SERIK SAGITOV, Chalmers Tekniska Högskola, August 3, 2004

Chapter 11. Comparing two samples

Data: two IID samples (X_1, \ldots, X_n) and (Y_1, \ldots, Y_m) two populations with (μ_x, σ_x) and (μ_y, σ_y) Unbiased estimate $(\bar{X} - \bar{Y})$ of $(\mu_x - \mu_y)$ interval estimate of $(\mu_x - \mu_y)$, test H_0 : $\mu_x = \mu_y$

1. Two independent samples

$$(X_1, \ldots, X_n)$$
 is independent from (Y_1, \ldots, Y_m)
 $\operatorname{Var}(\bar{X} - \bar{Y}) = \frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}$

Large sample test for the difference

If n and m are large use

$$\bar{X} - \bar{Y} \stackrel{a}{\sim} \mathrm{N}(\mu_x - \mu_y, s_{\bar{x}}^2 + s_{\bar{y}}^2)$$

Approximate CI for
$$(\mu_x - \mu_y)$$

 $\bar{X} - \bar{Y} \pm z_{\alpha/2} \cdot \sqrt{s_{\bar{x}}^2 + s_{\bar{y}}^2}$

Dichotomous data: $X \sim \text{Bin}(n, p_1), Y \sim \text{Bin}(m, p_2)$

$$\hat{p}_1 - \hat{p}_2 \stackrel{a}{\sim} N(p_1 - p_2, \frac{\hat{p}_1 \hat{q}_1}{n-1} + \frac{\hat{p}_2 \hat{q}_2}{m-1})$$

approximate CI for (p_1-p_2) : $\hat{p}_1-\hat{p}_2\pm z_{\alpha/2}\cdot\sqrt{\frac{\hat{p}_1\hat{q}_1}{n-1}+\frac{\hat{p}_2\hat{q}_2}{m-1}}$

Ex 1: Swedish polls

Two poll results \hat{p}_1 and \hat{p}_2 with $n \approx m \approx 5000$ interviews a change in support to Social Democrats at $\hat{p}_1 \approx 0.4$ is significant if $|p_1 - p_2| > 1.96 \cdot \sqrt{2 \cdot \frac{0.4 \cdot 0.6}{5000}} \approx 1.9\%$

Two-sample t-test

Assumption:
$$X \sim N(\mu_x, \sigma^2), Y \sim N(\mu_y, \sigma^2)$$

 $Var(\bar{X} - \bar{Y}) = \sigma^2 \cdot \frac{n+m}{nm}$

Pooled sample variance

$$s_p^2 = \frac{n-1}{n+m-2} \cdot s_x^2 + \frac{m-1}{n+m-2} \cdot s_y^2$$
 with $E(s_p^2) = \sigma^2$

$$\frac{(\bar{X}-\bar{Y})-(\mu_x-\mu_y)}{s_p}\cdot\sqrt{\frac{nm}{n+m}}\sim t_{m+n-2}$$

Exact CI for
$$(\mu_x - \mu_y)$$

$$ar{X} - ar{Y} \pm t_{m+n-2}(rac{lpha}{2}) \cdot s_p \cdot \sqrt{rac{n+m}{nm}}$$

Two sample t-test, equal population variances

$$H_0$$
: $\mu_x = \mu_y$, null distribution $\frac{\bar{X} - \bar{Y}}{s_p} \cdot \sqrt{\frac{nm}{n+m}} \sim t_{m+n-2}$

Different variances:
$$X \sim N(\mu_x, \sigma_x^2), Y \sim N(\mu_y, \sigma_y^2)$$

 $\frac{(\bar{X} - \bar{Y}) - (\mu_x - \mu_y)}{\sqrt{s_x^2 + s_y^2}} \stackrel{a}{\sim} t_{df}, df = \frac{(s_x^2 + s_y^2)^2}{s_x^4 / n + s_y^4 / m} - 2$

Ex 2: iron retention study

Percentage of Fe²⁺ and Fe³⁺ retained by mice data for the concentration 1.2 millimolar: p. 396

Fe²⁺:
$$n = 18$$
, $\bar{X} = 9.63$, $s_x = 6.69$, $s_{\bar{x}} = 1.58$

Fe³⁺:
$$m = 18$$
, $\bar{Y} = 8.20$, $s_y = 5.45$, $s_{\bar{y}} = 1.28$

Boxplots and normal probability plot: p. 397 distributions are not normal

Test
$$H_0$$
: $\mu_x = \mu_y$ using observed $\frac{\bar{X} - \bar{Y}}{\sqrt{s_{\bar{x}}^2 + s_{\bar{y}}^2}} = 0.7$ approximate two-sided P -value = 0.48

After the log transformation of the data

boxplots and normal probability plot: p. 398-399

$$n = 18, \, \bar{X} = 2.09, \, s_x = 0.659, \, s_{\bar{x}} = 0.155$$

$$m = 18, \, \bar{Y} = 1.90, \, s_y = 0.574, \, s_{\bar{y}} = 0.135$$

Two sample t-test

equal variances: T = 0.917, df = 34, P = 0.3656

unequal variances: T = 0.917, df = 33, P = 0.3658

Wilcoxon rank sum test

Nonparametric test

general population distributions F and G

$$H_0$$
: $F = G$ against H_1 : $F \neq G$

Pool the samples and replace the data by ranks

Test statistics

either $R_x = \text{sum of the ranks of } X \text{ observations}$

or
$$R_y = \binom{n+m+1}{2} - R_x$$
 the sum of Y ranks

Null distributions of R_x and R_y depend only on

sample sizes n and m: table 8, p. A21-23

$$E(R_x) = \frac{n(m+n+1)}{2}, E(R_y) = \frac{m(m+n+1)}{2}$$

$$\operatorname{Var}(R_x) = \operatorname{Var}(R_y) = \frac{mn(m+n+1)}{12}$$

For $n \ge 10$, $m \ge 10$ apply

the normal approximation of null distributions

Ex 3: student heights

In class: $X = \text{females}, Y = \text{males}, R_x =?, \text{one-sided } P =?$

2. Paired samples

Examples of paired observations different drugs for two patients matched by age, sex a fruit weighed before and after shipment two types of tires tested on the same car Paired sample: IID vectors $(X_1, Y_1), \ldots, (X_n, Y_n)$ use $D_i = X_i - Y_i$ to estimate $\mu_x - \mu_y$ with $\bar{D} = \bar{X} - \bar{Y}$ Correlation coefficient $\rho = \frac{\text{Cov}(X,Y)}{\sigma_x \sigma_y}$ $\rho > 0$ for paired observations $\rho = 0$ for independent observations Smaller standard error if $\rho > 0$ Var $(\bar{D}) = \text{Var}(\bar{X}) + \text{Var}(\bar{Y}) - 2\sigma_{\bar{x}}\sigma_{\bar{y}}\rho$

Ex 4: platelet aggregation

n=11 individuals before Y_i and after X_i smoking

Y_i	X_i	D_i	Signed rank
25	27	2	+2
25	29	4	+3.5
27	37	10	+6
44	56	12	+7
30	46	16	+10
67	82	15	+8.5
53	57	4	+3.5
53	80	27	+11
52	61	9	+5
60	59	-1	-1
28	43	15	+8.5

Assuming $D \sim N(\mu, \sigma^2)$ apply the one-sample t-test to H_0 : $\mu_x = \mu_y$ against H_1 : $\mu_x \neq \mu_y$ Observed test statistic $\frac{\bar{D}}{s_{\bar{D}}} = \frac{10.27}{2.40} = 4.28$ $\rho \approx 0.90$ two-sided P-value = 2*(1 - tcdf(4.28,10)) = 0.0016

The sign test

Non-parametric test of

 H_0 : $M_D = 0$ against H_1 : $M_D \neq 0$ no assumption except IID sampling

Test statistics

either
$$Y_+ = \sum I(D_i > 0)$$
 or $Y_- = \sum I(D_i < 0)$
null distributions $Y_+ \sim \text{Bin}(n, 0.5), Y_- \sim \text{Bin}(n, 0.5)$

Ties $D_i = 0$: discard tied observations reduce n or dissolve the ties by randomization

Ex 4: platelet aggregation

Observed test statistic $Y_{-} = 1$ two-sided P-value = $2[(0.5)^{11} + 11(0.5)^{11}] = 0.012$

Wilcoxon signed rank test

Non-parametric test of

 H_0 : distribution of D is symmetric about $M_D = 0$ Test statistics

either
$$W_{+} = \sum \operatorname{rank}(|D_{i}|) \cdot I(D_{i} > 0)$$

or
$$W_{-} = \sum \operatorname{rank}(|D_i|) \cdot I(D_i < 0)$$

assuming no ties $W_+ + W_- = \frac{n(n+1)}{2}$

Null distributions of W_+ and W_- are equal

Table 9, p. A24: whatever is the PD of D

Normal approximation of the null distribution

with
$$\mu_W = \frac{n(n+1)}{4}$$
, $\sigma_W^2 = \frac{n(n+1)(2n+1)}{24}$, $n \ge 20$

Signed rank test uses more data information than sign test but requires symmetric distribution of differences

Ex 4: platelet aggregation

observed value $W_{-}=1$

two-sided P-value = 0.002 (check symmetry)

3. External factors

Double-blind, randomized controlled experiments to balance out external factors like placebo effect

Other examples of external factors

time and background variables like temperature locations of test animals or test plots in a field

Ex 5: portocaval shunt

Portocaval shunt to lower blood pressure in the liver

Enthusiasm level	Marked	Moderate	None
No controls	24	7	1
Nonrandomized controls	10	3	2
Randomized controls	0	1	3

Ex 4: platelet aggregation

controll group 1 smoked lettuce cigarettes controll group 2 "smoked" unlit cigarettes

Ex 6: Simpson's paradox

The factor of interest, death rate, is confounded with the patient condition distribution: + good, - bad

Hospital:	A	В	A+	B+	A-	В–
Died	63	16	6	8	57	8
Survived	2037	784	594	592	1443	192
Total	2100	800	600	600	1500	200
Death Rate	.030	.020	.010	.013	.038	.040

