SERIK SAGITOV, Chalmers Tekniska Högskola, May 24, 2004

Chapter 12. Analysis of variance

Ch 11:
$$I=2$$
 indep. samples paired samples
Ch 12: $I \ge 2$ one-way layout two-way layout

1. One-way layout

One factor (factor A) with I levels (I treatments)

I independent IID samples $(Y_{i1}, \ldots, Y_{iJ}), i = 1, \ldots, I$

 H_0 : all I treatments have the same effect

 H_1 : there are systematic differences

Ex 1: seven labs

p. 444: data and boxplots, I = 7, J = 10

Normal theory model

Normally distributed observation $Y_{ij} \sim N(\mu_i, \sigma^2)$

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \ \Sigma \alpha_i = 0, \ \epsilon_{ij} \sim N(0, \sigma^2)$$

obs = overall mean + differential effect + error

Maximum likelihood estimates

$$\hat{\mu} = ar{Y}_{...}$$
 pooled sample mean $ar{Y}_{...}$

$$\hat{lpha}_i = ar{Y}_{i.} - ar{Y}_{..}$$
 sample means $ar{Y}_{1.}, \ldots, ar{Y}_{I.}$

Sums of squares: $SS_{TOT} = SS_A + SS_E$

$$SS_{TOT} = \sum \sum (Y_{ij} - \bar{Y}_{..})^2$$
 total sum of squares

$$SS_A = J \sum \hat{\alpha}_i^2$$
 between samples (factor A) sum of sq

$$SS_E = \sum \sum \hat{\epsilon}_{ij}^2$$
 within samples (error) sum of squares

residuals
$$\hat{\epsilon}_{ij} = Y_{ij} - \bar{Y}_{i}$$
.

Degrees of freedom and mean squares:

$$\mathrm{df_A} = I - 1$$
, $\mathrm{MS_A} = \frac{\mathrm{SS_A}}{\mathrm{df_A}}$, $\mathrm{E}(\mathrm{MS_A}) = \sigma^2 + \frac{J}{I-1} \sum \alpha_i^2$
 $\mathrm{df_E} = I(J-1)$, $\mathrm{MS_E} = \frac{\mathrm{SS_E}}{\mathrm{df_E}}$, $\mathrm{E}(\mathrm{MS_E}) = \sigma^2$
total $\mathrm{df} = IJ - 1$

Pooled sample variance $s_p^2 = \text{MS}_{\text{E}}$ an unbiased estimate of σ^2

F-test

 $H_0: \alpha_1 = \ldots = \alpha_I = 0$ against

 $H_1: \alpha_u \neq \alpha_v \text{ for some } (u, v)$

Reject H_0 for large values of $F = \frac{MS_A}{MS_E}$ null distribution of F is $F_{I-1,I(J-1)}$

If
$$Z_i \sim N(0,1)$$
 indep., then $\frac{(Z_1^2 + ... + Z_m^2)/m}{(Z_{m+1}^2 + ... + Z_{m+n}^2)/n} \sim F_{m,n}$

Ex 1: seven labs

normal probability plot of residuals $\hat{\epsilon}_{ij}$, p. 450 Anova-1 table

Source	df	SS	MS	F	P-value
				5.66	.0001
Error	63	.231	.0037		
Total	69	.356			

Multiple comparisons: $\binom{7}{2} = 21$ pairwise comparisons

Lab							
Mean	4.062	4.003	3.998	3.997	3.957	3.955	3.920

Bonferroni method

Take α as an overall level in k independent tests if each done at significance level α/k

Proof: given that H_0 is true

number of significant results in
$$k$$
 tests $X \sim \text{Bin}(k, \frac{\alpha}{k})$
 $P(X \ge 1|H_0) = 1 - (1 - \frac{\alpha}{k})^k \approx \alpha$

Warning: $k = \binom{I}{2}$ pairwise comparisons are not independent as required by the Bonferroni method

Simultaneuos $100(1-\alpha)\%$ CI

for
$$\binom{I}{2}$$
 pairwise differences $(\alpha_u - \alpha_v)$

$$(\bar{Y}_{u.} - \bar{Y}_{v.}) \pm t_{I(J-1)}(\frac{\alpha}{I(I-1)}) \cdot s_p \sqrt{\frac{2}{J}}$$

Flexibility: works for different sample sizes as well replace $\sqrt{\frac{2}{J}}$ by $\sqrt{\frac{1}{J_u} + \frac{1}{J_v}}$

Ex 1: seven labs

95% CI for one difference
$$(\alpha_u - \alpha_v)$$

$$(\bar{Y}_{u.} - \bar{Y}_{v.}) \pm t_{63}(0.025) \cdot \frac{s_p}{\sqrt{5}} = (\bar{Y}_{u.} - \bar{Y}_{v.}) \pm 0.055$$

where
$$t_{63}(0.025) = 2.00$$
, $s_p = \sqrt{0.0037} = 0.061$

Simultaneuos 95% CI for $(\alpha_u - \alpha_v)$ by Bonferroni method $(\bar{Y}_{u.} - \bar{Y}_{v.}) \pm t_{63}(\frac{.05}{42}) \cdot \frac{s_p}{\sqrt{5}} = (\bar{Y}_{u.} - \bar{Y}_{v.}) \pm 0.086$

significant differences bewteen labs (1,4), (1,5), (1,6)

Tukey method

If the sample sizes are equal J, then

$$\bar{Y}_{i} \sim N(\mu + \alpha_i, \frac{\sigma^2}{J})$$
 are independent and

$$\frac{\sqrt{J}}{s_p} \max_{u,v} |\bar{Y}_{u.} - \bar{Y}_{v.} - (\alpha_u - \alpha_v)| \sim SR(I, I(J-1))$$

Studentized range distribution $SR(t, \nu)$

t= number of samples, $\nu=$ df (the variance estimate) Table 6, p. A14-A19

$$q_{t,\nu}(\alpha) = 100(1-\alpha)\%$$
-percentile of $\mathrm{SR}(t,\nu)$

Simultaneuos CI =
$$(\bar{Y}_{u.} - \bar{Y}_{v.}) \pm q_{I,I(J-1)}(\alpha) \cdot \frac{s_p}{\sqrt{J}}$$

Ex 1: seven labs

$$(\bar{Y}_{u.} - \bar{Y}_{v.}) \pm q_{7,63}(0.05) \cdot \frac{0.061}{\sqrt{10}} = (\bar{Y}_{u.} - \bar{Y}_{v.}) \pm 0.083$$

where $q_{7,60}(0.05) = 4.31$
significant differences $(1,4)$, $(1,5)$, $(1,6)$, $(3,4)$

Kruskal-Wallis test

Nonparametric test for

 H_0 : all observations are equal in distribution when ϵ_{ij} are non-normal

Pooled sample size $N = J_1 + \ldots + J_I$ pooled sample ranking: $R_{ij} = \text{ranks of } Y_{ij}$ $\Sigma_{i,j} R_{ij} = \frac{N(N+1)}{2}, \bar{R}_{..} = \frac{N+1}{2}$

Test statistic
$$K = \frac{12}{N \cdot (N+1)} \sum_{i=1}^{I} J_i \cdot (\bar{R}_{i.} - \frac{N+1}{2})^2$$

Reject H_0 for large K approximate null distribution $K \stackrel{a}{\sim} \chi_{I-1}^2$

Ex 1: seven labs

Actual measurements replaced by their ranks $1 \div 70$

Labs	1	2	3	4	5	6	7
	70	4	35	6	46	48	38
	63	3	45	7	21	5	50
	53	65	40	13	47	22	52
	64	69	41	20	8	28	58
	59	66	57	16	14	37	68
	54	39	32	26	42	2	1
	43	44	51	17	9	31	15
	61	56	25	11	10	34	23
	67	24	29	27	33	49	60
	55	19	30	12	36	18	62
Means	58.9	38.9	38.5	15.5	26.6	27.4	42.7

K = 28.17, df = 6, P-value ≈ 0.0001

2. Two-way layout

Two factors: factor A with I levels (levels = rows)

factor B with J levels (levels = columns)

Data
$$\{Y_{ijk}, 1 \le i \le I, 1 \le j \le J, 1 \le k \le K\}$$

 $I \cdot J$ cells with K observations per cell

total number of observations = $I \cdot J \cdot K$

Normal theory model

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \delta_{ij} + \epsilon_{ijk}$$

grand mean + main effects + interaction
independent random errors $\epsilon_{ijk} \sim N(0, \sigma^2)$

Parameter constraints

$$\Sigma \alpha_i = 0, \, df_A = I - 1$$
 $\Sigma \beta_j = 0, \, df_B = J - 1$
 $\Sigma \delta_{i1} = 0, \dots, \Sigma \delta_{iJ} = 0$ $\Sigma \delta_{1j} = 0, \dots, \Sigma \delta_{Ij} = 0$
 $df_{AB} = IJ - I - (J - 1) = (I - 1)(J - 1)$

MLE

$$\hat{\mu} = \bar{Y}_{...} \qquad \hat{\alpha}_i = \bar{Y}_{i..} - \bar{Y}_{...} \qquad \hat{\beta}_j = \bar{Y}_{.j.} - \bar{Y}_{...}$$

$$\hat{\delta}_{ij} = \bar{Y}_{ij.} - \bar{Y}_{...} - \hat{\alpha}_i - \hat{\beta}_j$$

Ex 2: iron retention

factor A: I = 2 different iron forms

factor B: J = 3 dosage levels, K = 18 obs per cell

Raw data, p. 396: $X_{ijk} = \%$ of iron retained

transformed data $Y_{ijk} = \ln(X_{ijk})$

p. 462-463: boxplots and plots of cell SDs vs cell means MLE for the transformed data

$$\bar{Y}_{...} = 1.92 \qquad ||\bar{Y}_{ij.}|| = \begin{pmatrix} 1.16 & 1.90 & 2.28 \\ 1.68 & 2.09 & 2.40 \end{pmatrix}
\hat{\alpha}_1 = -0.14, \, \hat{\alpha}_2 = 0.14
\hat{\beta}_1 = -0.50, \, \hat{\beta}_2 = 0.08, \, \hat{\beta}_3 = 0.42
||\hat{\delta}_{ij}|| = \begin{pmatrix} -0.12 & 0.04 & 0.08 \\ 0.12 & -0.04 & -0.08 \end{pmatrix}$$

Sums of squares

$$SS_{TOT} = SS_A + SS_B + SS_{AB} + SS_E$$

$$SS_{TOT} = \Sigma_i \Sigma_j \Sigma_k (Y_{ijk} - \bar{Y}_{...})^2$$

$$SS_A = JK \Sigma_i \hat{\alpha}_i^2$$

$$SS_B = IK \Sigma_j \hat{\beta}_j^2$$

$$SS_{AB} = K \Sigma_i \Sigma_j \hat{\delta}_{ij}^2$$

$$SS_E = \Sigma_i \Sigma_j \Sigma_k (Y_{ijk} - \bar{Y}_{ij.})^2, df_E = IJ(K - 1)$$

Mean squares

$$\begin{aligned} \operatorname{MS}_{\mathrm{A}} &= \frac{\operatorname{SS}_{A}}{\operatorname{df}_{\mathrm{A}}} & \operatorname{E}(\operatorname{MS}_{\mathrm{A}}) &= \sigma^{2} + \frac{JK}{I-1} \, \Sigma_{i} \, \alpha_{i}^{2} \\ \operatorname{MS}_{\mathrm{B}} &= \frac{\operatorname{SS}_{\mathrm{B}}}{\operatorname{df}_{\mathrm{B}}} & \operatorname{E}(\operatorname{MS}_{\mathrm{B}}) &= \sigma^{2} + \frac{JK}{J-1} \, \Sigma_{j} \, \beta_{j}^{2} \\ \operatorname{MS}_{\mathrm{AB}} &= \frac{\operatorname{SS}_{\mathrm{AB}}}{\operatorname{df}_{\mathrm{AB}}} & \operatorname{E}(\operatorname{MS}_{\mathrm{AB}}) &= \sigma^{2} + \frac{K}{(I-1)(J-1)} \, \Sigma_{i} \, \Sigma_{j} \, \delta_{ij}^{2} \\ \operatorname{MS}_{\mathrm{E}} &= \frac{\operatorname{SS}_{\mathrm{E}}}{\operatorname{df}_{\mathrm{E}}} & \operatorname{E}(\operatorname{MS}_{\mathrm{E}}) &= \sigma^{2} \end{aligned}$$

Three F-tests

$$H_{A}$$
: $\alpha_{1} = \ldots = \alpha_{I} = 0$ $F_{A} = \frac{MS_{A}}{MS_{E}} \sim F_{df_{A},df_{E}}$
 H_{B} : $\beta_{1} = \ldots = \beta_{J} = 0$ $F_{B} = \frac{MS_{B}}{MS_{E}} \sim F_{df_{B},df_{E}}$
 H_{AB} : all $\delta_{ij} = 0$ $F_{AB} = \frac{MS_{AB}}{MS_{E}} \sim F_{df_{AB},df_{E}}$

Reject null hypothesis

for large values of the respective test statistic FInspect normal probability plot

for residuals $\hat{\epsilon}_{ijk} = Y_{ijk} - \bar{Y}_{ij.}$

Ex 2: iron retention

Anova-2 table for the transformed iron retention data

Source	$\mathrm{d}\mathrm{f}$	SS	MS	F	P
Iron form	1	2.074	2.074	5.99	0.017
Dosage	2	15.588	7.794	22.53	0.000
Interaction	2	0.810	0.405	1.17	0.315
Error	102	35.296	0.346		
Total	107	53.768			

Significant effect due to iron form

log scale difference $\hat{\alpha}_2 - \hat{\alpha}_1 = \bar{Y}_{2..} - \bar{Y}_{1..} = 0.28$ multiplicative effect of $e^{0.28} = 1.32$ on a linear scale interaction is not significant

Additive model

If K = 1 we cannot estimate interaction

$$Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}$$

 $\hat{\mu} = \bar{Y}_{..}$ $\hat{\alpha}_i = \bar{Y}_{i.} - \bar{Y}_{..}$ $\hat{\beta}_i = \bar{Y}_{.j} - \bar{Y}_{..}$
 $\hat{\epsilon}_{ij} = Y_{ij} - \bar{Y}_{..} - \hat{\alpha}_i - \hat{\beta}_i$

Sums of squares

$$\begin{aligned} \mathrm{SS}_{\mathrm{TOT}} &= \mathrm{SS}_{\mathrm{A}} + \mathrm{SS}_{\mathrm{B}} + \mathrm{SS}_{\mathrm{E}} \\ \mathrm{SS}_{\mathrm{A}} &= J \, \Sigma_{i} \, \hat{\alpha}_{i}^{2} & \mathrm{df}_{\mathrm{A}} &= I - 1 \\ \mathrm{SS}_{\mathrm{B}} &= I \, \Sigma_{j} \, \hat{\beta}_{J}^{2} & \mathrm{df}_{\mathrm{B}} &= J - 1 \\ \mathrm{SS}_{\mathrm{E}} &= \Sigma_{i} \, \Sigma_{j} \, \hat{\epsilon}_{ij}^{2} & \mathrm{df}_{\mathrm{E}} &= (I - 1)(J - 1) \end{aligned}$$

If $\epsilon_{ij} \sim N(0, \sigma^2)$, apply F-tests to test H_A and H_B

Randomized block design

Experimental design with I treatments randomly assigned within each of J blocks

To test H_0 : $\alpha_1 = \ldots = \alpha_I = 0$, no treatment effects use two-way layout ANOVA

The block effect is anticipated and is not of major interest

Block	Treatments	Observation
Homogen. plot of land	I fertilizers	The yield on the
divided into I subplots		subplot (i, j)
A four-wheel car	4 tire types	tire's life-length
A litter of I animals	I diets	the weight gain

Ex. 3: experiment on itching

Data, p. 467

I = 7 treatments to relieve itching

J = 10 blocks (male volunteers aged 20-30)

K=1 observation per cell

 Y_{ij} = the duration of the itching in seconds

Boxplots and normal prob. plot of residuals, p. 468-469 placebo cell variance: different response to placebo

Anova-2 table:

Source	df	SS	MS	F	P
Drugs	6	53013	8835	2.85	0.018
Subjects	9	103280	11476	3.71	0.001
Error	54	167130	3096		
Total	69	323422			

Simultaneuos CI =
$$(\bar{Y}_{u.} - \bar{Y}_{v.}) \pm q_{I,(I-1)(J-1)}(\alpha) \cdot \frac{s_p}{\sqrt{J}}$$

Tukey's method of multiple comparison reveals $q_{I,(I-1)(J-1)}(\alpha) \cdot \frac{s_p}{\sqrt{J}} = q_{7,54}(0.05) \cdot \sqrt{\frac{3096}{10}} = 75.8$ only one significant difference: papaverine vs placebo

Friedman's test

Nonparametric test, when ϵ_{ij} are non-normal, to test H_0 : no treatment effects

Ranking within the block number j

$$(R_{1j}, \dots, R_{Ij}) = \text{ranks of } (Y_{1j}, \dots, Y_{Ij})$$

 $R_{1j} + \dots + R_{Ij} = \frac{I(I+1)}{2}$
 $\frac{1}{I}(R_{1j} + \dots + R_{Ij}) = \frac{I+1}{2} \text{ and } \bar{R}_{..} = \frac{I+1}{2}$

Test statistic
$$Q = \frac{12J}{I(I+1)} \sum_{i=1}^{I} (\bar{R}_{i.} - \frac{I+1}{2})^2$$
 approximate null distribution $Q \stackrel{a}{\sim} \chi_{I-1}^2$

Q is a measure of agreement between J rankings reject H_0 for large values of Q

Ex. 3: experiment on itching

$$R_{ij}$$
 and $\bar{R}_{i.}$ are given on p. 470 $\frac{I+1}{2} = 4$, $Q = 14.86$, df = 6, P-value ≈ 0.0214