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Algorithm 1 merge sort(list)

if length(list)==1 then
return list

else
A =merge_sort(first half of list)
B =merge_sort(second half of list)
C =merge(A,B) return C

end if

We will analyze the time complexity of the above algorithm. Define by a,, as
the time needed to sort a list of 2" elements. The time complexity of the algorithm
can be described by the following recursion,

A, = 20p_1+ 12"
ap = C(p.

We need to solve this recursion to find an explicit dependence of the time on n
and we will do this via its generating function A(x).
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provided |z| < 0.5. This gives us that
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Using the formulas given in the lecture for the generating functions of different
sequences,
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We therefore have that the formula for the sequence is,
a, = (cg+ c1n)2" = c1n2" = O(n2").
Now let t; be the time needed to sort k = 2" elements,
th = Gn = Qiog, ks = C1klogk = O(klogk).

Now for a general k > 8 (we don’t want to worry about small ks which would cause
problems in the argumentation below), let ng := min{n > 3:2"! <k < 2"} i.e.
2=l < | < 2™, We can bound the time complexity to sort a list of k elements
by the time needed to sort 2™ elements which is O(2" log 2" ). Now we bound
the time for £ from the bottom and above,
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and as we are interested in getting complexity in terms of O(-) we get that the
complexity of the merge sort algorithm is O(klogk) (we assumed k& > 8 but we
don’t worry about small k).



