Losningar till tentamen i Matematisk statistik och diskret matematik D2
(MVEO055/MSG810).
Den 20 oktober 2012. These are sketches of the solutions.

1. Losning:

a)
Proposition 1. If X is a random variable that takes only nonnegative values, then, for

any value a > 0,
E(X)

a

P(X >a) <

Proof of the Markov’s inequality. For a > 0, let

I 1 if X >a
0 oterwise

and note that, since X > 0,

<>
a
Taking expectations of the preceding inequality yields
E(X
R(1) < 2
a
which, because E(I) = P(X > a), proves the result. O

Proposition 2. If X is a random variable with finite mean p and variance o2, then,

for any value k > 0,
2
o
PIX —pl2 k) <%,

Proof of the Chebyshev’s inequality. Since (X — p)? is a nonnegative random variable,
we can apply Markov’s inequality (with a = k?) to obtain

P — g 2 1) < ) ()

But since (X — u)? > k? if and only if | X — pu| > k, Equation (1) is equivalent to

_ 2 0.2
P(X - pl 2 1) < S W)

and the proof is complete. O

P(0 < X < 40) = P(—20 < X — 20 < 20) = P(|X — 20| < 20)

20
=1-P(]X —20[>20) >1— 207 by Chebyshev’s inequality
1 19
20 20 0.95

d) Chebyshev’s inequality must be regarded as a theoretical tool rather than a practical
method of estimation. Its importance is due to its universality, but no statements of
great generality can be expected to yield sharp results in individual cases.



Losning:

2. a)

The generating function for the infinite series {go, g1, g2, g3, - - .) is the power series:
G(l') =go+ g1 +92£L'2 +93.’E3 + ...

Recall that the sum of an infinite geometric series is:

1

1424224234+, =
1—=2

This equation does not hold when |z| > 1, but we don’t worry about convergence issues.
This formula gives closed-form generating function for the sequence (1,1,1,1,...).
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Differentiate the generating function for an infinite sequence of 1’s.

d d /1
—( 4zt 2P+t 4. = ( )

dz T dz\1—z
1
2 2 _
(1,2,3,4,...) +— !
3 Ly Dy FEy .ot (1_1_)2

The generating function for the sequence (1,2,3,4,...) of positive integers is (1_%)2

Generating function are particulary useful for solving counting problems. Problems
involving choosing items from a set often lead to nice generating functions by letting the
coefficient of ™ be the number of ways to choose n items. Often we can translate the
description of a counting problem directly into a generating funciton for the solution.
For example, the generating function of binomial coefficients and the generating
function for selecting items from a k-element set with repretition.

First construct a generating function for selecting egg bagels. We can select a set of 0 or
1 bagel(s) in 0 way (because at least two bagels of each kind are chosen), 2 bagels in one
way, a set of 3 bagels in one way, and so forth. So we have:

2
E@x)=a+23+2"+... =

1—-2z
Similarly, the generating function for selecting plain bagels is:

2
Pla)=24+22+a2*+... = z

1—=x

Now, we can select a set of 0 or 1 egg bagel(s) in 0 way (because at least two bagels of
each kind are chosen), 2 salty bagels in one way, a set of 3 salty bagels in one way.
However, we can not select more than three salty bagels, so we have the generating
function:

S(z) = 2 + 23
The Convolution Rule says that the generating function for selecting from among all
three kinds of bagels is:
25 4+ 27
(1—=)?

6 zeroes

E(z)P(x)S(x) =

. . . . /_/A
which is the generating function for sequence (0,0,...,0,1,3,5,7,...). Thus we can
select a dozen of bagels in 13 different ways.



3. Losning:
Since the sample size n = 5 is small and variance of an underlying normal distribution is
unknown the Student’s t-CI on mean should be used:

. S
X+ty q1a—
L3
where
1 _
S = 1 (X; — X)? is a sample standard deviation.
n—

Since n = 5, d.f.= 4; therefore, from Table of the t-distribution, t4,0.025 = 2.776; £ = 13.38,
52 = 0.297. We obtain a 95% confidence interval (12.703,14.057).



