the leading coefficient of f. In [9] we prove theorems
similar in flavor to the following.

Theorem 8. Let T = ZkN:() Qr(2)D* be monotone and suppose that

(i) For all £ € R the polynomial Fr(&, z) is real-rooted in z,
(ii) T(ax+ B) is real- and simple-rooted for all a, § € R not both equal to zero.

Then T preserves real-rootedness. Moreover, T'(f) has simple zeros if f has simple
zeros.

If the leading coefficient of Qo in (3) is positive, then one can prove that T must
be monotone in order to preserve real-rootedness, see [5]. In [5] we generalize the
theory developed in [8, 9].

In the above setting we may view fOQg as T'(f) where T has symbol

(k)

g () 4 kk
E (14 z)*2".
= klk!

In [8] we show that if g has all its zeros in the interval [—1,0] then the above
differential operator T does indeed preserve real-rootedness. This amounts to the
following generalization of Theorem 7.

Theorem 9. Suppose that all zeros of g are in the interval [—1,0] and all zeros of
f are real. Then all zeros of fOg are real.

In [8] we also use Theorem 9 to exhibit explicit interlacing properties for the
(P, w)-Eulerian polynomials for classes of labeled posets for which the Neggers-
Stanley conjecture is known to hold.

In [9] we also study the linear transformation € : Rlz] — R[z] which takes (})
to z¥ for k € N. Positivity properties for this linear operator have been studied
in [10, 26]. The importance of this operator stems from the fact that it maps the
order-polynomial Q(P,w;z) to E(P,w;x). In [9] we prove the following theorem.

Theorem 10. Let f be a polynomial of degree d. Suppose that f can be written as
d

f(z) = Z a;zt(1+ z)¢
i=0
where a; > 0. Then all zeros of E(f) are real, simple and located in the interval

[—1,0].

Let the f- and h-polynomial of a simplicial complex A be fa(z) = E;'i:o fic1(A)at
and ha(z) = Z?:o hi(A)z?, respectively. The following striking consequence of
Theorem 10 was observed by Brenti and Welker [12]. The linear transformation
€ maps the f-polynomial of a simplicial complex A to the f-polynomial of the
barycentric subdivision, sd(A), of A. That the f-polynomial can be written as in
Theorem 10 is by (1) equivalent to saying that the h-polynomial of A has non-
negative coefficients. In other words if the h-polynomial of a simplicial complex
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A has nonnegative coefficients (for example if A is Cohen-Macaulay), then the f-
polynomial and h-polynomial of the barycentric subdivision sd(A) have real zeros
only.

In [9] we also use the theory developed there on linear transformations preserv-
ing real-rootedness to settle some conjectures and open problems in combinatorics
raised by Boéna, Brenti and Reiner-Welker.
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SIGN-GRADED POSETS, UNIMODALITY OF W-POLYNOMIALS
AND THE CHARNEY-DAVIS CONJECTURE

PETTER BRANDEN

Dedicated to Richard Stanley on the occasion of his 60th birthday

ABSTRACT. We generalize the notion of graded posets to what we call sign-
graded (labeled) posets. We prove that the W-polynomial of a sign-graded
poset is symmetric and unimodal. This extends a recent result of Reiner and
Welker who proved it for graded posets by associating a simplicial polytopal
sphere to each graded poset. By proving that the W-polynomials of sign-
graded posets has the right sign at —1, we are able to prove the Charney-Davis
conjecture for these spheres (whenever they are flag).

1. INTRODUCTION AND PRELIMINARIES

Recently Reiner and Welker [10] proved that the W-polynomial of a graded
poset (partially ordered set) P has unimodal coefficients. They proved this by
associating to P a simplicial polytopal sphere, A.,(P), whose h-polynomial is the
W-polynomial of P, and invoking the g-theorem for simplicial polytopes (see [15,
16]). Whenever this sphere is flag, i.e., its minimal non-faces all have cardinality
two, they noted that the Neggers-Stanley conjecture implies the Charney-Davis
conjecture for A.,(P). In this paper we give a different proof of the unimodality of
W -polynomials of graded posets, and we also prove the Charney-Davis conjecture
for A.;(P) (whenever it is flag). We prove it by studying a class of labeled posets,
which we call sign-graded posets, of which the class of graded naturally labeled
posets is a sub-class.

In this paper all posets will be finite and non-empty. For undefined terminology
on posets we refer the reader to [13]. We denote the cardinality of a poset P with
the letter p. Let P be a poset and let w : P — {1,2,...,p} be a bijection. The
pair (P,w) is called a labeled poset. If w is order-preserving then (P,w) is said to
be naturally labeled. A (P,w)-partition is a map o : P — {1,2,3,...} such that

e o is order reversing, that is, if z <y then o(z) > o(y),
o if z < yand w(z) > w(y) then o(z) > o(y).

The theory of (P,w)-partitions was developed by Stanley in [14]. The number of
(P,w)-partitions ¢ with largest part at most n is a polynomial of degree p in n
called the order polynomial of (P,w) and is denoted (P, w;n). The W-polynomial

2000 Mathematics Subject Classification. 06A07, 05E99, 13F55.
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of (P,w) is defined by

n_ W(Pw;t)
n>0
The set, L(P,w), of permutations w(z1),w(x2),...,w(xp) where z1,22,...,2, is

a linear extension of P is called the Jordan-Hoélder set of (P,w). A descent in a
permutation T = mmy---m, is an index 1 < ¢ < p — 1 such that m; > m1. The
number of descents in 7 is denoted des(w). A fundamental result in the theory of
(P, w)-partitions, see [14], is that the W-polynomial can be written as

W(Pwit)= Y e,
TEL(P,w)

The Neggers-Stanley conjecture is the following:

Conjecture 1.1 (Neggers-Stanley). Let (P,w) be a labeled poset. Then W (P, w;t)
has real zeros only.

This was first conjectured by Neggers [8] in 1978 for natural labelings and by
Stanley in 1986 for arbitrary labelings. The conjecture has been proved for some
special cases, see [1, 2, 10, 17] for the state of the art. If a polynomial has only
real non-positive zeros then its coefficients form a unimodal sequence. For the W-
polynomials of graded posets unimodality was first proved by Gasharov [7] whenever
the rank is at most 2, and as mentioned by Reiner and Welker [10] for all graded
posets.

For the relevant definitions concerning the topology behind the Charney-Davis
conjecture we refer the reader to [3, 10, 16].

Conjecture 1.2 (Charney-Davis, [3]). Let A be a flag simplicial homology (d—1)-
sphere, where d is even. Then the h-vector, h(A,t), of A satisfies

(=1)%2h(A, —1) > 0.

Recall that the nth Eulerian polynomial, A, (z), is the W-polynomial of an anti-
chain of n elements. The Eulerian polynomials can be written as

[(n=1)/2]
A,(z) = Z At (14 )" 20
i=0
where a,,; is a nonnegative integer for all i, see [5, 11]. From this expansion we
see immediately that A, (z) is symmetric and that the coefficients in the standard
basis are unimodal. It also follows that (—1)("=1/24,(-1) > 0.

We will in Section 2 define a class of labeled poset whose members we call sign-
graded posets. This class includes the class of naturally labeled graded posets. In
Section 4 we show that the W-polynomial of a sign-graded poset (P,w) of rank r
can be expanded, just as the Eulerian polynomials, as

L(p—r-1)/2]
W(P,w;t) = Z ai(Pw)t'(1 4+ t)yp— 1728 (1.2)
i=0
where a;(P,w) are nonnegative integers. Hence, symmetry and unimodality follow,
and W (P,w;t) has the right sign at —1. Consequently, whenever the associated
sphere A.,(P) of a graded poset P is flag the Charney-Davis conjecture holds for
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A,y (P). We also note that all symmetric polynomials with non-positive zeros only,
admit an expansion such as (1.2). Hence, that W (P, w;t) has such an expansion can
be seen as further evidence for the Neggers-Stanley conjecture. After the completion
of the first version of this paper we were informed that S. Gal [6] has conjectured
that if A is flag simplicial homology (d — 1)-sphere, then its h-vector admits an
expansion

ld/2]

h(A 1) =) ai (A (1 + 1),

i=0
where a;(A) are nonnegative integers. This would imply the Charney-Davis con-
jecture and (1.2) can be seen as further evidence for Gal’s conjecture.

In [9] the Charney-Davis quantity of a graded naturally labeled poset (P,w) of
rank 7 was defined to be (—1)P~1=")/21W (P,w; —1). In Section 5 we give a com-
binatorial interpretation of the Charney-Davis quantity as counting certain reverse
alternating permutations. Finally in Section 7 we characterize sign-graded posets
in terms of properties of order polynomials.

2. SIGN-GRADED POSETS

Recall that a poset P is graded if all maximal chains in P have the same length.
If P is graded one may associate a rank function p : P — N by letting p(z) be the
length of any saturated chain from a minimal element to . The rank of a graded
poset P is defined as the length of any maximal chain in P. In this section we will
generalize the notion of graded posets to labeled posets.

Let (P,w) be a labeled poset. An element y covers x, written z < y, if z < y
and r < z <y forno z € P. Let E = E(P) = {(z,y) € P x P : z < y} be the
covering relations of P. We associate a labeling € : E — {—1,1} of the covering
relations defined by

B 1if w(z) <w(y),
e(z,y) = {_1 if w(z) > wy).

If two labelings w and A of P give rise to the same labeling of E(P) then it is easy
to see that the set of (P, w)-partitions and the set of (P, A)-partitions are the same.
In what follows we will often refer to € as the labeling and write (P, €).

Definition 2.1. Let (P,w) be a labeled poset and let € be the corresponding
labeling of E(P). We say that (P,w) is sign-graded, and that P is e-graded (and
w-graded) if for every maximal chain g < x1 < -+ < x, the sum

n

Z G(ZEi_l 5 CUZ)

i=1

is the same. The common value of the above sum is called the rank of (P,w) and
is denoted ().

We say that the poset P is e-consistent (and w-consistent) if for every y € P the
principal order ideal Ay = {z € P : z < y} is e,-graded, where ¢, is € restricted
to E(Ay). The rank function p : P — Z of an e-consistent poset P is defined by
p(z) = r(e;)- Hence, an e-consistent poset P is e-graded if and only if p is constant
on the set of maximal elements.
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FIGURE 1. A sign-graded poset, its two labelings and the corre-
sponding rank function.
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See Fig. 1 for an example of a sign-graded poset. Note that if € is identically
equal to 1, i.e., if (P,w) is naturally labeled, then a sign-graded poset with respect
to € is just a graded poset. Note also that if P is e-graded then P is also —e-graded,
where —e¢ is defined by (—e¢)(z,y) = —¢(z,y). Up to a shift, the order polynomial
of a sign-graded labeled poset only depends on the underlying poset:

Theorem 2.2. Let P be e-graded and p-graded. Then

et ") o e - "),

Proof. Let p. and p, denote the rank functions of (P,e) and (P, p) respectively,
and let A(e) denote the set of (P, e)-partitions. Define a function & : A(e) — QF
by ¢o(z) = o(z) + A(z), where

1) = p@) 100 = pula)

Al ===~ 2
TABLE 1
[e(e,y) [ulz,y) [0 [A [ &0 |
1 1 o(z) > o(y) | Alz) = Ay) fo(x) > Eo(y)
1 1 o(z) >o(y) | Alx) = A(y) + 1 | Eo(z) > Eo(y)
1 1 o(z) >o(y) | Alx) = A(y) — 1 | Eo(z) > Eo(y)
-1 -1 o(z) >o(y) | Alz) = A(y) {o(x) > Eo(y)

The four possible combinations of labelings of a covering-relation (z,y) € E are
given in Table 1.

According to the table &0 is a (P, u)-partition provided that £o(z) > 0 for all
x € P. But &0 is order-reversing so it attains its minima on maximal elements
and if z is a maximal element we have £o(z) = o(z). Hence & : A(e) — A(u). By
symmetry we also have a map 1 : A(u) — A(e) defined by

r(p) = pu(x) _ 1r(e) = pe(2)
2 2

no(z) = o(x) +
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Hence, n = ¢! and ¢ is a bijection.

Since o and £o are order-reversing they attain their maxima on minimal ele-
ments. But if z is a minimal element then o (z) = o(z) + w, which gives

QP i) = AP ein + "D,

for all nonnegative integers n and the theorem follows. d
Theorem 2.3. Let P be e-graded. Then
Q(P,e;t) = (=1)PQP, e, —t — r(e)).

Proof. We have the following reciprocity for order polynomials, see [14]:

Q(P, —¢;t) = (—1)PQ(P, €; —t). (2.1)
Note that r(—e) = —r(e), so by Theorem 2.2 we have:

Q(P,—¢;t) = QP e;t —r(e)),
which, combined with (2.1), gives the desired result. O

Corollary 2.4. Let P be an e-graded poset. Then W (P, €;t) is symmetric with
center of symmetry (p —r(e) — 1)/2. If P is also p-graded then

W (P, p; t) =t O 2 (P e: 1),

Proof. Suppose that W (P, €;t) = 3,5 wi(P, €)t'. From (1.1) it follows that Q(P, e;t) =
> iso wi(Pe) (Hp;l*i). Let r = r(¢). Theorem 2.3 gives:

QAP6t) = Y wi(Pe)(-1) (‘t —r4p—1- z)

i>0 p
" .
_ Zwi(P,€)< +7“+’L>
i>0 p
t+p—1—1
= pr—r—l—i(Pa €) ( )7
i>0 p

50 w; (P, €) = wp—r—1—;(P, €) for all i, and the symmetry follows. The relationship
between the WW-polynomials of (P, ¢) and (P, u) follows from Theorem 2.2 and the
expansion of order-polynomials in the basis (t“’;l_‘). m|

We say that a poset P is parity graded if the size of all maximal chains in P
have the same parity. Also, a poset is P is parity consistent if for all x € P the
order ideal A, is parity graded. These classes of posets were studied in [12] in a
different context. The following theorem tells us that the class of sign-graded posets
is considerably greater than the class of graded posets.

Theorem 2.5. Let P be a poset. Then
e there exists a labeling € : E — {—1,1} such that P is e-consistent if and
only if P is parity consistent,
e there exists a labeling € : E — {—1,1} such that P is e-graded if and only
if P is parity graded.
Moreover, the labeling € can be chosen so that the corresponding rank function has
values in {0,1}.
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Proof. Tt suffices to prove the equivalence regarding parity graded posets. It is clear
that if P is e-graded then P is parity graded.

Let P be parity graded. Then, for any = € P, all saturated chains from a
minimal element to z have the same length modulo 2. Hence, we may define a
labeling € : E(P) — {—1,1} by €(z,y) = (—=1)“®), where {(z) is the length of any
saturated chain starting at a minimal element and ending at x. It follows that P
is e-graded and that its rank function has values in {0,1}. a

We say that w : P — {1,2,...,p} is canonical if (P,w) has a rank-function p
with values in {0, 1}, and p(z) < p(y) implies w(z) < w(y). By Theorem 2.5 we
know that P admits a canonical labeling if P is e-consistent for some e.

3. THE JORDAN-HOLDER SET OF AN e-CONSISTENT POSET

Let P be w-consistent. We may assume that w(z) < w(y) whenever p(x) < p(y).
This is because any labeling w' of P for which p(z) < p(y) implies w'(z) < w'(y)
will give rise to the same labeling of E(P) as (P,w).

Suppose that z,y € P are incomparable and that p(y) = p(z) + 1. Then the
Jordan-Holder set of (P,w) can be partitioned into two sets: One where in all
permutations w(z) comes before w(y) and one where w(y) always comes before
w(z). This means that £(P,w) is the disjoint union

L(P,w) = L(P',w) U L(P",w), (3.1)

where P' is the transitive closure of EU {z < y}, and P" is the transitive closure
of EU{y < z}.

Lemma 3.1. With definitions as above P' and P" are w-consistent with the same
rank-function as (P,w).

Proof. Let ¢ : zg < 21 < --- < 2z, = z be a saturated chain in P, where zq is a
minimal element of P”. Of course zp is also a minimal element of P. We have to

prove that

k—1

p(z) =D € (2, 2i11),

i=0

where € is the labeling of E(P") and p is the rank-function of (P,w).
All covering relations in P, except y < z, are also covering relations in P. If y

and z do not appear in ¢, then c is a saturated chain in P and there is nothing to
prove. Otherwise

C:Yo <" <RY =Y <T=Tjp1 < Tjy2 <+ < T = 2.

Note that if so < s1 < --+ < s¢ is any saturated chain in P then Zf;é €(si, 8i41) =
p(se) — p(so)- Since yo < -+ <y; =y and x = Tj11 < Tyyo < -+ < T = z are
saturated chains in P we have

k

|
—

"(zi,ziq1) = ply) +€"(y,x) + p(2) — p(z)

-
Il
<)

= ply) —1—p(x) + p(2)
= p(2),

as was to be proved. The statement for (P’,w) follows similarly. O
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We say that a w-consistent poset P is saturated if for all z,y € P we have that
x and y are comparable whenever |p(y) — p(z)| = 1. Let P and @ be posets on the
same set. Then @) extends P if © < y whenever x <p y.

Theorem 3.2. Let P be a w-consistent poset. Then the Jordan-Holder set of (P,w)
is uniquely decomposed as the disjoint union

L(P,w) =] |£(Q,w),
Q

where the union is over all saturated w-consistent posets () that extend P and have
the same rank-function as (P,w).

Proof. That the union exhausts £(P,w) follows from (3.1) and Lemma 3.1. Let
@1 and Q2 be two different saturated w-consistent posets that extend P and have
the same rank-function as (P,w). We may assume that (2 does not extend Q;.
Then there exists a covering relation z < y in ¢ such that z £ y in Q2. Since
lp(z) — p(y)| = 1 we must have y < z in Q2. Thus w(z) precedes w(y) in any
permutation in £(Q1,w), and w(y) precedes w(x) in any permutation in £(Q2,w).
Hence, the union is disjoint and unique. O

We need two operations on labeled posets: Let (P,¢) and (@, u) be two labeled
posets. The ordinal sum, P ® @Q, of P and () is the poset with the disjoint union
of P and @ as underlying set and with partial order defined by z <y if x <p y or
z<gy,orz € Py Q. Define two labelings of E(P & Q) by

(e®1p)(z,y) = e(z,y)if (z,y) € E(P),
(e®1 p)(z,y) = plz,y)if (z,y) € E(Q) and
(e ®1 u)(z,y) = 1 otherwise.
(e®_1p)(z,y) = e(z,y)if (z,y) € E(P),
(ed-1p)(z,y) = plzy)if (z,y) € E(Q) and
(e®d_1 p)(z,y) = —1 otherwise.

With a slight abuse of notation we write P &1  when the labelings of P and
() are understood from the context. Note that ordinal sums are associative, i.e.,
(P®41Q)®+1 R = PD11(Q®+1 R), and preserve the property of being sign-graded.
The following result is easily obtained by combinatorial reasoning, see [2, 17]:

Proposition 3.3. Let (P,w) and (Q,v) be two labeled posets. Then
W(P & Q,w &1 v;t) = W(P,w;)W(Q,v;1)

and
W(P & Q,wd_v;t) =tW(P,w; ) W(Q, v; t).

Proposition 3.4. Suppose that (P,w) is a saturated canonically labeled w-consistent
poset. Then (P,w) is the direct sum

(Pyw) = Ao ®1 A1 ®-1 A2 &1 A3 ®—1 -+~ D1 Ay,
where the A;s are anti-chains.

Proof. Let m € L(P,w). Then we may write 7 as 7 = wow; - - - wy, where the w;s
are maximal words with respect to the property: If a and b are letters of w; then
p(w™t(a)) = p(w™1(b)). Hence m € L(Q,w) where

(Q,w) =Ag D1 A1 D1 A ®1 A3 Dy - D41 Ap,
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and A; is the anti-chain consisting of the elements w™!(a), where a is a letter of
w; (A; is an anti-chain, since if # < y where z,y € A; there would be a letter in 7
between w(x) and w(y) whose rank was different than that of z,y). Now, (Q,w) is
saturated so P = Q. O

Note that the argument in the above proof also can be used to give a simpler
proof of Theorem 3.2 when w is canonical.

4. THE W-POLYNOMIAL OF A SIGN-GRADED POSET

The space S? of symmetric polynomials in R[] with center of symmetry d/2 has
a basis

By = {t'(1+ )"} 7.
If h € S? has nonnegative coefficients in this basis it follows immediately that the
coefficients of h in the standard basis are unimodal. Let Sj_ be the nonnegative
span of By. Thus Sj_ is a cone. Another property of Sj_ is that if h € Si then it
has the correct sign at —1 i.e.,
(=1)**n(-1) > 0.
Lemma 4.1. Let ¢,d € N. Then
§est c st
c qod +d
Stsy c S
Suppose further that h € S® has positive leading coefficient and that all zeros of h
are real and non-positive. Then h € Sﬁf_.

Proof. The inclusions are obvious. Since ¢ € S7 and (1 +t) € S} we may assume
that none of them divides h. But then we may collect the zeros of h in pairs
{0,071}, Let Ag = —6 —0~1. Then

h=C [ (#+ Aot + 1),
f<—1
where C' > 0. Since Ay > 2 we have
24+ Apt+1=(t+1)°+ (4 — 2)t € 57,
and the lemma follows. O

We can now prove our main theorem.

Theorem 4.2. Suppose that (P,w) is a sign-graded poset of rank . Then W (P, w;t)
srrh

Proof. By Corollary 2.4 and Lemma 2.5 we may assume that (P,w) is canonically
labeled. If @ extends P then the maximal elements of () are also maximal elements
of P. By Theorem 3.2 we know that

W(P,wit) = W(Q,w;t),
Q

where (Q,w) is saturated and sign-graded with the same rank function and rank
as (P,w). The W-polynomials of anti-chains are the Eulerian polynomials, which
have real nonnegative zeros only. By Propositions 3.3 and 3.4 the polynomial
W(Q,w;t) has only real non-positive zeros so by Lemma 4.1 and Corollary 2.4 we
have W (Q,w;t) € Si_r_l. The theorem now follows since Si_r_l is a cone. O
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Corollary 4.3. Let (P,w) be sign-graded of rank r. Then W (P,w;t) is symmetric
and its coefficients are unimodal. Moreover, W (P,w;t) has the correct sign at —1,
1.€.,

(=)= 2 W (P w; —1) > 0.

Corollary 4.4. Let P be a graded poset. Suppose that Aqq(P) is flag. Then the
Charney-Davis congecture holds for Aq,(P).

Theorem 4.5. Suppose that P is an w-consistent poset and that |p(z) — p(y)| <1
for all maximal elements x,y € P. Then W (P,w;t) has unimodal coefficients.

Proof. Suppose that the ranks of maximal elements are contained in {r,r + 1}. If
(@ is any saturated poset that extends P and has the same rank function as (P,w)
then @ is w-graded of rank r or r + 1. By Theorems 3.2 and 4.2 we know that

W(P,wit) = W(Q,w;t),
Q

where W (Q, w; t) is symmetric and unimodal with center of symmetry at (p—1—r)/2
or (p —2—1r)/2. The sum of such polynomials is again unimodal. O

5. THE CHARNEY-DAVIS QUANTITY

In [9] Reiner, Stanton and Welker defined the Charney-Davis quantity of a graded
naturally labeled poset (P,w) of rank r to be

CD(P,w) = (=1)P=1="2W (P, w; —1).

We define it in the exact same way for sign-graded posets. Since, by Corollary
2.4, the particular labeling does not matter we write CD(P). Let # = myma -+ - Ty
be any permutation. We say that 7 is alternating if m > 7 < w3 > --- and
reverse alternating if m; < mg > w3 < ---. Let (P,w) be a canonically labeled
sign-graded poset. If 7 € £(P,w) then we may write 7 as m = wow; - - - wg where
w; are maximal words with respect to the property: If a and b are letters of w; then
p(w™(a)) = p(w™1(b)). The words w; are called the components of w. The following
theorem is well known, see for example [5, 11, 13], and gives the Charney-Davis
quantity of an anti-chain.

Proposition 5.1. Let n > 0 be an integer. Then (—1)""1D/2A4, (=1) is equal to
0 if n is even and equal to the number of (reverse) alternating permutations of the
set {1,2,...,n} if n is odd.

Theorem 5.2. Let (P,w) be a canonically labeled sign-graded poset. Then the
Charney-Davis quantity, CD(P), is equal to the number of reverse alternating per-
mutations in L(P,w) such that all components have an odd number of letters.

Proof. Tt suffices to prove the theorem when (P,w) is saturated. By Proposition
3.4 we know that

(Pyw) = Ao ®1 A1 ®-1 A2 &1 A3 ®—1 -+~ D1 Ay,

where the A;s are anti-chains. Thus CD(P) = CD(Ap)CD(A;)---CD(A). Let
T = wow; - --wg € L(P,w) where w; is a permutation of w(A;). Then 7 is a reverse
alternating permutation such that all components have an odd number of letters
if and only if, for all ¢, w; is reverse alternating if ¢ is even and alternating if ¢

is odd. Hence, by Proposition 5.1, the number of such permutations is indeed
CD(Ag)CD(A;)---CD(Ayg). O
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If h(t) is any polynomial with integer coefficients and h(t) € S, it follows that
h(t) has integer coefficients in the basis #*(1 + ¢)?=2!. Thus we know that if (P,w)
is sign-graded of rank r, then

L(p—r—1)/2]
W(P,w;t) = Z ai(Pw)t'(1 4+ )P~ 1728
=0
where a;(P,w) are nonnegative integers. By Theorem 5.2 we have a combinatorial
interpretation of the a(,_,_1)/2(P,w). A similar but more complicated interpreta-
tion of a;(P,w), i =0,1,...,[(p —r — 1)/2] can be deduced from Proposition 3.4
and the work in [5, 11]. We omit this.

6. THE RIGHT MODE

Let f() = ap+ayz+- - -+aqz? be a polynomial with real coefficients. The mode,
mode(f), of f is the average value of the indices ¢ such that a; = max{a; }?:0. One
can easily compute the mode of a polynomial with real non-positive zeros only:

Theorem 6.1. [4] Let f be a polynomial with real non-positive zeros only and with
positive leading coefficient. Then

‘f’(l)
f(1)
It is known, see [2, 14, 17], that

— mode(f)‘ <1

W(P,w;z) =Y ei(Pw)a' " (1 — )",

i=1
where e;(P,w) is the number of surjective (P,w)-partitions o : P — {1,2,...,i}. A
simple calculation gives
"(Pw;1 _1(P
WPwil) _, 4 _epalPw) (6.1)
W(P,w;1) ep(P,w)

If P is w-graded of rank » we know by Theorem 4.2 that mode(W (P,w;z)) =
(p—r —1)/2. The Neggers-Stanley conjecture, Theorem 6.1 and (6.1) suggest that
2ep_1(P,w) = (p+r —1)ep(P,w). Stanley [14] proved this for graded posets and it
generalizes to sign-graded posets:

Proposition 6.2. Let P be w-graded of rank r. Then
26P—1(P7w) = (p+ r—= 1)€P(P7w)'
Proof. The identity follows when expanding Q(P, w;t) in powers of ¢ using Theorem
2.3. See [14, Corollary 19.4] for details. O
7. A CHARACTERIZATION OF SIGN-GRADED POSETS

Here we give a characterization of sign-graded posets along the lines of the char-
acterization of graded posets given by Stanley in [14]. Let (P, ¢) be a labeled poset.
Define a function 6 =6, : P — Z by

L
§(z) = max{ze(x,»,l,xi)},
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where ¢ = xg < 1 < -+ < xy is any saturated chain starting at z and ending at a
maximal element z¢. Define a map ® = ®_ : A(e) — ZF by

do =0 + 6.

We have
6(x) > 6(y) + e(x,y). (7.1)
This means that ®o(z) > ®o(y) if e(x,y) = 1 and ®o(z) > ®o(y) if e(z,y) = —1.
Thus ®o is a (P, —e)-partition provided that ®o(xz) > 0 for all z € P. But ®o
is order reversing so it attains its minimum at maximal elements and for maximal
elements, z, we have ®o(z) = o(z). This shows that & : A(e) — A(—e¢) is an
injection.
The dual, (P*,€e*), of a labeled poset (P,¢) is defined by z <p« y if and only
if y <p+« x, with labeling defined by €*(y,z) = —e(z,y). We say that P is dual
e-consistent if P* is e*-consistent.

Proposition 7.1. Let (P, €) be labeled poset. Then ®. : A(e) — A(—¢) is a bijection
if and only if P is dual e-consistent.

Proof. If P is dual e-consistent then P is also dual —e-consistent and §_.(z) =
—0c(z) for all z € P. Thus the if part follows since the inverse of ®. is & _..

For the only if direction note that P is dual e-consistent if and only if for all
(z,y) € E we have

() =0(y) + €(z,y)

Hence, if P is not dual e-consistent then by (7.1), there is a covering relation
(z0,y0) € E such that either e(xg,yo) = 1 and §(zo) > d(yo) + 2 or €(xo,yo) = —1
and §(zo) > 6(yo)-

Suppose that €(zg,yo) = 1. It is clear that there is a ¢ € A(—¢) such that
o(xzo) = o(yo) + 1. But then

o(zo) = 0(z0) < o(yo) = 6(yo) — 1,

so o —4 ¢ Ale).
Similarly, if €(xg,y0) = —1 then we can find a partition o € A(—¢) with o (o) =
o(yo), and then

a(zo) — d(z0) < a(yo) — (yo),
soo—4 ¢ Ale). O

Let (P, €) be a labeled poset. Define r(e) by
‘
r(e) = max{z €(Ti—1,x;) 1 Lo < &1 < --- < 2 is maximal}.
i=1
We then have:
max{®Po(z) :z € P} = max{o(z)+ d.(x): z is minimal}
max{o(z) : © € P} + r(e).

IN

So if we let A, (€) be the (P, ¢)-partitions with largest part at most n we have that
®. : An(e) = Apgr(e)(—€) is an injection. A labeling € of P is said to satisfy the
A-chain condition if for every x € P there is a maximal chain ¢: zg < 21 < -+ < oy
containing x such that Zle e(xi—1, i) = r(€).
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Lemma 7.2. Suppose that n is a nonnegative integer such that Q(P,e;n) # 0. If
Q(P,—¢e;n+r(€)) = QP ¢e;n)
then € satisfies the \-chain condition.

Proof. Define 6* : P — Z by

‘
0 (z) = max{z €(@i—1,2;) 1o <X <+ < Ty =1},
i=1
where the maximum is taken over all maximal chains starting at a minimal element
and ending at x. Then
0(x) + 0% (x) <r(e) (7.2)
for all z, and e satisfies the A-chain condition if and only if we have equality in (7.2)
for all z € P. Tt is easy to see that the map ®* : A, (€) = Apyp(c)(—€) defined by

b*o(z) = o(x) +r(e) — 5*(x),

is well-defined and is an injection. By (7.2) we have ®o(z) < ®*o(z) for all o
and all x € P, with equality if and only if z is in a maximal chain of maximal
weight. This means that in order for ® : A, (¢) = Ay, 4.(c)(—€) to be a bijection it
is necessary for € to satisfy the A-chain condition. O

Theorem 7.3. Let € be a labeling of P. Then
AP, e;1) = (~1)PQ(P, & —t — 1(e))
if and only if P is e-graded of rank r(e).

Proof. The ”if” part is Theorem 2.3, so suppose that the equality of the theorem
holds. By reciprocity we have

(—1)PQ(P,e; —t — r(e)) = Q(P, —¢€;t + 7(e)),

and since ®. : A, () = Anir()(—€) is an injection it is also a bijection. By
Proposition 7.1 we have that P is dual e-consistent and by Lemma 7.2, we have
that all minimal elements are members of maximal chains of maximal weight. In
other words P is e-graded. O

It should be noted that it is not necessary for P to be e-graded in order for
W (P, ¢;t) to be symmetric. For example, if (P, ¢) is any labeled poset then the W-
polynomial of the disjoint union of (P, €) and (P, —e¢) is easily seen to be symmetric.
However, we have the following:

Corollary 7.4. Suppose that
Q(P,G,t) = Q(P7 _€7t + S):
for some s € Z.. Then —r(—¢) < s < r(€), with equality if and only if P is e-graded.

Proof. We have an injection ®. : Ay (€) = Apqr()(—€). This means that s < r(e).
The lower bound follows from the injection ®_., and the statement of equality
follows from Theorem 7.3. O
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ON OPERATORS ON POLYNOMIALS PRESERVING
REAL-ROOTEDNESS AND THE NEGGERS-STANLEY
CONJECTURE

PETTER BRANDEN

ABsTrACT. We refine a technique used in a paper by Schur on real-rooted
polynomials. This amounts to an extension of a theorem of Wagner on Hadamard
products of Polya frequency sequences. We also apply our results to polynomi-
als for which the Neggers-Stanley Conjecture is known to hold. More precisely,
we settle interlacing properties for E-polynomials of series-parallel posets and
column-strict labelled Ferrers posets.

1. INTRODUCTION

Several polynomials associated to combinatorial structures are known to have
real zeros. Often one can say more about the location of the zeros than just that they
are on the real axis. The matching polynomial of a graph is not only real-rooted, but
it is known that the matching polynomial of the graph obtained by deleting a vertex
of G interlaces that of G [5]. The same is true for the characteristic polynomial of
graph (see e.g., [3]). If A is a nonnegative matrix and A’ is the matrix obtained by
either deleting a row or a column, then the rook polynomial of A' interlaces that of
A (see [5, 8]).

The Neggers-Stanley Conjecture asserts that certain polynomials associated to
posets, see Section 3, have real zeros; see [1, 10, 14] for the state of the art. For
classes of posets for which the conjecture is known to hold we will exhibit explicit
interlacing relationships.

The first part of this paper is concerned with operators on polynomials which
preserve real-rootedness. The following classical theorem is due to Schur [11]:

Theorem 1 (Schur). Let f =ap+ar1x+- -+ apz™ and g =bo + b1z + -+ bpx™
be polynomials in R[z]. Suppose that f and g have only real zeros and that the zeros
of g are all of the same sign. Then the polynomial

fog:= Zk!akbka?k,
k

has only real zeros. If agbg # 0 then all the zeros of f © g are distinct.

In this paper we will refine the technique used in Schur’s proof of the theorem
to extend a theorem of Wagner [15, Theorem 0.3]. The diamond product of two
polynomials f and g is the polynomial

() (2) o™ (x
f<>g=Zf ()gT!()x”(ar+1)”.

n:
n>0

Here f(") () denotes the nth derivative of f(z). Brenti [1] conjectured an equivalent
form of Theorem 2 and Wagner proved it in [15, Theorem 0.3].

Theorem 2 (Wagner). If f,g € Rlz] have all their zeros in the interval [—1,0]
then so does f<Og.
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This theorem has important consequences in combinatorics [14], and it also has
implications to the theory of total positivity [15]. Namely, that if {f(i)}32, and
{g(i)}52, are Polya frequency sequences where f and g are polynomials, then the
sequence {f(:)g(i)}2, is also a Polya frequency sequence. This is not true when
the requirement that f and g should be polynomials is dropped.

In this paper we will refine the technique used in Schur’s proof of Theorem 1 to
extend Theorem 2 as follows:

Theorem 3. Let h be [—1,0]-rooted and let f be real-rooted.
(a) Then fOh is real-rooted, and if g < f then

gOh = fOh.
(b) Ifh is (—1,0)- and simple-rooted and f is simple-rooted then fOh is simple-
rooted and
gOh < fOh,
forall g < f.

Here, the symbols < and < denotes the interlacing- and the strict interlacing
property, respectively (see Section 2 for the precise definition). Theorem 2 thus
follows from part (a) of Theorem 14 since the hypotheses is weaker (we don’t
require both polynomials to be [—1, 0]-rooted) and the conclusion stronger.

In the second part of the paper we settle interlacing properties for E-polynomials
of series-parallel posets and column-strict labelled Ferrers posets.

We will implicitly use the fact that the zeros of a polynomial are continuous
functions of the coefficients of the polynomial. In particular, the limit of real-
rooted polynomials will again be real-rooted. For a treatment of these matters we
refer the reader to [7].

2. STURM SEQUENCES AND LINEAR OPERATORS PRESERVING REAL-ROOTEDNESS

Let f and g be real polynomials. We say that f and g alternate if f and g are
real-rooted and either of the following conditions hold:

(A) deg(g) = deg(f) = d and

a1 <61 < < Ba-1 L ag < Ba,

where a; < --- < agand f; <--- <[4 are the zeros of f and g respectively
(B) deg(f) = deg(g) +1=d and

a; <pp<ay<---< B <ay

where a7 < -+ < ag and f; < --- < 41 are the zeros of f and ¢
respectively.

If all the inequalities above are strict then f and g are said to strictly alternate.
Moreover, if f and g are as in (B) then we say that g interlaces f, denoted g < f.
In the strict case we write g < f. If the leading coefficient of f is positive we say
that f is standard.

For z € Rlet T, : R[z] — R[z] be the translation operator defined by T, (f(z)) =
f(z + z). For any linear operator ¢ : Rlz] — Rlz] we define a linear transform
Ly : Rlz] — Rz, 2] by

= > (")) (1)
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Definition 4. Let ¢ : Rlz] — R[z] be a linear operator. Define a function d :
R[z] — N U {—o0} by the following. If #(f™) = 0 for all n € N, let dy(f) = —oc.
Otherwise, let ds(f) be the smallest integer d such that ¢(f(™) = 0 for all n > d.
Note that dy(f) < deg(f) for all f € R[z].

The set /T (¢) C Rlz] is defined as follows: If dy(f) = —o0, or dy(f) = 0 and
¢(f) is standard real- and simple-rooted, then f € &% (¢). Moreover, f € @+ (¢)
if d =ds(f) > 1 and all of the following conditions are satisfied:

(i) o(f?) is standard for all i and deg(p(f0 D)) = deg(op(fP)) +1 for 1 <
i <d,
(ii) ¢(f) and ¢(f') have no common real zero,
(iii) ¢(f) < o(f1471),
(iv) for all £ € R the polynomial L£4(f)(&, 2) is real-rooted.

Let o/~ (¢) :={—f: [ € #7(¢)} and #(¢) := & (¢) U (¢).

Example 5. If ¢ is the identity operator then «7(¢) is just the set of polynomials
in R[z] with real and simple zeros only.

The following theorem is the basis for our analysis:

Theorem 6. Let ¢ : Rlz] — R[z] be a linear operator. If f € o/ (¢) then ¢(f) is
real- and simple-rooted and if dy(f) > 1 we have

S(f D) < p(fV) < < B(F) < B(f).

Before we give a proof of Theorem 6 we will need a couple of lemmas. Note that
8%£¢(f) = L4(f") so by Rolle’s Theorem we know that L£4(f') is real-rooted (in z)
if £4(f) is. By Theorem 6 it follows that 7 (¢) is closed under differentiation. A

(generalised) Sturm sequence is a sequence fo, f1,..., fn of standard polynomials
such that deg(f;) =i for 0 <i <n and
fi—1(0)fir1(0) <O, (2)

whenever f;(f) = 0and 1 < i <n—1. If fis a standard polynomial with real
simple zeros, we know from Rolle’s Theorem that the sequence {f(?}; is a Sturm
sequence. The following lemma is folklore.

Lemma 7. Let fo, f1,-. -, fn be a sequence of standard polynomials with deg(f;) =1
for 0 < i <n. Then the following statements are equivalent:
(i) fo, fi,..., fn is a Sturm sequence,

(i) fo<fi < =< fa.

The next lemma is of interest for real-rooted polynomials encountered in combi-
natorics.

Lemma 8. Let amz™ +ami12™ T+ -+apz™ € Rz] be real-rooted with ama, # 0.
Then the sequence a; is strictly log-concave, i.e.,

ai > ai1aip1,  (m+1<i<n—1).
Proof. See Lemma 3 on page 337 of [6]. O

Proof of Theorem 6. Let f € o/ (¢). Clearly we may assume that d = dy(f) > 1.
We claim that for 1 <n <d - 1:

(fM)O) =0 = (f")O)(fF"V)(9) < 0. (3)

If1<n<d-1and ¢(f)(@) = 0, then by condition (ii) and (iii) of Definition 4
we have that there are integers 0 < £ < n < k < d with ¢(f9)(0)o(f*F)() # 0.
By Lemma 8 and the real-rootedness of L£4(f)(6, ) this verifies (3).
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If ¢(f(?D) is a constant then {¢(f™)}, is a Sturm sequence. Otherwise let
g = ¢(fD). Then, since g’ < g < #(f(¢=1), we have that (2) is satisfied everywhere
in the sequence {g™}, U {¢(f™)},. This proves the theorem by Lemma 7. O

In order to make use of Theorem 6 we will need further results on real-rootedness
and interlacings of polynomials. There is a characterisation of alternating poly-
nomials due to Obreschkoff and Dedieu. Obreschkoff proved the case of strictly
alternating polynomials, see [9, Satz 5.2], and Dedieu [2] generalised it in the case
deg(f) = deg(g). But his proof also covers this slightly more general theorem:

Theorem 9. Let f and g be real polynomials. Then f and g alternate (strictly
alternate) if and only if all polynomials in the space

{af +Bg:a,p R}

are real-rooted (real- and simple-rooted).
A direct consequence of Theorem 9 is the following theorem.

Theorem 10. If ¢ : Rlz] — R[z] is a linear operator preserving real-rootedness,
then ¢(f) and ¢(g) alternate if f and g alternate. Moreover, if ¢ preserves real- and
simple-rootedness then ¢(f) and ¢(g) strictly alternate if f and g strictly alternate.

Proof. The theorem is an immediate consequence of Theorem 9 since the concept
of alternating zeros is translated into a linear condition. O

Lemma 11. Let 0 # h, f, g € R[z] be standard and real-rooted. If h < f and h < g,
then h < af + Bg for all o, 8 > 0 not both equal to zero.

Note that Lemma 11 also holds (by continuity arguments) when all instances of
< are replaced by < in Lemma 11.

Proof. If 0 is a zero of h then clearly af + 8¢ has the same sign as f and g at 6.
Since {h(?}; U{f} is a Sturm sequence by Lemma 7, so is {h()}; U {af + Bg}. By
Lemma 7 again the proof follows. O

We will need two classical theorems on real-rootedness. The first theorem is
essentially due to Hermite and Poulain and the second is due to Laguerre.

Theorem 12 (Hermite, Poulain). Let f(x) = ap + a1z + - -+ + a,x™ and g be
real-rooted. Then the polynomial

f(%)g = (log(m) + a'lg’(CU) 4+ 4 ang(n) (CU)

is real-rooted. Moreover, if ™ { f and deg(g) > N — 1 then any multiple zero of
f(d%)g is a multiple zero of g¢.

Proof. The case N = 1 is the Hermite-Poulain theorem. A proof can be found in

any of the references [6, 9, 11]. For the general result it will suffice to prove that if

deg(g) # 0 then any multiple zero of ¢’ is a multiple zero of g. Let
g=co+ci(x—0)+-+cy(z—0)M,

where ¢y # 0, M > 0 and (x — 6)?|¢g’. Then ¢; = co =0 and M > 2. If ¢g =0

we are done and if ¢y # 0 we have by Lemma 8 that 0 = ¢? > cpca = 0, which is a

contradiction. O

Theorem 13 (Laguerre). If ag + a1z + 222 + - -+ + anx" is real-rooted then so is

a a
Ao+ a1+ — % 4 o "
2! n!
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For a proof of Theorem 13, see [6, 11]. We are now in a position to extend

Theorem 2.

Theorem 14. Let h be [—1,0]-rooted and let f be real-rooted.
(a) Then fOh is real-rooted, and if g < f then

gOh < fOh.
(b) Ifh is (—1,0)- and simple-rooted and f is simple-rooted then fOh is simple-
rooted and
gOh < fOh,
forall g < f.

Proof. First we assume that deg(h) > 0 and that h is standard, (—1,0)-rooted and
has simple zeros. Let ¢ : R[z] — R[z] be the linear operator defined by ¢(f) = f<Oh.

We will show that f € @ *(¢) if f is standard real- and simple-rooted. Clearly we
may assume that deg(f) = d > 1. Condition (i) of Definition 4 follows immediately
from the definition of the diamond product. Now, f(*~1) = az + b, where a,b € R
and a > 0 so

o(fP) = ah and
o(fY) = (az +b)h+az(z + 1)K,
and since h < (az + b)h and h < z(xz + 1)h' we have by the discussion following
Lemma 11 that h < ¢(f(4~D). If # is a common zero of h and ¢(f(¢=1), then
f(6 + 1)h' () = 0, which is impossible since § € (—1,0) and h'(f) # 0. Thus
(D) < p(f14=1), which verifies condition (iii) of Definition 4. Given & € R we
have

d"f(§ +2)
dzm

(n)
Lones) = Y B ene sy

He(S)1(€+2),

where

n'n!

(n)
He() = 3 0 vt 11y

By Theorem 13 H; is real-rooted, which by Theorem 12 verifies condition (iv).

Suppose that £ is a common zero of ¢(f’) and ¢(f). From the definition of the
diamond product it follows that £ ¢ {0,—1}, so 2% ¥ He¢(z). Since £ is supposed
to be a common zero of ¢(f') and ¢(f) we have, by (1), that 0 is a multiple zero
of L4(f)(€,2). Tt follows from Theorem 12 that 0 is a multiple zero of f(z + &),
that is, € is a multiple zero of f, contrary to assumption that f is simple-rooted.
This verifies condition (ii), and we can conclude that f € &7 (¢). Part (b) of the
theorem now follows from Theorem 10.

If h is merely [—1,0]-rooted and f is real-rooted then we can find polynomials
hy, and f, whose limits are h and f respectively, such that h, and f, are real- and
simple-rooted and h,, is (—1,0)-rooted. Now, f,<Oh, is real-rooted by the above
and, by continuity, so is f&g. The proof now follows from Theorem 10. d

There are many products on polynomials for which a similar proof applies. With
minor changes in the above proof, Theorem 14 also holds for the product

) (2)g(™ (2
) 3 L0

n>0
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3. INTERLACING ZEROS AND THE NEGGERS-STANLEY CONJECTURE

Let P be any finite poset of cardinality p. An injective function w : P — N is
called a labelling of P and (P,w) is a called a labelled poset. A (P,w)-partition with
largest part < n is a map o : P — [n] such that

e o is order reversing, that is, if z <y then o(z) > o(y),

o if z <y and w(z) > w(y) then o(z) > o(y).
The number of (P, w)-partitions with largest part < n is denoted Q(P,w,n) and is
easily seen to be a polynomial in n. Indeed, if we let egx(P,w) be the number of
surjective (P,w)-partitions o : P — [k], then by a simple counting argument we

have:
|P|

QP,w, ) = ;ek(P,w) (i) (4)

The polynomial Q(P,w, z) is called the order polynomial of (P,w). The E-polynomial
of (P,w) is the polynomial

P
E(P,w) = Zek(P,w)mk,
k=1

so E(P,w) is the image of Q(P,w, z) under the invertible linear operator £ : R[z] —
R[z] which takes () to z*.

The Neggers-Stanley Conjecture asserts that the polynomial E(P,w) is real-
rooted for all choices of P and w. The conjecture has been verified for series-parallel
posets [14], column-strict labelled Ferrers posets and Gaussian posets [1] and for
all labelled posets having at most seven elements.

There are two operations on labelled posets under which E-polynomials behave
well. The first operation is the ordinal sum:

Let (P,w) and (Q,v) be two labelled posets. The ordinal sum, P & @, of P and
@ is the poset with the disjoint union of P and @ as underlying set and with partial
order defined by z <y if either z <p y, x <gy,orz € P,y € Q. Fori =0,1 let
w @®; v be any labellings of P @ @ such that

o (wdov)(z) < (woov)(y) if w(z) <w(y), v(z) <v(y) orz e Pyeq.

e (wWdv)(z) < (wd v)(y) if w(z) <w(y), v(z) <v(y)orz € Q,y € P.
The following result follows easily by combinatorial reasoning:
Proposition 15. Let (P,w) and (Q,v) be as above. Then

E(P@Qaw@l V) = E(P,OJ)E(Q,V)
and
.TE(PEBQ,OJ@[) V) = (l‘+ ].)E(P,CU)E(Q,I/),

if P and @) are nonempty.

Proof. See [1, 14]. O

The disjoint union, P 1 (Q, of P and @ is the poset on the disjoint union with
r<yin PUQifand only if z <p y or  <¢g y. Let wlUv be any labelling of PLQ
such that

(wUw)(z) <(wUv)(y),
if w(z) <w(y) or v(z) < v(y). It is immediate by construction that
AP U Q,wUv) = AP,w)AQ,v)

Here is where the diamond product comes in. Wagner [14] showed that the diamond
product satisfies

fog=E(E1(HEg), (5)
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which implies:
E(PUQ,wUv) = E(P,w)CEQ,v), (6)
for all pairs of labelled posets (P,w) and (@, v).

If P is nonempty and x € P we let P\  be the poset on P\ {z} with the order
inherited by P. If (P,w) is labelled then P \ z is labelled with the restriction of
w to P\ z. By a slight abuse of notation we will write (P \ z,w) for this labelled
poset.

A series-parallel labelled poset (S, u) is either the empty poset, a one element
poset or

(a) (S,1) =P &Q,wdov),

(b) (S,11) = (P& Q0 &y v) o

() (S,p) =(PUQ,wUV)
where (P,w) and (@, v) are series-parallel. Note that if (S, 1) is series-parallel then
sois (S\ z,u) for all z € S. Let .# denote the class of finite labelled posets (S, )
such that E(S, u) is real-rooted and

E(S\z, p) 2 E(S, ),
for all z € S. Note that the empty poset and the singleton posets are members of
# which by the following theorem gives that series-parallel posets are in .#.

Theorem 16. The class & is closed under ordinal sum and disjoint union.

Proof. Suppose that (P,w), (Q,v) €
(a): Let (S,p) = (P& Q,w Bo V). Now, if y € P we have
(S\y,m) =(P\y®Q,wdov).
If |P| = 1 then by Proposition 15 we have E(S \ y,u) = E(Q,v) and E(S,u) =
(x+1)E(Q,v)so E(S\y,p) X E(S,u). If |P| > 1 then
tE(S\y,p) = (@+1)E(P\y,w)EQ,v)
< (z+1)E(P,w)E(Q,v)
zE(S, p),
which gives E(S \ y, ) < E(S, ). A similar argument applies to the case y € Q.
(b): The case (S,u) = (P @ Q,w ®o v) follows as in (a).
(¢): (S,pu) = (PUQ,wUv). If y € P we have by (6) and Theorem 14:
E(S\y,p) = E(P\yuQ,wuv)
= E(P\y,w)CE(Q,v)
E(P,w)CEQ,v)
= E(Sp).
This proves the theorem. a

A

In [12] Simion proved a special case of the following corollary. Namely the case
when S is a disjoint union of chains and p is order-preserving.

Corollary 17. If (S, ) is series-parallel and x € S then
E(S\z,p) 2 E(S,p).

Next we will analyse interlacings of E-polynomials of Ferrers posets. For un-
defined terminology in what follows we refer the reader to [13, Chapter 7]. Let
A= (A > Xy > -+ > Ay > 0) be a partition. The Ferrers poset Py is the poset

Py={(,j) ePxP:1<i<(1<j5< A},
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F1GURE 1. From left to right: A column-strict labelling w of Py
with A = (3,2,2,1), a (Py,w)-partition and the corresponding re-

verse SSYT.

T T 10 10 9
9 8

7T—6—35 10—8—7 7 7

I I 5

4—3—2—1 100—9—7—2

ordered by the standard product ordering. A labelling w of Py is column strict if
w(i,j) > w( +1,7) and w(i,j) < w(i,j+ 1) for all (4,5) € Px. If w is a column
strict labelling then any (Py,w)-partition must necessarily be strictly decreasing in
the z-direction and weakly decreasing in the y-direction.

It follows that the (Py,w)-partitions are in a one-to-one correspondence with with
the reverse SSYT’s of shape A (see Figure 1). The number of reverse SSYT’s
of shape A with largest part < n is by the combinatorial definition of the Schur
function equal to sx(1™) which by the hook-content formula [13, Corollary 7.21.4]
gives us.

z + cx(u)

Q(Py,w,2) = H )

u€e Py

(7)

where for u = (z,y) € Py
ha(u) == [{(z,5) € X:j 2y} +{(iy) €Ari>a}| -1

and ¢y (u) := y—=x are the hook length respectively content at u. In [1] Brenti showed
that the E-polynomials of column strict labelled Ferrers posets are real-rooted. In
the next theorem we refine this result. If £ < y in a poset P and z < z < y for
no z € P we say that y covers z. If we remove an element from Py the resulting
poset will not necessarily be a Ferrers poset. But if we remove a maximal element
m from Py we will have Py \ m = P, for a partition p covered by A in the Young’s
lattice.

Theorem 18. Let (Py,w) be labelled column strict. Then E(Py,w) is real-rooted.
Moreover, if X\ covers u in the Young’s lattice, then

E(P,,w) =X E(Py,w).

Proof. The proof is by induction over n, where A - n. It is trivially true for n = 1.
If \Fn+1and X covers 4 we have that Py = P, U{m} for some maximal element
m € P\. By definition ¢, (u) = ex(u) for all u € P,, so by (7) we have that for
some C > 0:
Q(P,\,CU,.T) = C(l‘ + cA(m))Q(Pu,w,a:),
and by (5):
E(P\,w) = C(z + cax(m))OE(P,,w).

Wagner [14] showed that all real zeros of E-polynomials are necessarily in [—1, 0], so

by induction we have that E(P,,w) is [—1,0]-rooted. By Theorem 14 this suffices
to prove the theorem. a
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ON LINEAR TRANSFORMATIONS PRESERVING THE POLYA
FREQUENCY PROPERTY

PETTER BRANDEN

ABsTrRACT. We prove that certain linear operators preserve the Polya fre-
quency property and real-rootedness. The results attained are applied to set-
tle some conjectures and open problems in combinatorics proposed by Béna,
Brenti and Reiner-Welker.

1. INTRODUCTION

Many sequences encountered in various areas of mathematics, statistics and com-
puter science are known or conjectured to be unimodal or log-concave, see [7, 30, 32].
A sufficient condition for a sequence to enjoy these properties is that it is a Poélya
frequency (PF for short) sequence, or equivalently for finite sequences, that its
generating function has only real and non-positive zeros. It is often the case that
the generating function of a finite PF-sequence has more transparent properties
when expanded in a basis other than the standard basis {z'};>¢ of R[z]. Therefore
it is natural to investigate how P F-sequences translate when expressed in various
basis. This amounts to studying properties of the linear operator that maps one
basis to another. A systematic study of this was first pursued by Brenti in [6]. This
is also the theme of this paper.

In Section 3 we will study linear operators of the type
oF = I;)Qk(w) pps

where F(z,2) = Y., _, Qr(z)2* € Rlz,z]. Here we will give sufficient conditions
on F for ¢p to preserve the PF-property. The results attained generalizes and
unifies theorems of Hermite, Poulain, Polya and Schur. We will also in this section
give a sufficient condition for a family of natural R-bilinear forms to preserve the
PF-property in both arguments. This generalizes results of Wagner [10, 35, 36].

An important linear operator in combinatorics is the operator defined by £((%)) =
x?, for all i € N. In Section 4 we will prove that whenever a polynomial f of degree
d has nonnegative coefficients when expanded in the basis {z’(z + 1)47¢}L, the
polynomial £(f) will have only real, non-positive and simple zeros.

In the remainder of the paper we use the theory developed to settle some con-
jectures and open problems raised in combinatorics. In Section 5 we prove that
the numbers {W;(n, k)}?_} of t-stack sortable permutations in S,, with k descents

2000 Mathematics Subject Classification. Primary: 05A15, 26C10 ; Secondary: 05A19, 05A05,
20F55.

Research financed by the EC’s IHRP Programme, within the Research Training Network “Alge-
braic Combinatorics in Europe”, grant HPRN-CT-2001-00272, while the author was at Universita
di Roma “Tor Vergata”, Rome, Italy.
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form PF'-sequences when ¢t = 2,n — 2, and thereby settling two new cases of an
open problem proposed by Bona [2, 3].

In Section 6 we prove that the g-Eulerian polynomials, A,,(z; q), defined by Foata
and Schiitzenberger [16] and further studied by Brenti in [9] have only real zeros
for all integers ¢. This settles a conjecture raised by Brenti. Here we also continue
the study of the W-Eulerian polynomials, defined for any finite Coxeter group W
and the g-analog By (z;q), initiated by Brenti in [8].

In Section 7 we prove that the h-vectors of a family simplicial complexes asso-
ciated to finite Weyl groups defined by Fomin and Zelevinski [17] are PF, thus
settling an open problem raised by Reiner and Welker [28].

2. NOTATION AND PRELIMINARIES

In this section we collect definitions, notation and results that will be used fre-
quently in the rest of the paper. Let {al} °o be a sequence of real numbers. It is
unimodal if there is a number p such that ap < a; <--- < ap > apy1 > -+, and
log-concave if a? > a;_1a;41 for all ¢ > 0.

An infinite matrix A = (a;j)i ;>0 of real numbers is totally positive, TP, if
all minors of A are nonnegative. An infinite sequence {a;}:2, of real numbers is a
Polya frequency sequence, PF-sequence, if the matrix (al*J)wZO isTP. Thusa PF-
sequence is by definition log-concave and therefore also unimodal. A finite sequence
ag,a1,0as,...,a, is said to be PF if the infinite sequence ag, at,as,...,a,,0,0,...
is PF. A sequence {a;}$2, is said to be PF, if all minors of size at most r of
(ai—j)ij>0 are nonnegative. If the polynomials {b;(z)}{_, are linearly independent
over R and r € N we define the set PF,.[{b;(z)}L,] to be

PF[{bi(z)}{] = {ZM i} Eo is PE,

and PF[{bi()}o] = N2, PF[{bi(z)}{o]-
The followmg theorem characterizes PF-sequences. It was conjectured by Schoen-

berg and proved by Edrei [15], see also [22].

Theorem 2.1. Let {a;}32, be a sequence of real numbers with ap = 1. Then
it is a PF-sequence if and only if the generating function can be expanded, in a
neighborhood of the origin, as

P [Liso(1 + @iz)
Zaiz ===
i>0 Hizo(l — Biz)
where v > 0, @i, f; > 0 and 3-,;5 o (ai + B;) < o0.

A consequence of this theorem is that a finite sequence is PF if and only if its
generating function is a polynomial with only real non positive zeros.

Let f,g € R[z] be real-rooted with zeros: a; < --» < oy and f1 < -+ < 3y,
respectively. We say that f interlaces g, denoted f < g,if j =i+ 1 and

pr <ar < Pp < < Bjmr S < B
We say that f alternates left of g, denoted f < g, if i = j and

a; < B <o <Py <o < B
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If in addition f and g have no common zero then we say that f strictly interlaces
g and [ strictly alternates left of g, respectively. We also say that two polynomials
f and g alternate if one of the polynomials alternates left of or interlaces the other.
We will need two simple lemmata concerning these concepts. A polynomial is said
to be standard if its leading coefficient is positive.

Lemma 2.2. Let g and {f;}}_, be real-rooted standard polynomials.

(i) If for each 1 < i < n we have either g K f; or g X f;. Then the sum
F=fi+fs+- -+ fn is real-rooted with g < F or g € F, depending on
the degree of F.

(ii) If for each 1 < i < n we have either f; < g or fi < g. Then the sum
F=fi+fo+- -+ fn is real-rooted with F < g or F < g, depending on
the degree of F.

Proof. The lemma follows easily by counting the sign-changes of F' at the zeros of
g, see e.g., [37, Prop. 3.5]. d

The next lemma is obvious:

Lemma 2.3. If fo, fi1,-. ., fn are real-rooted polynomials with fo < fr and fi_1 <
fi for all1 <i <n, then f; K f; for all0 <7 < j <n.

The following theorem is a characterization of alternating polynomials due to
Obreschkoft [24] and Dedieu [13]:

Theorem 2.4. Let f,g € R[z]. Then f and g alternate (strictly alternate) if and
only if all polynomials in the space

{af +Bg:a,B € R},
have only real (real and simple) zeros.
An immediate but non-trivial consequence of this theorem is:

Corollary 2.5. Let ¢ : Rlz] — R[z] be a linear operator. Then ¢ preserves the
real-rootedness property (real- and simple-rootedness property) only if ¢ preserves
the alternating property (strictly alternating property).

We denote by N the set of natural numbers {0,1,2,...}. The symmetric group
of bijections 7 : {1,2,...,n} — {1,2,...,n} is denoted by S,. A descent in a
permutation 7 € Sy, is an index 1 <4 < n — 1 such that w(¢) > m(i + 1). Let des(n)
denote the number of descents in 7. The Eulerian polynomials, A, (x), are defined
by An(®) =X cs. zd(M+1 and satisfies, see e.g. [11]

Skt - ol

1—g)ntl’
k>0

z(zfl)--k-:fsz+1) for

The binomial polynomials are defined by (g) =1 and (z) =
k>1.

In several proofs we will implicitly use the fact that the zeros of a polynomial are
continuous functions of the coefficients of the polynomial. In particular the limit
of a sequence of real-rooted polynomials is again real-rooted. For a treatment of

these matters we refer the reader to [23].
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3. A CLASS OF LINEAR OPERATORS PRESERVING THE PF-PROPERTY

For any polynomial F(z,2) = > ,_, Qk(z)z* € Rlz, 2] we define a linear operator
(bF : ]R['T] - ]R[l‘] bYa

ZQk dxkf z).

In this section we will investigate for Wthh F € R[z,z] the linear operator ¢p
preserves real-rootedness- and the PF-property .

We will need some terminology and a theorem from [5]. For ¢ € R let T¢ : Rjz] —
R[z] be the translation operator defined by T¢(f(z)) = f(xz + ). For any linear
operator ¢ : Rlz] — R[z] we define a linear transform L4 : Rz] — Rz, z] by

Ls(f) = o(T:(f))
(3.1) = Y o(f™

5 2 ey

Definition 3.1. Let ¢ : R[z] — R[z] be a linear operator. Define a function
dy : Rlz] = N U {—o0o} by: If ¢(f(™) = 0 for all n € N, we let dy(f) = —oc.
Otherwise let dy(f) be the smallest integer d such that ¢(f™) = 0 for all n > d.
Hence dy(f) < deg f for all f € Rlz].

The set <7/ (¢) is defined as follows: If dy(f) € {—00,0} and ¢(f) is standard
real- and simple-rooted, then f € &7 (¢). Moreover, f € &/ (¢) if d = dg(f) > 1 and
all of the following conditions are satisfied:

i) o(f D) all have leading coefficients of the same sign and deg(o(f0~1)) =
deg(d(f@)) +1for 1 <i<d,
(ii) ¢(f) and ¢(f') have no common real zero,
(iit) @(f(D) strictly interlaces ¢(f(4=1),
(iv) for all £ € R the polynomial L£4(f)(&, 2) is real-rooted.

The following theorem is proved in [5]:

Theorem 3.2. Let ¢ : Rz] — R[z] be a linear operator. If f € o (¢) then ¢(f) is
real- and simple-rooted.

We will also need the following classical theorem of Hermite and Poulain. For a
proof see [24].

Theorem 3.3. Let f = ap + a1z + -+ + apx™ and g be real-rooted polynomials.
Then the polynomial

d
f (%)9 = aoy(
is real-rooted. Moreover, if f(d%)g # 0 then any multiple zero of f(d%)g is a
multiple zero of g.

) +a1g'(z) + - + ang™ (2)

The following theorem gives a sufficient condition for a polynomial to be mapped
onto a real-rooted polynomial.
Theorem 3.4. Let F =Y _, Qr(z)2* be such that Qo # 0 and
(I) For all £ € R, F(&, 2) is real-rooted,
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(I1) Qo strictly interlaces or strictly alternates left of Q1, and deg Qo = 0 or Qo
and Q1 have leading coefficients of the same sign.

Suppose that

(III) f is real- and simple-rooted and that for 0 < k < deg f the polynomials
o (f®) have their leading term of the same sign with

deg ¢ (f*)) = deg Qo + deg f — .
Then ¢p(f) is real- and simple-rooted.

Proof. We will show that the set of real- and simple-rooted polynomials satisfy-
ing (III) is a subset of &7(¢r) by verifying conditions (i)-(iv) of Definition 3.1.
Condition (i) follows immediately from (III). For condition (iv) note that

Lo(£)(&2) =D QP (¢ +2),
k=0

so by the Theorem 3.3 condition (iv) is satisfied. Suppose that 1 is a common zero
of o (f) and ¢r(f’). By (3.1) we have that 0 is a multiple zero of L4(f)(n,2).
Moreover, since L4(f)(n, z) is not identically equal to zero, by (II), Theorem 3.3
tells us that 0 is a multiple zero of f(n + z). This means that 7 is a multiple zero
of f contrary to the assumption that f is simple-rooted, and verifies condition (ii).

For condition (iii) we have to show that for all @ € R such that z+« satisfies (IIT)
the polynomial ¢ (1) = Qo strictly interlaces f(z) := ¢p(z+a) = (z+a)Qo + Q1.
This follows from (IT) when analyzing the sign of f(z) := ¢p(x + ) at the zeros of
Qo: Let ap < ag_1 < -+ < ap be the zeros of g ordered by size. Suppose that Qg
and @ are standard and that (g strictly interlaces or strictly alternates left of Q.
Then sgn f(a;) = sgn Q1 (a;) = (=1)% for 1 <i < k. By Rolle’s theorem we know
that f has a zero in each interval (a;, a;41). This accounts for k — 1 real zeros of f.
Since Qo has positive sign, so does f by condition (IIT). Now, because f(a;) < 0
and f is standard, f must have a zero to the right of a;. We now know that f
has k zeros real. The signs at a; forces the remaining zero to be in the interval
(—00,ay). Thus Qg strictly interlaces f as was to be shown.

Now, if Qo = A € R then deg@; < 1. Suppose that (Q; = B € R. Then clearly
A strictly interlaces (x+a)A+ B. If Qo = A and @, = Cz+ D where A,C, D € R,
then f = (A4 C)z + Aa + D, so by (III) we have that @ strictly interlaces f.
This concludes the proof. O

In some cases it may be convenient to have sharper hypothesis. Therefore we
state the following form of the theorem.

Corollary 3.5. Let d € N be given and let F = Y_,_, Qi (x)z* be such that Qo # 0
and
(i) For all £ € R, F(&, 2) is real-rooted,
(il) Qo strictly interlaces or strictly alternates left of Q1, and deg Qo = 0 or Qo
and Q1 have leading coefficients of the same sign.
(iii) The polynomials ¢r(x*), 0 < k < d have the same sign and

deg ¢r(¢*) = deg Qo + k-

Then ¢p(f) is real-rooted (real- and simple-rooted) if f is real-rooted (real and
simple-rooted) and deg(f) < d.
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Proof. The case of real- and simple-rooted f follows immediately from Theorem 3.4
since (iii) implies (III). If f is a real-rooted polynomial of degree at most d, then f
is the limit of a sequence {f;}72, of real- and simple-rooted polynomials of degree
at most d. It follows that ¢p(f) is the limit of ¢z (fi), and the thesis follows by
continuity. (]

In the language of PF-sequences we have:

Theorem 3.6. Let d € N be given and let F = Y, _, Qk(z)2* € Rlz,2] be such
that Qo # 0 and

(i) For all £ € R, F(&, 2) is real-rooted,

(il) ¢r (1) strictly interlaces ¢p(x).

(i) For all0 <k <d

deg pr(¢*) = deg Qo + k,
and ¢p(2*) € PFy.

Then PF[{¢r(z)}¢ ] C PF[z?].

Several old results can be derived from these last few theorems. In [25, p. 163]
Polya gave a theorem which he states probably was the most general theorem on
real-rootedness known at the time. "Dieser Satz gehort wohl zu den allgemeinsten
bekannten Sitzen iiber Wurzelrealitét.”

Theorem 3.7. Let f(x) be a real-rooted polynomial of degree n, and let
bo + b1z 4+ -+ bypmz™t™, (m > 0)
be a real-rooted polynomial such that b; > 0 for 0 <i < n. Then the equation
G(w,y) = bof (y) + buzf' (y) + boa® f (y) + -+ bua™ f ™ (y) = 0,
has n real intersection points, (counted with multiplicity), with the line
sz —ty+u=0,
provided that s,t >0, s+t >0 and u € R.

Proof. We may assume that s,t > 0 since the other cases follows by continuity
when s and/or ¢ tends to zero. Thus we may write the equation as

aog(z) + a1zg'(z) + azz’g"(z) + -+ + a,z"g"™ (z) = 0,

where g(z) = f(st~ 'z +ut™!) and a; = s't~b;. Now, we see that all hypothesis of
Corollary 3.5 are satisfied for

F(x,2) = ap + a122 + a2x?2> + -+ + ap a2 T™,
when d = n. O

We will later need one famous consequence of this theorem, t = 1,s = u = 0,
due to Schur [29].

Theorem 3.8. Let f =Y ,_,arz® and g = > ;- bra® be two real-rooted polyno-
mials such that g has all zeros of the same sign. Then the polynomial

M
(fSg)(w) = > Klagbga®,

k>0

where M = min(m,n) has only real zeros.
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3.1. Multiplier-sequences. A multiplier-sequence is a sequence T' = {v;}32, of
real numbers such that if a polynomial f(x) = ap + a1z + - - - + anz™ has only real
zeros, then the polynomial

T[f(z)] == agyo + a1 1z + -+ + anyn",
also has only real zeros. There is a characterization of multiplier-sequences due to
Polya and Schur [25, p. 100-124]:
Theorem 3.9. Let T = {v;}32, be a sequence of non-negative real numbers and
let p(z) = T[e*] =Y 1y 'yk% be its exponential generating function. Then T is a

multiplier-sequence if and only if ¢ is a real entire function which can be written as

o0

b(z) = came’” H(l + o),

k=1
where ¢ >0, 3 >0, 6, >0,n €N and Y -, 6, < oc.
The following lemma is well-known but elementary, so we give a proof here.

Lemma 3.10. A multiplier-sequence is strictly log-concave. In particular, a non-
negative multiplier-sequence has no internal zeros.

Proof. If f(z) = ama™ + amp1z™ ! + -+ + apz™ is real-rooted with apa, # 0,
then the coefficients satisfy (see [20, p. 52|):

2
a; Ai—1 Qi1

>
(M”25 Gh)
Now, if I' = {v;}$°, is a multiplier-sequence, then I'[(z 4+ 1)"] is real-rooted for all
n € N, which implies

(m<i<n).

V> Yic1Vit1,
for all ¢ such that there are integers m < i < n with v,,v, # 0.
O

Theorem 3.11. Let {\;}32, be a non-negative multiplier-sequence, and let o <
B € R be given. Define two R-bilinear forms Rlz] x R[z] — R[z] by

g o= YW@ @) -0 - B,

k>0

Ak
fog = YW @g® @) - ),
k>0
If f is real-rooted and g is [a, §]-rooted, then f - g is real-rooted. If f is real-rooted
and g is [—00, a]-rooted, then f o g is real-rooted.

Proof. We prove the statement for - since the case of o is similar. We may assume
that A\g > 0. Clearly the theorem is true if A\; = 0 for all i > 0, so by Lemma 3.10
we may assume that A\; > 0. Let g have all zeros simple and in the interval (a, 3),
and let ¢ be the linear operator defined by ¢(f) = f - g. Then ¢ = ¢p, where
(k)
9" (x)
F(z,z) = Z Ak o (z —a)*(z — B)*2E.

k>0

Since {A}r>o0 is a multiplier sequence F(§, z) is real-rooted for all real choices of
& Now, Qo = Mog(z) and Q1 = M (z —a)(x — B)g'(z), so Qg strictly interlaces Q1.
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Moreover, deg ¢(z*) = deg Qo + k for all k, so all the hypothesis of Corollary 3.5
are fulfilled. Since any [«, 8]-rooted polynomial is the limit of polynomials which
are (a, #)- and simple-rooted the thesis follows by continuity. a

There are a few bilinear forms on polynomials that occur frequently in combi-
natorics. Let # : Rz] x R[z] — R[z] be defined by

(f#g) (@) == fH(a k, :

k>0
This product is important when analyzing how the the zeros of o-polynomials
behave under disjoint union of graphs, see [10].

Theorem 3.12. Let f be real-rooted and let g have only real zeros of the same
sign. Then f#g is real-rooted.

Proof. The theorem follows from Theorem 3.11, since {1}2 , is trivially a multiplier-
sequence. (]

This generalizes a result of Wagner, who proved that f#g¢ is real-rooted whenever
f and g have only non-negative zeros, see [10, 35].
The diamond product of two polynomials f and g is given by

(3:2) (fog)(x Zf( g(k )k(m-l-l)k.

k>0

This product is important in the theory of (P, w)-partitions and the Neggers-Stanley
conjecture and was first studied by Wagner in [36, 37], see also Section 4 of this
paper. Applying Theorem 3.11 with the multiplier-sequence {%}kzo we get:

Theorem 3.13. Let f be real-rooted and let g have all zeros in the interval [—1,0].
Then f o g is real-rooted.

This was first proved by Wagner [37] under the additional hypothesis that f has
all zeros in [—1,0], and generalized by the present author in [5].

A sequence of real numbers I' = {v;}°, is called a multiplier n-sequence if
for any real-rooted polynomial f = ag + a1z + - - + apx™ of degree at most n the
polynomial I'[f] := apyo + a11x + - - - + anynx™ is real-rooted. There is a simple
algebraic characterization of multiplier n-sequences [12]:

Theorem 3.14. Let T’ = {y}32, be a sequence of real numbers. Then T is a
multiplier n-sequence if and only if T[(x 4+ 1)"] is real-rooted with all its zeros of the
same sign.

Recall the definition of the hypergeometric function o F}:

2F1 (a,by2) = Y @5)(%

m=0

)

where (@) = 1 and (@), = a(a+1)--- (e +m — 1) when m > 1. The Jacobi

polynomial P,(LQ’B) (z) can be expressed as follows [26, p. 254]:

(14 a),
n!

1_
(3.3) P,(LC”B) (z) = 2 Fy <—n, 1+a+8+n;1+ a; a:) ,

2

We need the following lemma:
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Lemma 3.15. Let n be a positive integer and r a non-negative real number. Then
L= {(7")}, is a multiplier n-sequence.
Proof. Let r > 0. Then

Tz +1)" = zn: (‘”k_ 7") (:) ot

k=0
= oF (-n,n+r; 1)
= PO=(1 - 2g),

where the last equality follows from (3.3). Since the Jacobi polynomials are known,
see [26], to have all their zeros in [—1,1] when «, 8 > —1, we have that I'[(z + 1)"]
has all its zeros in [0, 1]. The case r = 0 follows by continuity when we let r tend
to zero from above. O

For any real number ¢ let T'y := {¢+ k}$2,. The following Corollary was known
already to Laguerre:

Corollary 3.16. Letn > 1 be a positive integer. Then T, is a multiplier n-sequence
if and only if ¢ ¢ (—n,0).

Proof. Let ¢ € R be given. We have to determine for which n > 1 the zeros of
[y[(z + 1)"] are all real and of the same sign. Now,

Lyllz+ )" = (z+1)" H(n+ gz +q},

and the theorem follows. O

4. THE E-TRANSFORMATION

The E-transformation is the invertible linear operator, £ : R[z] — R[z], defined
by

for all ¢ € N. The PF-preserving properties of this linear operator was first studied
in [6] and later in [36, 37] and [5]. It is important in the theory of (P,w)-partitions
since it maps the order-polynomial of a labeled poset to the E-polynomial of the
same labeled poset, see [6, 36]. In, [6] Brenti proved the following theorem. Let
A(f) and A(f) denote the smallest and the largest real zero of the polynomial f,
respectively.

Theorem 4.1. Suppose that f € R[z] has only real zeros and that f(n) = 0 for all
n € ([A(f), —1JU[0,A(f)]) NZ. Then E(f) has all zeros real and non-positive.

In this section we will prove the following theorem:

Theorem 4.2. For all n € N we have

PR[{z'(z + 1)1} ] C PF[(?)]

Moreover if f € PFi[{z(x + 1)""}2_,] then E(f) has simple zeros and
E((z+ 1Y) < E(f) < E(x).
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The diamond product (3.2) is intimately connected with the E-transformation.
By the Vandermonde identity

(f) (f) :,§)<k—i,i+f—k,k—j> @

it follows, see [37], that

(4.1) (fog)(x) =EE(HE (9))-

We will later need a symmetry property of £. Let R : R[z] — R[z] be the algebra
automorphism defined by R(z) = —1 — z.

Lemma 4.3.

RE=ER

Proof. Let n be a nonnegative integer. Using the identity
T+n " /n\ [z
() =266
k=0
and the fact that (7% ) = (=1)"(*t") we get
m(m) (—1)ne <”’+”>
n n

2 (1))

(=1 —2)"

w ()

and the lemma follows. O

Lemma 4.4. Let a € [—1,0] and let f be a polynomial such that E(f) is [-1,0]-
rooted. Then E((x — a)f) is [—1,0]-rooted and E(f) interlaces E((x — o) f). If E(f)
in addition only has simple zeros, then so does E((z — a)f).

Proof. Let g = £(f) and let a € [-1,0]. By (3.2) and (4.1) we have that
(4.2) E((z—a)f) =(—a)g+z(z+1)g.

Since g interlaces (z — «)g and z(z + 1)g’ it also interlaces the sum, by Lemma 2.2.
Also, if ¢ [—1,0] then the summands have the same sign so £((z — a)f) cannot
have any zeros outside [—1,0]. Suppose that g has only simple zeros. Then by (4.2)
the only possible common zeros of g and £((z — ) f) are 0 and —1. If deg(f) > 1 it
also follows from (4.2) that the multiplicities of 0 and —1 of £((z—a) f) are the same
as those of g. Hence the (simple) zeros of g separate the zeros of £((x —a) f) except
possibly at 0,—1, and we conclude that £((x — «)f) has only simple zeros. O

Lemma 4.5. For all integers n > 1 we have

(x+1DE(") =2E((z + 1)™).
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Proof. We may write

where a;, € R. Thus

E((x+1)™) Zn: “’“5[@) + (k i 1>]

O

Let f and g be standard real-rooted polynomials of degree n and let the zeros
of fand gbe a; < ay <--- < a, and f; < Bz < --- < f, respectively. We write
[<g ifa; <Bifor1<i<n.

Theorem 4.6. Suppose that f and g are [—1,0]-rooted with f < g. Then E(f) and
E(g) are [—1,0]- and simple-rooted, with E(f) < E(g).
Proof. By Lemma 4.4 and induction we only have to show that £(f) < £(g). If
f and g have the same zeros except for one, i.e., f = (x — a)h and g = (z — 8)h,
where a < 3, then

E(g) =€(f) — (B—a)E(h),
and since £(h) interlaces £(f) we have £(f) < £(g) by Lemma 2.2.

Now, suppose that f and g are [—1, 0]-rooted polynomials of degree n such that
f < g. Then there are [—1,0]-rooted polynomials {h;}}, with

(x4+1)"=ho<h <---<hy=2",

such that f,g € {h;}}, and h;_; and h; only differ in one zero for 1 <i < n. We
therefore have
Elhy) € E(hy) < -+ < E(hm),
and since E(hg) K E(har), by Lemma 4.5, the theorem follows from Lemma 2.3. O
A consequence of Theorem 4.6 is that if {f;}1*, is a sequence of standard [—1,0]-

rooted polynomials of the same degree d, then by Lemma 2.2 and Theorem 4.6, the
image under & of any non-negative sum F = »_1"  u; f; will be [—1,0]-rooted with

E((z+ 1) < E(F) < E(z).

It is easy to see that a standard polynomial f of degree d is [—1, 0]-rooted if and
only if f can be written as

fl@) = @+ Dig(5),

where g is a standard and (—oc,0)-rooted. On the other hand, since z*(z + 1)
is [-1, 0]-rooted we have that F' can be written as a non-negative sum of standard
[—1,0]-rooted polynomials of degree d if and only if

d—i

d
F(z) = Zaixi(m + 1)1,
i=0

where a; > 0. This proves Theorem 4.2.
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5. t-STACK SORTABLE PERMUTATIONS

For relevant definitions regarding t¢-stack sortable permutations we refer the
reader to [2]. Let Wi(n, k) be the number of #-stack sortable permutations in the
symmetric group, S,,, with k& descents, and let

n—1
Wk (z) = Z Wi (n, k)z*.
k=0

Recently, Bona [1, 3] showed that for fixed n and ¢ the numbers {W;(n,k)}7=,
form a unimodal sequence. When ¢t = n — 1 and ¢t = 1 we get the Eulerian and
the Narayana numbers (see [34] and [31, Exercise 6.36]), respectively. These are
known to be PF-sequences and Bona [2, 3] has raised the question if this is true for
general t. Here we will settle the problem to the affirmative for ¢t =2 and t = n — 2.

The numbers Ws(n, k) are surprisingly hard to determine despite their compact
and simple form. It was recently shown that

(n+k)!(2n —k—1)!
(k+ D! (n—k)!1(2k + 1)!(2n — 2k — 1)1

W2 (na k) =

See [4, 14, 19, 21] for proofs and more information on 2-stack sortable permutations.
From the case r = 0 in Lemma 3.15 and the identity

> (") - (V) () e

it follows that (Q"T:fl_ 1) is an m-sequence.

Theorem 5.1. For all n > 0 the sequence {Wg(n,k)}z;é, which records 2-stack
sortable permutations by descents, is PF'.

Proof. We may write Wa(n, k) as

o DG Git)

()

W2 (TL, k‘) =

A simple consequence of the notion of PF-sequences reads as follows: If {a;}i>0
is PF then so is {ag;}i>0, where k is any positive integer. Applying this to the
polynomial z(1 + z)?" we see that 3, (,77,)z" is real-rooted. Therefore the poly-

nomial,
-1 -1
nz n+k 2n a:kznz 2n—k -1 2n Z1k
‘ n—1/\2k+1 Pt n—1 2k+1

k=

is real-rooted. Another application of Lemma 3.15 gives that Wy, »(z) is real-rooted.
O

It is easy to see that a permutation 7 € S, is (n — 2)-stack sortable if and only
if it is not of the form onl. Thus the generating function satisfies

TWyn—2(x) = Ap(z) — zAp_2(x),

where A, (z) is the nth Eulerian polynomial.
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Theorem 5.2. For all real numbers t > —2 and integers n > 2, the polynomial
A,(t,z) = Ap(z) + tzA,_o(z),

is real- and simple-rooted. Moreover, Ay (t,z)/x strictly interlaces Api1(t,x)/x for
—2<t<3.

Corollary 5.3. For all n > 2 we have that {W,_»(n,k)}}=, is PF. Moreover,
Whn—2(x) strictly interlaces W1 n—1(2).

Proof of Theorem 5.2. Tt is well known that A,_1(z) € £A,—2(z) and A,_1(x)
Ay (z). So by Lemma 2.2 we have that A, (¢, ) is real- and simple-rooted for ¢ >
However, when ¢ < 0 a similar argument does not apply.

Let E,(t,7) = An(t, 75)- Then

=
0.

En(t,z) = Ep(z) + ta(l1 + z)Ep—s(x),

where the coefficient to 2* in E, (z) counts the number of surjections o : [n] — [K],
see [6, 36]. These polynomials satisfy the recursion:

Fale) = 5 (14 2) B 1(0))

with initial condition E;(z) = x. Thus, if we let G (z) = E,y1(x)/z we have the
following recursion:

d
(5.1) Gn(z) = %(a:(l + 2)Gh—1(2)),

with Go(z) = 1. Obviously G, (z) is real- and simple-rooted. If we apply (5.1) two
times we get the equation:
Gn(z) = (1 + 62 + 62%)Gp_a(x) + 32(1 + 22)(1 + 2)Gl_o(x)+
2’ (1+2)°Gy_y(2),
and for G (t,z) == Gp(z) + tz(l + 2)G,—2(x) we have
Gu(t,z) = (14 (6 +t)z + (6 + t)2*)Gp_a(x) + 3z(1 + 22)(1 + 2)G),_,(z)+
2’ (1+ )Gy _y(2).

To apply Theorem 3.4 we need show that for all £ € R and —2 < ¢t < 0 the
polynomial

F(&,2) =1+ 6+)E+(6+1)E) +36(1+20)(1 4z + (1 +6)%22
is real-rooted. The discriminant of F(&, z),
A(F(£,2) =1+ 6’2+t + (3 -1)(1+26)?),

is non-negative when —2 <t < 3, so F(¢, 2z) real-rooted for these ¢. Since all the
Qs are standard it is easy to see that condition (IIT) in the statement of Theorem
3.4 is satisfied. Moreover, 1+ (6 +t)x + (6+t)z? strictly interlaces 3z(1+2z)(1+x)
when ¢t > —2 so Theorem 3.4 applies. Since (), strictly interlaces G,,+1 we have
by Theorem 3.4 and Corollary 2.5 that ¢ (G,,) strictly interlaces ¢ (Gpy1). Thus
A, (t,x) strictly interlaces A, 11 (¢, ). O
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6. ¢-EULERIAN AND W-EULERIAN POLYNOMIALS

A g-analog of the Eulerian polynomials was introduced and studied in [16] and
further studied in [9]. It is defined by

An(zsa) = 3w,
TESH

where ¢(7) and exc(7) denotes the number of cycles and ezcedances in 7 respectively.
These polynomials satisfy the recursion

0
Ant1(2;9) = (n2 + @) An(2;0) —2(2 — 1) 5 An(2;0),
with initial condition Ag(z;q) := 1. See [9] for a proof. The following theorem
appears in [9].

Theorem 6.1. Let ¢ € R, ¢ > 0. Then the polynomials A, (x,q) have only real
non-positive simple zeros.

Brenti also makes the following conjecture:
Conjecture 6.2. Let n,m € N. Then A, (x; —m) has only real zeros.

In what follows we will prove this conjecture using multiplier n-sequences. For
n € N define the polynomials E,, (z;q) by:

x
E,(xz;q) :=(1 "A,(——;q).

(#30) 1= (14 )" An(—50)
It is clear that E,(z;q) is real-rooted if and only if A, (x;q) is real-rooted. These
polynomials satisfy a somewhat easier recursion. Namely,

(6.1) Bur(:0) = (1 +-0){aBn(w0) + o B (z50)},

with initial condition Ey(x;¢) = 1. Now, for ¢ € R let T'; : Rlz] — R[z] be the
linear operator defined by I'y(f(z)) = ¢f(z) + = f'(z). Since T'y(z™) = (g+n)a™ we
may apply Corollary 3.16.

Theorem 6.3. Let g € R andn € N. If ¢ >0, n < —q or q € Z then E,(x;q) has
only real zeros.

Proof. We may write (6.1) as
Ernyi(z;9) = (¢ + DL [En(z; )]
The cases ¢ > 0 and n < —¢q follow from Corollary 3.16 by induction. We may

therefore assume that ¢ = —m is a negative integer. We claim that deg E,(z;¢) = n
if n <m and deg E,(z;¢) = m if n > m. From this the real-rootedness follows by
Corollary 3.16 and induction. The case n < m is clear since T'y[z" 1] = —(m —

n+ 1) < 0. The case n > m also follows by induction. Suppose that n > m
and that deg E,(z;¢q) = m. Then by the recursion we have that deg E,11(z;q) <
m + 1. Moreover, since I[';[z™] = 0 we have that deg E,,11(x;q) < m. Let a # 0
be the coefficient to ™ of E,(z;q). Then the coefficient to z™ of E,11(z;q) is
aly[z™ 1] = —a, so deg E,,.+1(7;q) = m, and the thesis follows. O

The Eulerian polynomial, P(W, x), of a finite Coxeter group W is the polynomial,

PW,x) = Z (),

cEW
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where dw (o) is the number of W-descents of o, see [§8]. This polynomial is also
the generating function for the h-vector of the Coxeter complex associated to
(W, S). For Coxeter groups of type A, we have that P(A,,z) = A,(z)/z, the
shifted Eulerian polynomial. Also, for Coxeter groups of type B, it is known, see
[8], that P(B,,z), has only real zeros. It is easy to see that P(W; x Wy, x) =
P(Wy,z)P(Ws, z) for finite Coxeter groups Wi and W,. Also, the real-rootedness
can be checked ad hoc for the exceptional groups. Thus, by the classification of
finite irreducible Coxeter groups, to prove that P (W, z) has only real zeros for all
finite Coxeter groups it suffices to prove that P(D,,,z) is real-rooted for Coxeter
groups of type D,,. The real-rootedness of P(D,, z) is conjectured by Brenti in [8].
It is known that the Eulerian polynomials of type A,, B, and D,, are related by,
see [8, 27, 33]:
P(D,,z) = P(Bp,z) —n2" 'zP(A,_1,z).
This relationship was first noticed by Stembridge [33]. One step towards proving
the real-rootedness of P(D,,,z) is to learn more about the relationships between
the zeros of P(B,,z) and P(A,,, ).
Brenti [8] introduced a g-analog of P(By, x)

(6.2) Bu(z;q) = > ¢V i),

c€EB,
where dp(o) is the number of B,-descents of o and N (o) is the number of negative
entries of o, see [8]. He proved that

(6.3) S((1+q)i + 1) = %

i>0

and that By (z;q) is real- and simple-rooted for all ¢ > 0. Suppose that f(i) is a
polynomial in i of degree d, then the polynomial W (f) is defined by

N i W)=
Z fl)z" = m,
i>0
One can show, see [6], that £(f) and W (f) are related by:
(6.4) E(f)(@) = (L+ )5 DW (f)(——).
1+z
It follows that W (f) has only real non-positive roots if and only if £(f) is [-1,0]-
rooted.

Since ((1+4q)i+1)™is a [—1, 0]-rooted polynomial in ¢ for any ¢ > 0 it follows from
e.g. Theorem 4.2 that B,,(x; q) is real-rooted in z for any fixed ¢ > 0. It is natural to
generalize B, (z; ) to have n+1 parameters as By, (z;q) := W ([[\, ((1+¢;)z+1)).
This polynomial has a nice combinatorial interpretation:

Theorem 6.4. For all n € N we have:

Bn(l', q) = Z qiél(cr)q;Q(a) .. q%n(ﬂ)tdB(g'),
oc€EB,

1 ifO'i <0,
Xi(o) = .
0 ifo; >0.

where

Proof. The proof is an obvious generalization of the proof of Theorem 3.4 of [8]. O
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Note that this theorem gives a semi-combinatorial interpretation of the W-
transform of any [—1,0)-rooted polynomial.

Corollary 6.5. Letn € N and let q1,qo, - - - , ¢ be non-negative real numbers. Then
B, (x;q) has only real and simple zeros.

We need the following lemma on the degree of W(f).
Lemma 6.6. Let f € R[z]. Then
deg W (f) = deg f — mult(—1,E(f)).

Moreover, mult(—1,E(f)) is equal to the mazimal integer k such that (x + 1)(z +
2)--(z+ k) divides f.

Proof. Since degE(f) = deg f for all f we have by (6.4) that degW (f) = deg f —
mult(—1,E(f)). If we expand f in the basis {(~% ")} as:

f@) = -l (‘ﬂ.‘ 1),

I
:| 8
A,
8
+
[y
~
—
8
+
~.
gl

we have by Lemma 4.3 that
E(f)(x) =) ai(x + 1),
i>0

and the lemma follows. O

We now have more precise knowledge of the location of the zeros of B,,(x;q) for
any given q > 0.

Theorem 6.7. Let 0 < g <t € R and n > 0 be an integer. Then
Br(2;0) X By(a;t) < Bu(w;q) < aBn(z;0),
where the three first polynomials have no common zeros.

Proof. Let 0 < r < s < 1. Then by the proof of Lemma 4.4 we have

E(@") € E(@(z+1)"") Katrict E(T + 7)) Lstriet E((m+1)" 2z +5)) <
E((@ +8)") Kstrict E((x +5)" "z +1)) < E((z + 1)),
where < sirict means strictly alternating left of. Since (z 4+ 1)E(z™) = z€((x + 1)™)
this implies
E(@™) Lstrict E(x + 1)) Lstrict E(x + 8)") Lstrict E((x +1)™).

Now since
Bu(aia) = (0 + D"W((a + 13" = 0+ 11 = 2" 8@ + )" (),

we see by Lemma 6.6 that deg B,,(z;0) = n — 1 and deg B,,(z;q) = n if ¢ # 0.
Moreover, the alternating property is preserved under the operation (6.4) and the
theorem follows. O

T

It follows from (6.2) that P(B,,z) = By(z;1) and P(A,,z) = By(z;0).
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Corollary 6.8. For all integers n > 1 we have that P(Ay,x) strictly interlaces
P(Bp,x).

Since P(Ay,z) € ©P(An—1,2) and P(A,,z) <X P(By,z), we have by Lemma
2.2 that for all ¢ > 0 the polynomial P(B,,z) + txP(A,_1,x) is real-rooted. Un-
fortunately a similar argument does not apply when t < 0.

One can extract more from (6.3). Brenti [8] proved that the polynomial

> o
c€B, ,N(o)e{k,n—k}
is real-rooted for all choices of 0 < k£ < n. Using Theorem 4.6 we can extend this
result to:

Corollary 6.9. Let S be any subset of [0,n]. Then the polynomial
P(B,,S;z) := Z 28
0g€EB,,N(0)€ES

has only real and simple zeros.

Proof. Comparing the coefficient of ¢* in both sides of (6.3) we see that P(B,,, S;z) =

W (£a(S; 7)) where
fulSia) =3 (”) 2@+ 1),

sES
So the theorem follows from Theorem 4.2. O

One instance of Theorem 6.9 is particularly interesting. Recall that a Coxeter
group of type D,, is isomorphic to the subgroup

D,={0c€eB,: 2|N(0)}
Hence, we have the following corollary

Corollary 6.10. For all n € N the polynomial

Z xdg(a)

oceD,

has only real and simple zeros.

Note that the above polynomial is not P(D,,z), since Bj-descents and D,-
descents are not the same.

7. THE h-VECTOR OF A FAMILY OF SIMPLICIAL COMPLEXES DEFINED BY FOMIN
AND ZELEVINSKY

Fomin and Zelevinsky [17] recently associated to any finite Weyl group W a
simplicial complex Apz(WW). For the classical Weyl groups the corresponding h-
polynomials are given by

MApz(An-1),7) = %g(g) <kil>xk’

k=0

h(Arz(Ba)z) = i(z) (Z>wk

0
h(Apz(Dn),ZL') = hApz(Bn),ZL')—nwh(Apz(An_Q),w).
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It is known that the h-polynomials corresponding to A, and B, have only real
zeros. We will here show that so has h(Apz(Dy), z).

Theorem 7.1. Let o, € R be such that o > 0,2a+ 3 > 0 and let n > 2 be an
integer. Then the polynomial

Fo(a,B) == ah(Arz(By),z) + fnzh(Arz(An—2), x),

is real- and simple-rooted. Moreover, h(Apz(Bn—1),x) strictly interlaces Fy,(a, 3)
if a > 0 and strictly alternates left of F(a,B) if a = 0.

Corollary 7.2. Let W be a finite Weyl group. Then h(Apz (W), z) has only real
and simple zeros.

Proof. For the exceptional Weyl group one can check the real-rootedness ad hoc,
see [28]. The other cases follows from Theorem 7.1. O

The Hadamard product of two polynomials

p(z) = ap+axz+--+apz™
qglz) = bo+bx+---+byz"

is the polynomial

(p*q)(z) = aohy + arbiz + - - + anbyz?,
where N = min(m,n). Méalo proved that if the zeros of p are real and the zeros of
q are real and of the same sign then the zeros of p x ¢ are real as well. This also
follows from Theorem 3.8 since p x ¢ = I'[pSq] where T" is the multiplier sequence
{41, It is known, see e.g. [18], that if f has only real zeros then all zeros of
I'[f] are real and simple except for possibly at the origin.

Proof of Theorem 7.1. We may write Fy,(«, 3) as
Fn(aaﬂ) = Oé(.fL‘ + l)f + (20& + ﬂ)ga

where f=(z+1)" ' % (z+1)" ' and g = (z(z + 1)" ) * (z+ 1)L
By the discussion before this proof we have that for all real choices of v,§ € R
the polynomial

vf+0g=((v+ox)(z+1)" ") % (z+1)",

is real- and simple-rooted. By the Obreschkoff theorem we infer that f strictly
alternates left of g. Now, since f < (z + 1)f and f <« g we know by Lemma 2.2
that f either interlaces or alternates left of Fj,(«, ) for all @, 8 € R such that
sgn(a) = sgn(2a + B). Moreover, since g and f have no common zeros nor does
F,(a,B) and f (provided that 2a + 3 # 0). O
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COUNTEREXAMPLES TO THE NEGGERS-STANLEY
CONJECTURE

PETTER BRANDEN

ABSTRACT. The Neggers-Stanley conjecture asserts that the polynomial count-
ing the linear extensions of a labeled finite partially ordered set by the number
of descents has real zeros only. We provide counterexamples to this conjecture.

A finite partially ordered set (poset) P of cardinality p is said to be labeled if
its elements are identified with the integers 1,2,...,p. We will use the symbol <
to denote the partial order on P and < to denote the usual order on the integers.
The Jordan-Hdélder set L(P) is the set of permutations 7 = (my,...,m,) of [p] def
{1,2,...,p} which encode the linear extensions of P. More precisely, 7 € L(P) if
m; < m; implies ¢ < j.

A descent in a permutation 7 is an index 7 such that m; > m;11. Let des(w)
denote the number of descents in 7. The W -polynomial of a labeled poset P is
defined by

W(Pt)= Y e,
mEL(P)
W -polynomials appear naturally in many combinatorial contexts [2, 7, 8], and are
connected to Hilbert series of the Stanley-Reisner rings of simplicial complexes [10,
Section II1.7] and algebras with straightening laws [9, Theorem 5.2.].

Example 1. Let P» > be the labeled poset shown in Figure 1. Then
‘C(P272) = {(17 37 27 4)7 (17 37 47 2)7 (37 13 27 4)7 (37 17 47 2)7 (37 47 13 2)}7
s0 W(Pyo,t) = 4t + t2.

2 4
P = |\
1 3

F1GURE 1. The poset P» .

When P is a p-element antichain, then £(P) consists of all permutations of [p],
and W (P,t) is the pth Eulerian polynomial. The Eulerian polynomials are known
[3] to have only real zeros. In this instance, the Neggers-Stanley conjecture holds:

Conjecture 1 (Neggers-Stanley). For any finite labeled poset P, all zeros of the
polynomial W (P,t) are real.

2000 Mathematics Subject Classification. Primary 06A07, 26C10.
Key words and phrases. Neggers-Stanley conjecture, partially ordered set, linear extension,
real roots.
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A poset P is naturally labeled if i < j implies ¢ < j. Conjecture 1 was made by
J. Neggers [4] in 1978 for naturally labeled posets, and extended by R. P. Stanley
in 1986 to arbitrary labelings. It has been proved in some special cases (see [2,
11]). A weaker unimodality property of W-polynomials was recently proved [6] (see
also [1]) for graded naturally labeled posets.

In this note, we construct counterexamples to Conjecture 1 utilizing the following
construction. Let m U n denote the disjoint union of the chains 1 <2 < --- <m
andm+1<m+2<--- <m+n. Let P, be the labeled poset obtained by
adding the relation m + 1 < m to the relations in m U n; see Figure 2.

B —t— o — 1

FIGURE 2. The poset Ps 4.

Theorem 1. Let M be a positive integer. The polynomial W (Py, n,t) has more
than M non-real zeros provided min(m,n) is sufficiently large.

The posets P, , are not naturally labeled, so the original conjecture of Neggers
remains open.

The rest of the paper is devoted to the proof of Theorem 1. At the end, we
discuss specific (minimal) counterexamples obtained from Theorem 1.

Lemma 1. W(P,n,t) = giri(n’m) (71):) (Z)tk'

Proof. Let m = (w1, 72, .. .) be a permutation. If i is a descent in 7, we say that 7; is
a descent top and ;41 is a descent bottom. Any m € £(mlIn) is uniquely determined
by its descent tops (which are necessarily elements of [m + n] \ [m]) and descent
bottoms (which are elements of [m]). It follows that the number of permutations
in £(m U n) with exactly k descents is (') (%), implying that W(m U n,t) =

main(n, m) (") (R)t*. Since the only element of £(mUn)\L(Py, ;) is (1,2,...,m+n),
we have W(mUn,t) =1+ W (P, n,t), and Lemma 1 follows. O

We note that all zeros of W (m U n,t) are real and simple (R. Simion [7]).

Proof of Theorem 1. Recall that the Bessel function of order 0 is given by

oo

Jo(z):%/ol %dt:iﬁ(%ﬁ)k. 2)

k=0

It is known that Jy(2) has infinitely many zeros, all of which are real and simple.
It follows from (2) that |Jo(#)| < 1 for all real 8, with equality only if # = 0. Hence
the function

o R
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has infinitely many zeros, all of them negative and simple. Also, |F(6)| < 1 for

0 < 0.
Let fm,n(z) = W(Pm,n, z/mn) Then

A=) a- ) a- - 2)-a-kh

fmm(z) = Z = T;d = = n]:ﬂ = 2.
k=1
Let m1,n1,ma,n2, ... be positive integers such that lim;_,., min(m;,n;) = oo.
Then

hm fmj,nj (Z) +1= F(Z)a

J*)OO
where the convergence is uniform on any compact subset of C. Let (—a,0) be an
interval containing more than M zeros of F(z). It follows from Hurwitz’s theorem
[5, Theorem 1.3.8] that the polynomial fy,; »;(2) + 1 has more than M zeros in
(—a,0) for sufficiently large j. By continuity we also have |fp, n; () + 1| < 1 for
z € (—a,0) and j large. Thus by subtracting 1 from f,,; »;(2) + 1, we will lose at
least M real zeros. O

By applying Sturm’s Theorem [5, Section 10.5], one can find specific counterex-
amples. The polynomial W (P ,11,t) has two non-real zeros which are approxi-
mately

z = —0.10902 £ 0.01308q:.

A counterexample with a polynomial of lower degree is
W (Psg,6,t) = 216t + 9450¢> + 142800t + 883575t* + 2261952t + 1947792¢°.

This polynomial has two non-real zeros.
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