
Solution to the written test for examination in MVE135
Random processes with applications, 2007-10-25 Thursday, 14:00 - 18:00, V.

There are 30 total points in the examination. One needs 14 points for grade 3 (to pass), 18
points for grade 4, and 24 points for grade 5.

Problem 1. The input X in a binary optical communication system is a random variable
with equally likely values 1 and 2. The receiver output Y is a Poisson random variable which
parameter is µ, when 1 is transmitted, and ν when 2 is transmitted.

(a) Compute E[Y |X] and E[Y ]. 1.5p

(b) Given that the receiver output is equal to 2, find the conditional probability that 1 was
sent. 1.5p

Solution

(a)

E[Y |X = 1] = µ, E[Y |X = 2] = ν, E[Y ] = E[E[Y |X]] =
µ

2
+

ν

2

(b)

P (X = 1|Y = 2) =
P (Y = 2|X = 1)P (X = 1)

P (Y = 2)
=

1

2

µ2

2
e−µ

1

2

µ2

2
e−µ + 1

2

ν2

2
e−ν

=
µ2e−µ

µ2e−µ + ν2e−ν

Problem 2. A multiplexer combines N digital television signals into a common transmission
line. Signal n generates Xn bits every 33 milliseconds, where Xn is a Gaussian random variable
with mean m/N and variance σ2/

√
N . Suppose that the multiplexer accepts a maximum total

of T bits from the combined sources every 33 ms, and that any bits in excess of T are discarded.
Let the signals be independent and assume that T = m + tσ, where t > 0 is a fixed number.
Let YDisc be the number of bits discarded per 33-ms period, i.e.,

YDisc =

{

X − T, X > T
0, X ≤ T.

Compute E[YDisc]. What is the result when t → ∞? 3p

Solution Let X = X1 + X2 + . . . + XN be the total number of bits generated by the combined
source. X is a normal random variable with expected value m and variance σ2

1 =
√

Nσ2. Then
T = m + t1σ

2
1, where t1 = t/

√
N . We have

YDics =

{

X − T, if X > T
0, if X ≤ T.
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Thus

E[YDisc] =

∫ ∞

T

(x − T )fX(x)dx

=

∫ ∞

m+t1σ1

xfX(x)dx − TP (X ≥ m + t1σ1)

=
1√
2π

∫ ∞

t1

(σ1y + m)e−
y
2

2 dy − (m + t1σ1)Q(t1)

=
σ1√
2π

e−
t
2

1

2 − t1σ1Q(t1)

When t → ∞ we obtain E[YDics] → 0, as expected.

Problem 3. Suppose Z1 and Z2 are independent standard normal random variables. Define
X1 = Z1, X2 = 3/5Z1 + 4/5Z2. Compute fX2|X1

(x2|x1), the conditional PDF of X2, given
X1 = x1. 3p

Solution The random variables Z1, Z2 are jointly Gaussian, and so are X1, X2. We have
mX1

= mX2
= 0, σ2

X1
= σ2

X2
= 1, ρX1,X2

= 3/5. Then

fX1,X2
(x1, x2) =

1

2π
√

1 − (3/5)2
exp

{

− 1

2

1

1 − (3/5)2
[x2

1 + x2

2 − 2
3

5
x1x2]

}

and

fX2|X1
(x2|x1) =

fX1,X2
(x1, x2)

fX1
(x1)

=
1√

2π4/5
exp

{

−
(

x2 − 3

5
x1

)2

2 · 16/25

}

Problem 4. Messages arrive in a multiplexer according to a Poisson process with mean λ = 10
messages/second. Use the CLT to estimate the probability that more then 650 messages arrive
in one minute. 3p

Solution

P (S650 < 60) = P

(

S650 − 605/10√
650/10

<
60 − 650/10√

650/10

)

≈ Q(1.96) = 2.49 × 10−2

Problem 5. Let X1, X2, ... be iid random variables with expected value m and variance σ2,
and consider the discrete time proces {Zn, n ≥ 1} with

Zn =
X1 + X2 + ... + Xn

n
.

(a) Find the autocovariance function of Zn. 3p
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(b) Why is this process Markovian? Suppose X1 is continuous with CDF F (x) and PDF
f(x). Compute

FZn|Zn−1
( x|Zn−1 = y) = P (Zn ≤ x|Zn−1 = y) and fZn|Zn−1

( x|Zn−1 = y).

3p

Solution

(a) Recall that the covariance function of the sum process {Sn, n ≥ 1} with
Sn = X1 + X2 + ... + Xn is CS(n, k) = min(n, k)σ2. Then

CZ(n, k) = E [(Zn − m)(Zk − m)) =
1

nk
E[(Sn − nm)(Sk − km)]

=
1

nk
CS(n, k) =

1

nk
min(n, k)σ2 =

σ2

max(n, k)

(b) The process has independent increments and is then Markovian.

FZn|Zn−1
( x|Zn−1 = y) = P (Zn ≤ x|Zn−1 = y) = P (nZn ≤ nx| (n − 1)Zn−1 = (n − 1)y)

= P (Xn ≤ nx − (n − 1)y) = FX(nx − (n − 1)y)

fZn|Zn−1
( x|Zn−1 = y) = nfX(nx − (n − 1)y)

Problem 6. Consider the short term integration of X(t)

Y (t) =
1

T

∫ t

t−T

X(u)du,

where X(t) is the white noise process with PSD SX(f) = N0/2.

(a) Compute SY (f), the PSD of Y (t). 3p

(b) Compute the average power of Y (t). 3p

Solution The impulse responce is

(a)

h(t) =
1

T

∫ t

t−T

δ(x)dx =
1

T

[
∫ t

∞

δ(x)dx −
∫ t−T

∞

δ(x)d

]

=
1

T
[u(t) − u(t − T )]

and the transfer functuion is then

H(t) =
1

T

∫ T

0

e−j2πftdt =
1

T

sin πfT

πf
e−jπfT

Hence

SY (f) = |H(f)|2SX(f) =
sin2 πfT

T 2π2f 2
· N0

2
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(b) The inverse Fourier transform gives

RY (τ) =
N0

2
F−1

[

sin2 πfT

π2f 2T 2

]

=
N0

2T
tri(τT ), RY (0) =

N0

2T

Problem 7. {Xn} is a WSS process with autocorrelation function

RX(k) = 4(1/2)|k|, k = 0,±1,±2, ....

Find the optimum linear filter for estimating Xn from the observations Xn−1 and Xn−3 and
compute the mean-square estimation error. 3p

Solution X̂n = h1Xn−1 + h2Xn−3.

X̂n − optimal ⇔ E[X̂nXn−i] = E[XnXn−i], i = 1, 3

[

RX(0) RX(2)
RX(2) RX(0)

] [

h1

h2

]

=

[

RX(1)
RX(3)

]

∣

∣

∣

∣

4 1
1 4

∣

∣

∣

∣

[

h1

h2

]

=

[

2
1/2

]

[

h1

h2

]

=
1

14

[

4 −1
−1 4

] [

2
1/2

]

=
1

12

[

6
0

]

=

[

1

2

0

]

.

e2 = RX(0) − h1RX(1) = 3

Problem 8. The spectrum of a stationary stochastic process is to be estimated from the data:

x[n] = {0, 6, −0, 7, 0, 2, 0 : 3}

Due to the small sample support, a simple AR(1)-model is exploited:

x[n] + a1x[n − 1] = e[n].

Determine estimates of the AR-parameter a1 and the white noise variance σ2
e . Based on these,

give a parametric estimate of the spectrum PX(ejω). 3p

Solution

The Yule-Walker method gives the estimate

â1 = −r̂x[0]−1]r̂x[1]

With the given data, the sample autocorrelation function is calculated as

r̂x[0] =
1

4
(0.62 + 0.72 + 0.22 + 0.32) = 0.245
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and

r̂x[1] =
1

4
(0.6 × (−0.7) + (−0.7) × 0.2 + 0.2 × 0.3) = −0.125

Thus, we get

â1 =
0.125

0.245
≈ 0.51.

The noise variance estimate follows as

σ̂2

e = r̂x[0] + â1r̂x[1] ≈ 0.18.
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