Time complexity of merge sort

Krzysztof Bartoszek
October 7, 2010

Algorithm 1 merge sort(list)

if length(list)==1 then
return list

else
A =merge_sort(first half of list)
B =merge_sort(second half of list)
C =merge(A,B) return C

end if

We will analyze the time complexity of the above algorithm. Define by a,, as
the time needed to sort a list of 2" elements. The time complexity of the algorithm
can be described by the following recursion,

A, = 20p_1+ 12"
ap = C(p.

We need to solve this recursion to find an explicit dependence of the time on n
and we will do this via its generating function A(x).

Alr) =D nlo ant™ = co+ 3y (2001 + 12")a" = co + 300 20m 12" + 35,y a1 (22)" =
=co+2x Y 0l AT o Yo (22)" =0+ 20) ey anT" + 1205 = o + 2z A(z) + 242

1-2z7

provided |z| < 0.5. This gives us that
(1—-22)A(x) = co+ 222

1—2x

Alx) = %+ (123;:0)2 =
_ c—o)l c
o 1072$ + (1721‘%)2'

Using the formulas given in the lecture for the generating functions of different
sequences,

Alr) = 9= + % = (0 — &) oty (20)" + &1 Yooty ("7) (20)" =
= (co = c1) Yono(20)" + 1 D00 (n + 1) (22)" = 3207, 2% (co + can)a™.

1

We therefore have that the formula for the sequence is,
a, = (cg+ c1n)2" = c1n2" = O(n2").
Now let t; be the time needed to sort k = 2" elements,
th = Gn = Qiog, ks = C1klogk = O(klogk).

Now for a general k > 8 (we don’t want to worry about small ks which would cause
problems in the argumentation below), let ng := min{n > 3:2"! <k < 2"} i.e.
2=l < | < 2™, We can bound the time complexity to sort a list of k elements
by the time needed to sort 2™ elements which is O(2" log 2"). Now we bound
the time for £ from the bottom and above,

2~ og 2m 1 < klog k < 27 log 2™
o1 og 21 < klog k < 27 log 2™ < 2 . 2mk—1]og 2mk—1?
2~ og 2 < klogk < 2-2M~12 . Jog 2m 1
2 og 2~ < klogk < 4 -2~ 1. log2™~! < 4klogk € O(klogk),

and as we are interested in getting complexity in terms of O(-) we get that the
complexity of the merge sort algorithm is O(klogk) (we assumed k& > 8 but we
don’t worry about small k).

