## MVE055 2017 Lecture 14

#### Marco Longfils

Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg

### Wednesday 11<sup>th</sup> October, 2017

- The Body Mass Index (BMI) is a commonly used measure of malnutrition/obesity.
- BMI =  $\frac{\text{weight in Kg}}{\text{height in meters}^2}$ ;

|                           | BMI         | Status        |
|---------------------------|-------------|---------------|
| • Weight statuses vs BMI: | 0-18.5      | Underweight   |
|                           | 18.5 - 24.9 | Normal weight |
|                           | 25 - 29.9   | Overweight    |
|                           | $\geq 30$   | Obese         |

- Many health risks (diabetes, heart diseases,...) are different for these categories.
- Before starting, we can see that BMI might be an incorrect measure, as it does not take into account mass composition (fat vs. muscles.)

We would like to investigate/asnwer the following questions:

- Is there a difference in the distribution of the BMI of men and women?
- It is expected that changes in the metabolism and lifestyle cause on average an increase of the BMI.

- 100 persons have filled in an anonymous internet-based survey with questions about: height, weight, gender, age, health esteem, number of exercise and sitting hours, number of cigarettes per day;
- Missing/erroneous entries are presents: e.g. an age value 0f 186 years and gender not specified. As they are few compared to the sample size, we can simply ignore. (no trend in missingness can be seen)

## Data visualization



# Boxplot



To compare the mean of two populations we would need to use either:

- 1. two sample (unpaired) T test, with the following assumptions:
  - Normality;
  - $\bullet \ {\rm equal/inequal \ variances};$
- 2. non-parametric test (Wilcoxon: next lecture).



- We perform an F test to check if the variances are equal.
- p-value:  $0.133 \rightarrow$  we assume equal variances
- The F test is higly sensitive to deviation from normality, thus I really should not have used it in this case!!!
- We perform then a T test with equal variances and obtain a p-value of 0.0025;
- Non-parametric tests are the most suitable method to use. In this case a Wilcoxon test gives a p-value of 0.0036.

- We have noticed that the distribution of BMI is not normal;
- Consider log BMI

#### Estimated Coefficients:

|             | Estimate  | SE       | tStat  | pValue      |
|-------------|-----------|----------|--------|-------------|
|             |           |          |        |             |
| (Intercept) | 3.0484    | 0.028267 | 107.84 | 8.1802e-103 |
| x1          | 0.0034126 | 0.000949 | 3.596  | 0.00051037  |

```
Number of observations: 99, Error degrees of freedom: 97
Root Mean Squared Error: 0.126
R-squared: 0.118, Adjusted R-Squared 0.109
F-statistic vs. constant model: 12.9, p-value = 0.00051
```

# diagnostic





