MVE055 2018 Lecture 12

Marco Longfils

Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg

Wednesday $10^{\rm th}$ October, 2018

Also know as Chebysheff, Chebychov, Chebyshov, Tchebychev, Tchebycheff, Tschebyschev, Tschebyschef, Tschebyscheff...

Proposition (Chebychev's inequality)

Let X be a random variable such that $\mathbb{E}[X] = \mu$, $\operatorname{Var}(X) = \sigma^2$. If $0 < \sigma^2 < \infty$ then for any k > 0 it holds

$$P[|X - \mu| \ge k\sigma] \le \frac{1}{k^2}$$

or equivalently for any a > 0

$$P[|X - \mu| \ge a] \le \frac{\sigma^2}{a^2}$$

Theorem ((Weak) Law of Large Numbers)

Let X_1, \ldots, X_n be independent and identically distributed (i.i.d) random variables with mean $\mu < \infty$ and variance $0 < \sigma^2 < \infty$. Denote by $S_n = X_1, \ldots, X_n$ the sum of the n random variables. Then for any $\epsilon > 0$

$$P\left(\left|\frac{S_n}{n}-\mu\right| \ge \epsilon\right) \to 0, \text{ as } n \to \infty$$

- Called "weak" to distinguish it from the "strong" law of large numbers.
- It is NOT valid if the variance is not finite!

Problem: how to approximate the area shaded in blue in the figure (which is $\frac{\pi}{4} = 0.7854$:

Idea: Generate points $X_1,...,X_n$ uniformly in the square $[0,1]\times[0,1]$ for some n and count

n = 1000 points, estimated area = 0.7980

n = 10000 points, estimated area = 0.7909

Assume we want to approximate the area of a set B.

- Generate n independent and uniformly distributed points $X_1, ..., X_n$ in a set A, such that $B \subset A$.
- Count how many of points X_1, \ldots, X_n falls in B. That is, define $Y_i, i = 1, \ldots, n$ by

$$Y_i = \begin{cases} 1, & \text{if } X_i \in B\\ 0, & \text{otherwise} \end{cases}$$

• It follows that $P(Y_i = 1) = P(X_i \in B) = \frac{Area(B)}{Area(A)}$, and $\mathbb{E}[Y_i] = P(Y_i = 1) = \frac{Area(B)}{Area(A)}$.

• Define $S_n = Y_1 + \cdots + Y_n$. The law of large numbers applied to the Y_i ensure

$$P\left(\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right) \to 0, \text{ as } n \to \infty$$

where $\mu = \mathbb{E}[Y_i] = \frac{Area(B)}{Area(A)}$

- $\frac{S_n}{n}$ should be approximately $\frac{Area(B)}{Area(A)}$.
- Approximate $Area(B) = Area(A)\frac{S_n}{n}$.