SERIK SAGITOV, Chalmers Tekniska Högskola, May 22, 2004

Course overview

1. Descriptive statistics

Cdf estimation: empirical cdf survival function and the hazard function Density estimation: vertically scaled histogram, kernel density estimate, and steam-and-leaf plot Q-Q plots and normal probability plots Measures of location: sample mean \bar{X} , sample median \hat{M} , and α -trimmed mean \bar{X}_{α} Measures of dispersion: sample variance s^2 , IQR, MAD Skewness and kurtosis. Boxplots, outliers

2. Parameter estimation

Population parameters and sample parameters point and interval estimates

Sampling distribution and sampling error systematic and unsystematic errors unbiased and consistent estimates estimated standard error

Parametric statistical models method of moments and ML method

Confident intervals exact and approximate nonparametric CI for the population median Parametric and non-parametric bootstrap

3. Hypotheses testing

Statistical hypotheses: simple and composite one-sided and two-sided

Two types of error, error sizes: α and β significance level and the P-value, two-sided P-value exact and approximate null distributions the power of the test, planning the sample size Parametric and non-parametric one-sample tests one-sample t-test, sign test, the signed rank test the small-sample test for the proportion large-sample tests for proportion and for mean The duality of CI and hypotheses testing

4. Two or more samples

Two-sample t-test, Wilcoxon rank sum test Simple linear regression model least square estimates, normal equations coefficient of determination sample covariance, sample correlation assesing the fit with residuals

CI and hypothesis testing concerning the slope β_1 model utility test of H_0 : $\beta_1 = 0$ confidence bands for individual observations Multiple regression model adjusted coefficient of multiple determination

Anova tests

the one-way layout F-test, Kruskal-Wallis test the two-way layout F-test, Friedman's test

Likelihood ratio tests and generalized LRT the power of test, optimal tests goodness-of-fit chi-square test, degrees of freedom

Categorical data: Fisher's exact test chi-square tests of homogeneity and of independence McNemar's test, odds ratio

Simultaneous confidence intervals
Bonferronni's method and Tukey's method

5. Experimental design

Sampling with and without replacement finite population correction

Sratified random sampling optimal and proportional allocations

Two-sample tests: independent and paired samples double-blind, randomized controlled experiments confounding, Simpson's paradox

Anova tests: one-way layout and two-way layout randomized block design

Contingency tables
independent samples or a cross-classified sample
matched-pairs design
prospective and retrospective studies

6. Decision theory and Bayesian inference

Risk function for a decision rule based on a loss function minimax decision rules

Bayesian approach: prior and posterior distributions Bayes risk and Bayes decision rule Posterior risk and Bayes action

Conjugate priors

Beta and Dirichlet distributions, pseudocounts Gamma distribution

Bayesian estimation: MAP and PME credibility interval
Bayesian hypotheses testing and LRT