SERIK SAGITOV, Chalmers Tekniska Högskola, April 13, 2005

Chapter 10. Summarizing data

1. Empirical probability distribution

IID sample (X_1, \ldots, X_n) with population cdf F(x)

Empirical cdf
$$F_n(x)$$
 = proportion of $X_i \leq x$

For fixed x sample proportion $F_n(x)$ is an unbiased and consistent estimate of pop. proportion F(x)

After the sample is collected

 $F_n(x)$ is a cdf with mean \bar{X} and variance $\frac{n-1}{n}s^2$

Lifelengths

Lifelength T

$$\operatorname{cdf} F(t) = P(T \le t), \operatorname{pdf} f(t) = F'(t)$$

Survival function
$$S(t) = P(T > t) = 1 - F(t)$$

Empirical survival function $S_n(t) = 1 - F_n(t)$ the proportion of the data greater than t

Hazard function
$$h(t) = f(t)/S(t)$$

Mortality rate at age t

$$P(t < T \le t + \delta | T \ge t) \approx \delta \cdot h(t)$$

The negative of the slope of the log survival function $h(t) = -\frac{d}{dt} \log S(t)$

 $\operatorname{Exp}(\lambda)$: flat hazard function $h(t) = \lambda$

$$f(t) = \lambda e^{-\lambda t}, S(t) = e^{-\lambda t}$$

Weibull (γ, λ) distribution on $[0, \infty)$

$$f(t) = \lambda \gamma t^{\gamma - 1} e^{-\lambda t^{\gamma}}, S(t) = e^{-\lambda t^{\gamma}}, h(t) = \lambda \gamma t^{\gamma - 1}$$
 scale parameter $\lambda > 0$ and shape par. $\gamma > 0$

Ex 1: Guinea pigs

Guinea pigs infected with tubercle bacillus, p. 349-353

5 treatment and one control group

Fig 10.2: survival function

Fig 10.3: log survival function

Density estimation

Histogram: observed counts O_j for cells of width h

small h - ragged histogram

large h - obscured histogram, find a balanced h

Scaled histogram

 $f_h(x) = \frac{1}{nh}O_j$ for x in cell j to ensure $\int f_h(x)dx = 1$

Kernel density estimate with bandwidth h

produces a smooth curve

$$f_h(x) = \frac{1}{nh} \sum \phi(\frac{x-X_i}{h})$$
, where $\phi(x)$ is the N(0,1) pdf

Ex 2: male heights

If hm is a column of 24 male heights

x=160:0.1:210; l=length(x);

f=normpdf((ones(24,1)*x - hm*ones(1,l))/h);

fh=sum(f)/(24*h); plot(x,fh)

Steam-and-leaf plot for 24 male heights

17:056678899

18:0000112346

19:229

distribution shape plus the numerical information

2. Q-Q plots

p-quantile of a distribution $x_p = F_{-1}(p), 0 \le p \le 1$

Quantile x_p cuts off proportion p of smallest values

$$P(X \le x_p) = F(x_p) = F(F_{-1}(p)) = p$$

Ordered sample $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$

$$F_n(X_{(k)}) = \frac{k}{n}$$
 and $F_n(X_{(k)} - \epsilon) = \frac{k-1}{n}$

 $X_{(k)}$ is the empirical $(\frac{k-0.5}{n})$ -quantile

Two samples $(X_1, \ldots, X_n), (Y_1, \ldots, Y_m)$

test H_0 : two PDs are equal

by Q-Q plot = plot Y-quantiles against X-quantiles

Accept H_0 if the scatter plot is close to the bisector equal quantiles = equal distributions

Linear model: $Y = a + b \cdot X$ in distribution

$$P(X \le x) = P(Y \le a + bx)$$

Linear model implies linear Q-Q plot $y_p = a + bx_p$

Normal probability plot

To test H_0 : PD = N(μ , σ^2) with unspecified parameters plot the normal quantiles $\Phi_{-1}(\frac{k-0.5}{n})$ against $X_{(k)}$

Accept H_0 with $\mu = a$, $\sigma = b$

if the scatterplot is close to the line x=a+byLight tails profile and heavy tails profile

Coefficient of skewness: $b_1 = \frac{1}{s^3 n} \Sigma (X_i - \bar{X})^3$

Kurtosis
$$b_2 = \frac{1}{s^4 n} \sum (X_i - \bar{X})^4$$
, normal data $b_2 = 3$

Leptokurtic distribution: $b_2 > 3$ heavy tails platykurtic distribution: $b_2 < 3$ light tails

Ex 2: male heights

 $\bar{X} = 181.46, \, \hat{M} = 180, \, b_1 = 1.05, \, b_2 = 4.31$

Heights of a dult males are positively skewed P(height of a random male < the average) >50%

3. Measures of location

Central point of a distribution: population mean μ , mode or median M $M=x_{0.5}$ if distribution is continuous Population median M: P(X < M) = P(X > M)

Sample median
$$\hat{M} = X_{(k)}$$
, if $n = 2k - 1$
 $\hat{M} = \frac{X_{(k)} + X_{(k+1)}}{2}$, if $n = 2k$

 \hat{M} is a robust estimate = insensitive to outliers sample mean \bar{X} is sensitive to outliers

Nonparametric sign test

Test H_0 : $M = M_0$ against two-sided H_1 : $M \neq M_0$ sign test statistic: $Y = \sum I(X_i \leq M_0)$ null distribution $Y \in \text{Bin}(n, 0.5)$

Reject H_0 if M_0 falls outside $(X_{(k)}, X_{(n-k+1)})$ where k is such that $P(Y < k) = \frac{\alpha}{2}, Y \in Bin(n, 0.5)$

$$(X_{(k)}, X_{(n-k+1)}) = \text{nonparametric CI for } M$$

$$n = 25 \text{ and } k = \begin{vmatrix} 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 100(1-\alpha)\% & 99.6 & 98.6 & 95.6 & 89.2 & 77.0 & 57.6 & 31.0 \end{vmatrix}$$

Trimmed means

Measures of location for the central portion of the data

$$\alpha$$
-trimmed mean $\bar{X}_{\alpha} = \text{sample mean without}$ $\frac{n\alpha}{2}$ smallest and $\frac{n\alpha}{2}$ largest observations

Ex 2: male heights $\bar{X}_{0.4} = 180.36$

When summarizing data compute several measures of location and compare the results

Nonparametric bootstrap

IID sampling from the empirical distribution

= sampling with replacement from x_1, \ldots, x_n simulate many new samples of size n

Used to view the sampling distribution of an estimate like trimmed mean, sample median, s

4. Measures of dispersion

Sample variance s^2 and sample range $R = X_{(n)} - X_{(1)}$ are sensitive to outliers

Robust measures of dispersion

interquartile range $IQR = x_{0.75} - x_{0.25}$

MAD = median of abs dev
$$|X_i - \hat{M}|, i = 1, ..., n$$

Three estimates of
$$\sigma$$
 in N(μ , σ^2): s , $\frac{IQR}{1.35}$, $\frac{MAD}{0.675}$

IQR =
$$(\mu + \sigma \Phi_{-1}(0.75)) - (\mu + \sigma \Phi_{-1}(0.25)) = 1.35\sigma$$

P $(\frac{|X-\mu|}{\sigma} \le z) = 0.5$ for $z = \Phi_{-1}(0.75) = 0.675$

Boxplot

box center = median

upper edge of the box = upper quartile (UQ)

lower edge of the box = lower quartile (LQ)

upper whisker end = $\{ \text{max data point} \le \text{UQ} + 1.5 \text{ IQR} \}$

lower whisker end = $\{ \text{min data point} \ge LQ - 1.5 IQR \}$

 $dots = {data \ge UQ + 1.5 IQR}$ and ${data \le LQ - 1.5 IQR}$

Convenient to compair different samples

Fig 10.14, p.374: daily SO₂ concentration data