MVE055 2017 Lecture 15

Marco Longfils

Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg

Monday 16th October, 2017

- The data have to be numeric:
- We need/can make assumptions on the underlying distribution of the data (e.g. normality).
- They often have higher statistical power than corresponding nonparametric test. That is, When a significant effect exists, parametric test are more likely to detect this effects.
- If the sample size is large "enough", they can still perform well even in the case where assumptions are not met (e.g. T test with equal variances, nonnormal data)

- The data can be numeric, ordinal, or nominal.
- We do not specify the underlying distribution of the data ("distribution-free").
- Usable even with small samples;
- T-test (parametric) is testing equality of means, where sometimes the mean might not be the "best" measure of location.

Wilcoxon Rank-Sum test

- Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be two independent random samples of, respectively, X and Y.
- We want to test if X and Y have the same distribution, i.e.

 H_0 : X and Y have the same distribution

 H_1 : X and Y do not have the same distribution

• Under some assumptions, Wilcoxon test can be interpreted as a test on medians, i.e. denote by M_X, M_Y the medians

 $H_0: M_X = M_Y$ $H_1: M_X \neq M_Y$

• Similarly, one can consider one-sided tests.

• Suppose we have the following data regarding the height of individuals (in centimeters):

Male	Female
180	175
193	168
178	163
188	165
185	173
170	
183	

• We would like to investigate if the distribution of the height is the same in this two groups, but (for one of the reason specified above) we cannot use a T-test.

• Rank the values starting from 1 for the lowest value:

Height	163	165	168	170	173	175	178	180	183	185	188	193
Rank	1	2	3	4	5	6	7	8	9	10	11	12

• Rank the values starting from 1 for the lowest value:

Γ	Height	163	165	168	170	173	175	178	180	183	185	188	193
	Rank	1	2	3	4	5	6	7	8	9	10	11	12

• Define W_5 to be the sum of the ranks for women, i.e.

$$W_5 = 1 + 2 + 3 + 5 + 6 = 17$$

• We look in the Statistical table for the critical values for Wilcoxon Rank Sum test with m = 5 and n = 7 = m + 2

• Rank the values starting from 1 for the lowest value:

Γ	Height	163	165	168	170	173	175	178	180	183	185	188	193
	Rank	1	2	3	4	5	6	7	8	9	10	11	12

• Define W_5 to be the sum of the ranks for women, i.e.

$$W_5 = 1 + 2 + 3 + 5 + 6 = 17$$

- We look in the Statistical table for the critical values for Wilcoxon Rank Sum test with m = 5 and n = 7 = m + 2
- We reject H_0 at a 5% significance level if $W_5 < 20$ or $W_m > 45$. We conclude: men are taller than women.

- Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be two independent random samples of, respectively, X and Y. Assume $m \leq n$.
- Sort the values of $X_1, ..., X_m, Y_1, ..., Y_n$ in ascending order and rank them starting from 1 up to m + n.
- If there are ties, all the tied values get the average rank of the tied value, for example if we have three tied observation with height 180 and ranks i, i + 1, i + 2 then each of those observation get the rank

$$\frac{i+(i+1)+(i+2)}{3}$$

- Compute W_m , the sum of the ranks of the X's;
- Look at the statistical tables (Table X in (MA)) for the critical values;

Wilcoxon Signed Rank test

- Is a nonparametric test for testing equality of distribution of two **DEPENDENT** samples (null and alternative hypothesis as before);
- Example: we would like to test the effect of a new drug on blood pressure. We measure the (systolic) blood pressure of 7 patients before and after they take the drug.

Before	After
120	115
113	108
118	113
128	125
115	123
110	112
123	122

• We can see that the measurements of the blood pressure are naturally paired as "before" (Xs) and "after" (Ys) $(X_1, Y_1), ..., (X_7, Y_7);$

Wilcoxon Signed Rank test

• We compute the pair differences $X_i - Y_i$, i = 1, ..., 7.

X	Y	X-Y	sign(X-Y)	rank	signed rank
120	115	5	+	5	+5
113	108	5	+	5	+5
118	113	5	+	5	+5
128	125	3	+	3	+3
115	123	8	-	7	-7
110	112	2	-	2	-2
123	122	1	+	1	+1

• Define

$$W_{+} = \sum_{\text{all positive ranks } R_{i}} R_{i}, \qquad |W_{-}| = \sum_{\text{all negative ranks } R_{i}} |R_{i}|$$

• zero differences are assigned the sign that is "least leading" to the rejection of the null hypothesis;

• In our example

$$W_+ = 19, \quad |W_-| = 9$$

- For a two sided test, the statistic to be used is $\min\{W_+, |W_-|\}$; for right tailed test ("X>Y") we use $|W_-|$, for left tailed test ("X<Y") W_+ ;
- In any case we reject the null hypothesis if the test statistic is smaller than the critical value found in Table VIII of (MA);
- We perform the two tailed test at the level $\alpha = 0.05$. The critical point is 2 and min $\{W_+, |W_-|\} = 9 > 2$. Thus we do not reject the null hypothesis.

Wilcoxon Signed Rank-Sum test

- Let X_1, \ldots, X_n and Y_1, \ldots, Y_n be two dependent (i.e. paired) random samples of, respectively, X and Y.
- Sort the absolute values of $X_1 Y_1, ..., X_n Y_n$ in ascending order and rank them starting from 1 up to n.
- If there are ties, all the tied values get the average rank of the tied value;
- Compute the signed ranks by multiplying the sign of the difference $X_i Y_i$ by its rank;
- Compute $\{W_+, |W_-|\}$
- Look at the statistical tables (Table VIII in (MA)) for the critical value;
- Reject H_0 if the test statistic is smaller than the critical value