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Generating function

Definition
Given a sequence of real numbers {an}∞n=0, the generating function of
the sequence is defined as

g(x) =

∞∑
n=0

anx
n.

Generating function can be useful to solve many problems, as we
will see.
We will not be concerned too much with the issue of convergence.
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Generating function
Examples of generating functions:

(Geometric series) let an = cn for some constant c, then

g(x) =

∞∑
n=0

cnxn =

∞∑
n=0

(cx)n =
1

1− cx
.

Recall: the binomial coefficient is defined by(
n

k

)
=

n!

k!(n− k)!
=

k∏
i=1

n− i+ 1

i

for all real numbers n and integers k. and the binomial theorem
says that

(a+ b)n =

∞∑
k=0

(
n

k

)
akbn−k.

Thus
∞∑
k=0

(
n

k

)
xk = (1 + x)n.

Marco Longfils MVE055 2018 Lecture 11



Let an =
(
n+k
k

)
, then

∞∑
n=0

anx
n =

1

(1− x)k+1
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Operations on generating functions

Proposition (Addition + Multiplication by a constant)

Addition: Let {an}∞n=0, {bn}∞n=0 be two sequence with corresponding
generating functions A(x), B(x). The sequence
{cn}∞n=0 = {an + bn}∞n=0 has generating function C(x) = A(x) +B(x).

Multiplication by a constant: Moreover, if p is a constant, then
the sequence {dn}∞n=0 = {pan}∞n=0 has generating function
D(x) = pA(x)

Proposition (Right shifting + Differentiation)

Right shifting: Let {an}∞n=0 be a sequence with corresponding
generating function A(x). The sequence
{cn}∞n=0 = {0, 0, ..., 0, a0, a1, a2, ...} with k > 0 leading zeros has
generating function C(x) = xkA(x).

Differentiation: Moreover, the sequence {a1, 2a2, ..., nan, ...} has
generating function F (x) = A′(x).
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Counting with generating function

Theorem (Convolution rule)

Let A(x) denote the generating function for selecting items from a set
A and B(x) the generating function for selecting items from a set B,
such that A∩B = ∅. Then, the generating function for selecting items
from A ∪B is the product A(x) ·B(x).

Very useful!
The reason why the rule holds lies in the way the product is
computed.
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Exponential generating function

Definition (Exponential generating function)

Given a sequence {an}∞n=0 the function

E(x) =

∞∑
n=0

an
xn

n!

is called exponential generating function for the sequence.

if an = 1,∀n then E(x) = ex.
if an = E[Xn] are the moments of a random variable X, then
E(x) = mX(t) is the moment generating function of X.
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Characteristic function

Given a random variable X the characteristic function φX is
defined as

φX(t) = E[eitX ],

where i =
√
−1 is the imaginary unit.

Example: if X is a discrete random variable and an = E[Xn] then

φX(t) =

∞∑
n=0

an
(it)n

n!

Has similar properties to the moment generating function, but its
definition ensure that it exists for any random variable X.
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Chebychev’s inequality

Also know as Chebysheff, Chebychov, Chebyshov,
Tchebychev,Tchebycheff, Tschebyschev, Tschebyschef, Tschebyscheff...

Proposition (Chebychev’s inequality)

Let X be a random variable such that E[X] = µ,Var(X) = σ2. If
0 < σ2 <∞ then for any k > 0 it holds

P [|X − µ| ≥ kσ] ≤ 1

k2

or equivalently for any a > 0

P [|X − µ| ≥ a] ≤ σ2

a2
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