6th September 2006 Solutions: Chapter 12

Problems 19, 24, 26, 27

Problem 19.

Matlab commands: x = data matrix, boxplot(x), anova1(x)

Boxplots: 4 control groups of 5 mice each. Boxplots show non-normality. The largerst difference is between the third and the fourth boxplots. (Question: why the third boxplot has no upper whisker?)

Figure 1: Boxplots

 H_0 : no systematic differences between groups.

One way ANOVA: I=4 independent samples of size J=5

Source	SS	$\mathrm{d}\mathrm{f}$	MS	\mathbf{F}
Columns	27230	3	9078	2.271
Error	63950	16	3997	
Total	91190	19		

 $P=0.1195.\; Accept \; H_0$ at 10% significance level.

Kruskal-Wallis test. Pooled sample ranks

group I: 2, 6, 9, 11, 14,
$$\bar{R}_{1.}=8.4$$
 group II: 4, 5, 8, 17, 19, $\bar{R}_{2.}=10.6$ group III: 1, 3, 7, 12.5, 12.5, $\bar{R}_{3.}=7.2$ group IV: 10, 15, 16, 18, 20, $\bar{R}_{4.}=15.8$

 $K = \frac{12 \cdot 5}{20 \cdot 21} \left((8.4 - 10.5)^2 + (10.6 - 10.5)^2 + (7.2 - 10.5)^2 + (15.8 - 10.5)^2 \right) = 6.20$ $\chi_3^2(0.1) = 6.25$. Accept H_0 at 10% significance level.

Problem 24.

I=3 treatments on J=10 subjects with K=1 observations per cell. H_0 : no treatment effects.

Results of anova2(x):

Source	SS	$\mathrm{d}\mathrm{f}$	MS	\mathbf{F}
Columns (blocks)	0.517	9	0.0574	0.4683
Rows (treatments)	1.081	2	0.5404	4.406
Error	2.208	18	0.1227	
Total	3.806	29		

Two P-values: columns = 0.8772, rows = 0.0277. Reject H_0 at 5% significance level.

Friedman's test. Ranking within blocks:

$$Q=\frac{12\cdot 10}{3\cdot 4}\left((1.8-2)^2+(1.9-2)^2+(2.3-2)^2\right)=1.4$$
 $\chi^2_2(0.1)=4.61.$ Accept H_0 at 10% significance level.

Problem 26.

Boxplots: 3 types of stopwatches.

Figure 2: Boxplots

 H_0 : no systematic differences between groups.

One way ANOVA table

Source	SS	$\mathrm{d}\mathrm{f}$	MS	\mathbf{F}
$\operatorname{Columns}$	446.6	2	223.3	0.4974
Error	7632	17	449	
Total	8079	19		

P = 0.6167. Accept H_0 at 10% significance level.

Kruskal-Wallis test. Pooled sample ranks

$$K=\frac{12}{20\cdot 21}\left(9\cdot (8.5-10.5)^2+6\cdot (13.0-10.5)^2+5\cdot (11.1-10.5)^2\right)=2.15$$
 $\chi_2^2(0.1)=4.61.$ Accept H_0 at 10% significance level.

Problem 27.

I=3 poisons and J=4 treatments with K=4 observations per cell. H_A : no poison effect, H_B : no treatment effect, H_{AB} : no interaction.

a) Survival in hours $x = \text{data matrix } 12 \times 4$. Results of anova2(x,4):

Source	SS	$\mathrm{d}\mathrm{f}$	MS	\mathbf{F}
Columns (treatments)	91.9	3	30.63	14.01
Rows (poisons)	103	2	51.52	23.57
Intercation	24.75	6	4.124	1.887
Error	78.69	36	2.186	
Total	298.4	47		

Three P-values: columns = 0.0000, rows = 0.0000, interaction = 0.1100. Reject H_A and H_B at 1% significance level, accept H_{AB} at 10% significance level.

- 3 poisons act differently
- 4 treatments act differently
- some indication of interaction.

The normal probability plot of residuals reveals non-normality:

Figure 3: Normplot a

b) Transformed data: death rate = 1/survival time. Results of anova2(x.^(-1),4):

Source	SS	$\mathrm{d}\mathrm{f}$	MS	\mathbf{F}
Columns (treatments)	0.204	3	0.068	28.41
Rows (poisons)	0.349	2	0.174	72.84
Intercation	0.01157	6	0.0026	1.091
Error	0.086	36	0.0024	
Total	0.6544	47		

Three P-values: columns = 0.0000, rows = 0.0000, interaction = 0.3864. Reject H_A and H_B at 1% significance level, accept H_{AB} at 10% significance level.

- 3 poisons act differently
- 4 treatments act differently
- no indication of interaction.

The normal probability plot of residuals reveals a closer fit to normality assumption:

Figure 4: Normplot b