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1 Introduction

The purpose of this lab is to provide some hands-on experience and to give a better understanding of
spectral analysis and Wiener filtering. The focus in this lab is on the discrete-time case, i.e., digital
signals. After completing the lab, the student should be able to analyze a given signal with different non-
parametric and parametric (AR) methods, and select appropriate windows etc. based on prior knowledge
and the analysis results. The student should also be able to select a suitable order and to compute FIR
Wiener filters for given signal scenarios. This involves theoretical calculation of the autocorrelation and
cross-correlation functions for simple cases. The lab should also give a good understanding of the benefits
and the limitations of such filters. A theoretical background to the topics under study is given in [1].
The tasks are performed in Matlab, using mostly commands from the Signal Processing Toolbox. The
lab project is time consuming (expect to spend at least 10 hours) and there are many tasks. It is a good
idea to start with the first tasks as early as possible, although the theoretical background for the latter
tasks is still lacking. You should work in groups of two people. The results should be documented in
a report with some 10 pages. Include relevant Matlab plots and code. The deadline for handing in the
report will be posted on the course homepage. A preliminary date is Oct. 20. Submit the report as a
pdf-file by email to viberg@chalmers.se.

2 Some Background Theory

2.1 Spectral Estimation

The auto-correlation function of a discrete-time signal x[n] is given by rx(n, n−k) = E{x[n]x[n−k]}, and
the signal is said to be (weakly) stationary if rx(n, n− k) = rx(k) does not depend on n. For stationary
signals, the power Px = rx(0) = E{x2[n]} can be split up into frequency components. This results in the
Power Spectral Density (PSD) (often just referred to as the ”spectrum”), which is the Fourier transform
(DTFT) of the auto-correlation:

Px(ejω) =
∞∑

n=−∞
rx[n]e−jωn (1)
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The spectrum can also be defined using the DTFT directly on the signal:

Px(ejω) = lim
N→∞

1
N

E{|XN (ejω)|2} (2)

where

XN (ejω) =
N−1∑
n=0

x[n]e−jωn (3)

The spectral estimation problem is to determine an approximation of Px(ejω) from data, usually in the
form of one realization of finite length: {x[n]}N−1

n=0 .

Non-Parametric Spectral Estimation Given (2), a natural estimate is the Periodogram

P̂per(ejω) =
1
N
|XN (ejω)|2 (4)

The Periodogram (and other non-parametric spectral estimation techniques) is usually characterized by
the following properties:

Resolution This is the ability to separate two peaks in the spectra. For the periodogram, the resolution
is ∆ω ≈ 2π/N , i.e. inversely proportional to the sample length (and thus the data collection time).

Frequency masking This is due to the sidelobes of the rectangular windowing of data. The peak
sidelobe of the periodogram is -13 dB below the mainlobe, which means that a frequency peak that
is more than 13 dB weaker than a strong neighboring peak, might not be visible in the spectrum.

Variance This measures the statistical variability, i.e. how similar the spectral estimate would be when
applied to different realizations of the same random process. Unfortunately, Var{P̂per(ejω)} ≈
P 2

x (ejω), which does not improve with increasing N . Thus, the Periodogram will always give a very
noisy estimate of the PSD.

The properties of the periodogram can be improved by:

• Data windowing: reduce leakage through sidelobes by applying a data window – Modified peri-
odogram.

• Averaging: reduce variance by dividing data into K non-overlapping blocks, each of length M =
N/K. Variance reduced by K, but frequency resolution reduced to 2πK/N – Bartlett’s method.

• Averaging overlapping data with windowing. Can lead to better trade-off variance reduction vs.
loss of resolution – Welch’s method.

Blackman-Tukey’s Method Another approach to improve non-parametric spectral estimation is to
window the covariance function instead. The starting point is the following alternative form of the
periodogram (cf. (1))

P̂x(ejω) =
N−1∑

k=−(N−1)

r̂x(k)e−jωk (5)

where r̂x(k) = 1
N

∑N−1
n=k x[n]x[n− k] is the sample autocorrelation.

Note that r̂x[k] is based on averaging N − k − 1 terms, and it is therefore less reliable for increasing |k|.
To mitigate this effect, a window can be applied to the autocorrelation in (5). We denote the chosen
window function wlag[k], and it is supposed to be symmetric of length 2M + 1, where M < N , and a
decreasing function of |k|. The Blackman-Tukey PSD estimate is defined by

P̂BT (ejω) =
M∑

k=−M

wlag[k]r̂x(k)e−jkω (6)
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Since multiplication in time domain corresponds to convolution in the frequency domain, an alternative
form of the B-T spectral estimate is given by

P̂BT (ejω) =
1
2π

Wlag(ejω) ∗ P̂per(ejω) =
1
2π

π∫

−π

P̂per(ej(ω−ξ))Wlag(ejξ)dξ (7)

The convolution of P̂per(ejω) with Wlag(ejω) means a ”smearing” of the spectral estimate. The B-T
estimate is therefore often referred to as a smoothed periodogram. The frequency resolution of the
B-T estimate is determined by mainlobe width of Wlag(ejω), and one can show that the variance is
approximately given by

Var{P̂BT (ejω)} ≈ 1
N

M∑

k=−M

w2
lag(k) P 2

x (ejω)

Thus, for a fixed frequency resolution (proportional to 1/M)), the variance decreases like 1/N , unlike the
standard periodogram.

Auto-Regressive Modeling An alternative to non-parametric, or model-free, methods, is to assume
a specific model class of the spectrum to be estimated. One popular choice is the Auto-Regressive (AR)
model. A pth order AR model is defined by

x[n] + a1x[n− 1] + · · ·+ apx[n− p] = e[n] (8)

where e[n] is white noise (a sequence of i.i.d. random variables), with zero mean and variance E{e2[n]} =
σ2

e . The spectrum of the AR process is given by

Px(ejω) =
σ2

e

|A(ejω)|2 . (9)

For large enough p, this can model ”any” spectrum, but the success of the method depends on if a good
approximation can be found for a ”moderate” p. AR modeling is usually good for finding peaks in the
spectrum, but less accurate with dips (notches).
The AR coefficients and the noise variance can be determined from data by using the Yule-Walker
method. The Yule-Walker (Y-W) equations are given by




r̂x(1) r̂x(2) · · · r̂x(p)
r̂x(2) r̂x(1) · · · r̂x(p− 1)

...
...

. . .
...

r̂x(p) r̂x(p− 1) · · · r̂x(1)







â1

â2

...
âp


 = −




r̂x(0)
r̂x(1)

...
r̂x(p− 1)


 . (10)

Once the AR coefficients have been found by solving (10), the noise variance is estimated by

σ̂2
e = r̂x(0) +

p∑

k=1

âlr̂x(k) (11)

and the AR spectral estimate is computed as

P̂AR(ejω) =
σ̂2

e

|Â(ejω)|2 (12)

In general, the AR estimate provides better resolution and less problems with frequency masking then
non-parametric methods. However, it may give a bias if the ”true” spectrum cannot be well approximated
by the AR model (9).
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2.2 Wiener Filtering

Wiener’s classical filter problem is to recover a desired, but unobservable, signal d[n] by filtering a
measured signal x[n] through a linear filter H(z) =

∑
n h[n]z−n. The error is e[n] = d[n] − y[n], where

y[n] = h[n] ∗ x[n] is the filter output, and the filter coefficients are selected to minimize the Mean-Square
Error (MSE) E{e2[n]}. Thus, y[n] is a Linear Minimum MMSE (LMMSE) estimate of d[n].
The optimal filter coefficients are found by solving the Wiener-Hopf (W-H) equations:

∑

k

h[k]rx(l − k) = rdx(l) . (13)

The range of l for which (13) must hold is the same as the range of k in H(z) =
∑

k h[k]z−n, and depends
on the type of filter. For causal filters, k ≥ 0, and for a finite impulse response (FIR) filter k ≤ p− 1, for
some finite p. Thus, in case of a causal FIR filter the estimate is given by

y[n] = d̂[n] =
p−1∑

k=0

h[k]x[n− k] (14)

and the W-H equations (13), for l = 0, . . . , p− 1, can be put on matrix form:



rx(0) rx(1) · · · rx(p− 1)
rx(1) rx(0) · · · rx(p− 2)

...
...

. . .
...

rx(p− 1) rx(p− 2) · · · rx(0)







h[0]
h[1]

...
h[p− 1]


 =




rdx(0)
rdx(1)

...
rdx(p− 1)


 (15)

In short: Rxh = rdx, with solution given by hFIR = R−1
x rdx. The minimum MSE is given by

E{e2[n]}min = rd(0)−
p−1∑

k=0

rdx(k)hFIR[k] (16)

Note that the W-H equations are the same as the Y-W equations if the desired signal is d[n] = x[n + 1],
and with h[k] = −ak+1. Thus, an LMMSE one-step ahead predictor of an AR process is given by

x̂[n + 1] = −a1x[n]− · · · − apx[n− p + 1] ,

which could of course be guessed from (8). However, in general the Y-H equations are different from
Y-W, although they both involve the auto-correlation matrix Rx.

3 Spectral Estimation

The first part of the lab deals with spectral estimation. You will investigate various methods using
simulated data. All experiments assume discrete-time data. A sequence of ”observed” data x[n], n =
0, 1, . . . , N − 1 will be generated from a true model, which is a stationary AR or ARMA model. In the
first part you will apply non-parametric (Fourier-based) methods. The periodogram is first applied, and
then its various modifications. After that you will get some experience from parametric AR modeling.

Task 1: The Periodogram and Averaging

The first test system is the AR(2) model:

x[n]− 1.5x[n− 1] + 0.64x[n− 2] = e[n] ,

where e[n] is WGN with zero mean and variance σ2
e = 1.
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1. Plot the true spectrum, which is given by P (ejω) = σ2
e |G(ejω)|2, with G(z) = 1/A(z). Use the

command freqz in Matlab1. Plot the spectrum versus the frequency axis f=0:0.01:0.5; (unit:
”revolutions per sample”). Use linear amplitude and frequency scales.

2. Generate N+L samples of data according to the above model, where N = 1024 and L = 50. Use the
randn and filter commands in Matlab. Then, discard the first L samples of the data to ensure that
the simulated data is stationary. In Matlab, this can easily be done by x=x(L+1:end);. Next, esti-
mate the spectrum using the Periodogram. Follow the steps 1) X=fft(x,N);, 2) P=X.*conj(X)/N;,
and 3) P=P(1:N/2); (we only look at the first half, since the spectrum of a real-valued signal is
symmetric). Plot the Periodogram versus the frequency axis f=0:1/N:(N-1)/(2*N); Compare the
periodogram and the true spectrum. Comment on the result!

3. Clearly, the original Periodogram is a very noisy estimate of the true spectrum, although it appears
to be ”on average” correct. The first attempt to improve the situation is to divide the data into K
non-overlapping segments, each of length M = N/K. Then the periodograms from each segment are
averaged. This is called Barlett’s method, or just periodogram averaging. In Matlab, this is most
conveniently done by 1) xx=reshape(x,M,K);, 2) XX=fft(xx,N); (it is practical to still use the same
number of frequency bins, so that the same frequency axis can be used), 3) PP=XX.*conj(XX)/M;,
4) PB=mean(PP’);, and 5) PB=PB(1:M/2)’;. Apply Bartlett’s method using first K = 4 and then
K = 16. Plot the resulting spectral estimates along with the true spectrum in the same plot. What
is the benefit of periodogram averaging? What is the drawback?

Task 2: Windows in the Time and Frequency Domains

Windowing plays a key role in all non-parametric spectral estimates. So far you have used a rectangular
window. This gives the most narrow mainlobe (=best frequency resolution), but very high sidelobes
(=frequency masking). In this task, you will experiment with Matlab’s graphical user interface wintool
in order to get some familiarity with the some common window functions. Start the GUI by typing
wintool.

1. Make a table that compares the window shapes ”rectangular”, ”bartlett” (triangular), ”hann”
(or Hanning), and ”hamming”. Compare the performance parameters ”mainlobe width” (3 dB,
twosided) and ”peak sidelobe”, in dB relative the mainlobe. Use the lengths N = {16, 32, 64, 128}
respectively. How do the two performance parameters depend on N for the different windows?

2. For N = 128, apply a Chebyshev window with the same peak sidelobe as the Hamming window.
Which of the two has the better frequency resolution?

3. Finally, look at a Flat Top window of length 128 in the frequency domain. This window has a
constant amplitude in the frequency domain, over almost its entire mainlobe. Try to imagine what
it can be used for!

4. Go back to the Matlab workspace. Choose your favorite window from the GUI and use it with
Welch’s method for spectral estimation (averaging windowed and overlapping periodograms). In
Matlab, this is called pwelch (see the note on scaling at the end of Task 4). Compare the result
with what you got from ”pure” periodogram averaging.

Task 3: Blackman-Tukey’s Method

In this task you will have to do some Matlab-programming yourself. The task is to implement Blackman-
Tukey’s method, also known as Periodogram smoothing. Although a frequency-domain implementation
may be more efficient from a computational point of view, you will here implement the method in the
time domain. Recall the definition:

P̂BT (ejω) =
M∑

k=−M

wlag[k]r̂x[k]e−jω = DTFT{wlag[k]r̂x[k]} ,

1Generally, the typewriter font is used for Matlab commands in this document.
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where wlag[k] is the covariance window of size 2M + 1, M ≤ N , and r̂x[k] is the sample autocorrelation
function,

r̂x[k] =
1
N

N−1∑

n=k

x[n]x[n− k] .

Thus, the steps are: 1) generate the window function, 2) compute the sample autocorrelation function,
and 3) compute the FFT of the product between the two.

1. Write a Matlab function:
[PBT, fgrid] = btmethod(x, M, NFFT);

that takes the data x, the window size M and the FFT length NFFT as inputs, and delivers the BT
spectral estimate PBT as output, computed at the frequency grid given by fgrid. For step 1), use
a hamming window, and in step 2) you can use a nested for loop (over k and n). If you instead
call the xcorr command, note that it generates correlations for lags k = −N + 1 to k = N − 1, so
be careful with the indices of the output vector! Include the code for the BT function in the lab
report.

2. Test the code by estimating the spectrum for the same data as in Task 1. Choose a ”suitable”
window size (what dictates this choice?). Let NFFT be 2048 to get a smooth graph. Plot the
estimated spectrum and compare to the results using Bartlett’s method.

Task 4: Parametric AR Modeling

In this task you will test how to use Matlab’s built in command pyulear to estimate the spectrum. This
function computes estimates of the AR parameters by solving the Yule-Walker equations, using the sample
autocorrelations. The spectrum is then formed from the estimated AR coefficients and noise variance. See
below for a comment on Matlab’s scaling of PSDs. As an alternative, you can use the aryule command,
to retrieve the estimated AR parameters and noise variance. Once these are computed, the spectrum can
be formed using freqz, similar to computing the spectrum of the true model.

1. Apply the pyulear with correct model order (since the true data is an AR process in this case).
Compare the results with that using non-parametric methods.

2. Try AR modeling with incorrect model orders. What happens when the order is too low (p = 1)?
Too high (try up to p = 100)?

Note on Matlab’s PSD scaling: If you call pyulear or any other PSD estimation command in Matlab,
without specifying a sampling frequency, the resulting output will be the ”usual” spectrum (1) scaled by
π. Thus, you need to multiply the computed spectrum by π to compare with the true spectrum. If you
specify the sampling frequency to 1, there is still a scaling by 2π left. If you are puzzled by this, you are
probably not alone...

Task 5: ARMA Model

Now it is time to try a more challenging data set. Generate a set of N = 8192 samples from the ARMA
process:

x[n]− 0.24x[n− 1] + 0.08x[n− 2]− 0.37x[n− 3] + 0.52x[n− 4] = e[n] + 0.56e[n− 1] + 0.81e[n− 2] ,

where e[n] is N(0, 1) white noise. Again, use randn to generate e[n], and filter to compute y[n].

1. Plot the true spectrum, again using linear scales.

2. Estimate the spectrum using the BT method. Try to find the ”best” window size. Plot the estimate
and the true spectrum in the same plot. Use NFFT=4096. You may also try different window shapes.
Which part of the spectrum is most difficult to estimate (peaks or valleys)?

3. Now, try AR modeling using the pyulear command. Try to find the ”best” choice of model order.
Compare the results with that using the BT method. Is it possible to get a good spectrum estimate
using AR modeling in this case? If not, then why?
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4 Optimal Filters

In this part you will try FIR Wiener filtering to recover a noisy signal. You shall first generate a desired
signal and a noise, with given spectra. The optimal filter is then compute in Matlab by

h = Rx\rdx
This is the same as R−1

x rdx, but Matlab implements the ”backslash” in a more computationally and
numerically efficient way. Once the optimal filter has been found, the signal estimate is

d̂[n] =
p−1∑

k=0

h[k]x[n− k] = h[n] ∗ x[n] = xT [n]h ,

and the minimum MSE is computed from (16).

Task 6: The FIR Wiener Filter

In this task, we will consider the ”filtering” problem, in which the desired signal is corrupted by additive
noise:

x[n] = d[n] + w[n] .

The desired signal d[n] and the disturbance w[n] are uncorrelated, and they are both modeled as filtered
white noises.

d[n] = 0.13d[n− 1]− 0.9w[n− 2] + ed[n] (AR− process)
w[n] = ew[n]− 0.8ew[n− 1] + 0.2ew[n− 2] (MA− process)

Here, ed[n] and ew[n] are uncorrelated white noises, with zero mean and variances σ2
ed = σ2

ew = 1. In the
simulation, both will be generated as WGN.

1. (Theoretical task) Determine the autocorrelation functions for d[n], w[n] and x[n] respectively. See
Problem 4 in Chapter 5 of [1].

2. Plot the spectra of the desired signal d[n] and the disturbance w[n] in the same plot. Verify that
the desired signal is of band-pass character, whereas the disturbance is kind of high-pass.

3. Compute the optimal filter coefficients for FIR filters of length p = {1, 2, 5} and p = 10 respectively
(p = 10 is assumed to be close enough to ∞ in this case, so this should be a good approximation
of the causal IIR filter). When forming the autocorrelation matrix Rx, you may find the toeplitz
command useful. Solve the W-H equations using the backslash command in Matlab. Plot the
frequency responses of the different filters. Do they look as you expected, after seeing the spectra
of the desired signal and the interference?

4. Generate N = 200 samples of the two driving noise processes ed[n] and ew[n]. Use the randn
command. Then generate the signals d[n] and w[n] (use filter), and x[n] = d[n] + w[n]. Plot the
last 50 samples of d[n] and x[n]. The task is now to filter x[n] in order to recover d[n].

5. Compute the theoretical MSEs for the different filters. What is a good choice of filter length in
this case? Then apply the filters to the signal x[n] you generated in the previous task. Compute
the error signals ep[n] = d[n]− d̂p[n], with p = {1, 2, 5, 10}. Find the empirical mean-square errors,
which are the sample variances of ep[n], and compare with the theoretical results. Also plot the
last 50 samples of the various error signals in the same plot.

6. (Voluntary task) Suppose in reality we do not know of any models for the various signals. Instead
we might have access to a ”training data set”, {x̃[n], d̃[n]}K−1

n=0 , which is different from the true
signals, but has the same statistical properties. How could we use the training data to construct
an approximate Wiener filter? Feel free to try the idea on your simulated data, and compare the
result to the optimal filter!
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