SERIK SAGITOV, Chalmers Tekniska Högskola, May 28, 2005

Chapter 13. The analysis of categorical data 1. Fisher's exact test

Population proportions

	Population 1	Population 2
Category 1	π_{11}	π_{12}
Category 2	π_{21}	π_{22}
Total	1	1

Test hypothesis of homogeneity H_0 : $\pi_{11} = \pi_{12}$ using two (small) independent samples Sample counts

	Population 1	Population 2	Total
Category 1	n_{11}	n_{12}	$n_{1.}$
Category 2	n_{21}	n_{22}	$n_{2.}$
Sample sizes	$n_{.1}$	$n_{.2}$	$n_{\cdot \cdot}$

Conditional null distribution $n_{11} \sim \text{Hg}(N, n, p)$

$$N = n_{..}, n = n_{.1}, Np = n_{1.}, Nq = n_{2.}$$

$$P(n_{11} = k) = \frac{\binom{Np}{k}\binom{Nq}{n-k}}{\binom{N}{n}}$$

$$\max(0, n - Nq) \le k \le \min(n, Np)$$

Ex 1: sex bias in promotion

Data: 48 copies of the same file

24 labeled as "male" and other 24 labeled as "female"

Test H_0 : $\pi_{11} = \pi_{12}$ no sex bias against

 H_1 : $\pi_{11} > \pi_{12}$ males are favored

	Male	Female	
Promote	$n_{11} = 21$	$n_{12} = 14$	$n_{1.} = 35$
Hold file	$n_{21} = 3$	$n_{22} = 10$	$n_{2.} = 13$
	$n_{.1} = 24$	$n_{.2} = 24$	$n_{} = 48$

Reject H_0 for large n_{11} null distribution $P(n_{11} = k) = \frac{\binom{35}{k}\binom{13}{24-k}}{\binom{48}{24}}$, $11 \le k \le 24$ $P(n_{11} \le 14) = P(n_{11} \ge 21) = 0.025$ Significant evidence of sex bias one-sided P = 0.025, two-sided P = 0.05

2. χ^2 -test of homogeneity

Population proportions

	Pop. 1	Pop. 2	 Pop. J
Category 1	π_{11}	π_{12}	 π_{1J}
Category 2	π_{21}	π_{22}	 π_{2J}
	• • •	• • •	
Category I	π_{I1}	π_{I2}	 π_{IJ}
Total	1	1	 1

Homogeneity = all J distributions are equal

$$H_0: (\pi_{11}, ..., \pi_{I1}) = (\pi_{12}, ..., \pi_{I2}) = ... = (\pi_{1J}, ..., \pi_{IJ})$$

Test H_0 against $H_1: \pi_{ij} \neq \pi_{il}$ for some (i, j, l)
using sample counts in J independent samples
 $(n_{1j}, ..., n_{Ij}) \sim \text{Mn}(n_{.j}; \pi_{1j}, ..., \pi_{Ij}), j = 1, ..., J$

	Pop. 1	Pop. 2	 Pop. J	Total
Category 1	n_{11}	n_{12}	 n_{1J}	$n_{1.}$
Category 2	n_{21}	n_{22}	 n_{2J}	$n_{2.}$
		• • •	 • • •	
Category I	n_{I1}	n_{I2}	 n_{IJ}	$n_{I.}$
Sample sizes	$n_{.1}$	$n_{.2}$	 $n_{.J}$	$n_{\cdot \cdot}$

Under H_0 the MLE of π_{ij}

pooled sample proportion $\hat{\pi}_{ij} = n_{i.}/n.$

expected cell counts $\hat{E}_{ij} = n_{.j} \cdot \hat{\pi}_{ij} = n_{i.} n_{.j} / n_{..}$

Reject H_0 for large

$$X^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n_{ij} - n_{i.} n_{.j} / n_{..})^{2}}{n_{i.} n_{.j} / n_{..}}$$

Approximate null distribution

$$X^2 \stackrel{a}{\sim} \chi_{\mathrm{df}}^2$$
 with $\mathrm{df} = (I-1)(J-1)$ $\mathrm{df} = \mathrm{no.\ counts-no.\ estimates} = (I-1)J-(I-1)$

Ex 2: small cars and personality

Attitude toward small cars for different personality types

	Cautious	Midroad	Explorer	Total
Favorable	79(61.6)	58(62.2)	49(62.2)	186
Neutral	10(8.9)	8(9.0)	9(9.0)	27
${\bf Unfavorable}$	10(28.5)	34(28.8)	42(28.8)	86
Total	99	100	100	299

$$X^2 = 27.24$$
, df = 4, $\chi^2_{4,0.005} = 14.86$

Reject H_0 at 0.5% level

cautious people are more favourable to small cars

3. Chi-square test of independence

One population

two classifications A, B with numbers of classes $I,\ J$ Population proportions

Classes	B_1	B_2	 B_J	Total
A_1	π_{11}	π_{12}	 π_{1J}	$\pi_{1.}$
A_2	π_{21}	π_{22}	 π_{2J}	$\pi_{2.}$
A_I	π_{I1}	π_{I2}	 π_{IJ}	$\pi_{I.}$
Total	$\pi_{.1}$	$\pi_{.2}$	 $\pi_{.J}$	1

Null hypothesis of independence H_0 : $\|\pi_{ij}\| = \|\pi_{i}.\pi_{.j}\|$ against H_1 : $\|\pi_{ij}\| \neq \|\pi_{i}.\pi_{.j}\|$ (dependence) using a cross-classified sample $\|n_{ij}\| \sim \text{Mn}(n_{..}; \|\pi_{ij}\|)$

Classes	B_1	B_2	 B_J	Total
A_1	n_{11}	n_{12}	 n_{1J}	$n_{1.}$
A_2	n_{21}	n_{22}	 n_{2J}	$n_{2.}$
	• • •		 	
A_I	n_{I1}	n_{I2}	 n_{IJ}	$n_{I.}$
Total	$n_{.1}$	$n_{.2}$	 $n_{.J}$	$n_{\cdot \cdot \cdot}$

Under H_0 the MLE of π_{ij} are $\hat{\pi}_{ij} = \frac{n_i}{n_{\cdot \cdot}} \cdot \frac{n_{\cdot j}}{n_{\cdot \cdot}}$ expected cell counts $\hat{E}_{ij} = n_{\cdot \cdot} \cdot \hat{\pi}_{ij} = n_i \cdot n_{\cdot j}/n_{\cdot \cdot}$ df = (IJ-1) - ((I-1) + (J-1)) = (I-1)(J-1) Apply the same test procedure as with homogeneity test

Homogeneity P(A = i | B = j) = P(A = i) for all (i, j) equality of conditional distributions = independence

Ex 3: marital status and educational level Contingency table

Education	Married once	Married > once	Total
College	550 (523.8)	61(87.2)	611
No College	681(707.2)	144(117.8)	825
Total	1231	205	1436

 H_0 : no relationship between mar. status and ed. level $X^2 = 16.01$, df = 1 can use normal distribution table $\sqrt{16.01} = 4.001$, P < 0.1% reject H_0

4. Matched-pairs designs

Ex 4: Hodgkin's disease and tonsills

 2×2 cross-classification

 $D = \mathbf{D}$ is eased (affected), $\bar{D} = \text{unaffected}$

X = eXposed (tonsillectomy), $\bar{X} = non-exposed$

 H_0 : tonsillectomy has no influence on disease onset

Three sampling designs

simple random sampling

a prospective study (X-sample and X-sample)

a retrospective study (D-sample and D-sample)

Retrospective design catches affected subjects first two designs bring mostly unaffected incidence of Hodgkin's disease is 2 in 10 000

Two datasets

$$X_{\text{VGD}}^2 = 14.29, X_{\text{JJ}}^2 = 1.53, \text{ df} = 1$$

 $P(X_{\text{VGD}}^2 \ge 14.29) \approx 2(1 - \Phi(\sqrt{14.29})) = 0.0002$
 $P(X_{\text{JJ}}^2 \ge 1.53) \approx 2(1 - \Phi(\sqrt{1.53})) = 0.215$

JJ-data violates the assumption of independent samples n=85 sibling (D,\bar{D}) -pairs, same sex, close age matched-pairs design

Four classes of sibling pairs

	exposed \bar{D} -sib	unexposed \bar{D} -sib	
exposed D -sibling	$n_{11} = 26$	$n_{12} = 15$	41
unexposed D -sibling	$n_{21} = 7$	$n_{22} = 37$	44
total	33	52	85

McNemar's test

$$2 \times 2$$
 cross-classified population $\begin{bmatrix} \pi_{11} & \pi_{12} & \pi_{1.} \\ \pi_{21} & \pi_{22} & \pi_{2.} \\ \hline \pi_{.1} & \pi_{.2} & 1 \end{bmatrix}$

MLE:
$$\hat{\pi}_{11} = \frac{n_{11}}{n}$$
, $\hat{\pi}_{22} = \frac{n_{22}}{n}$, $\hat{\pi}_{12} = \hat{\pi}_{21} = \frac{n_{12} + n_{21}}{n}$
test statistic $X^2 = \sum \frac{(n_{ij} - n\hat{\pi}_{ij})^2}{n\hat{\pi}_{ij}} = \frac{(n_{12} - n_{21})^2}{n_{12} + n_{21}}$

Reject H_0 : $\pi_{1.} = \pi_{.1}$ or H_0 : $\pi_{12} = \pi_{21}$ for large X^2 approximate null distribution is χ_1^2 , df = 4 - 1 - 2

Ex 4: Hodgkin: JJ-data $X_{\text{McNemar}}^2 = 2.91$, P = 0.09

4. Odds ratios

Odds and probability of a random event A

$$odds(A) = P(A)/P(\bar{A})$$

$$\operatorname{odds}(A) \approx \operatorname{P}(A) \text{ for small } \operatorname{P}(A) \qquad \operatorname{P}(A) = \frac{\operatorname{odds}(A)}{1 + \operatorname{odds}(A)}$$

$$odds(A|B) = P(A|B)/P(\bar{A}|B) = P(AB)/P(\bar{A}B)$$

Odds ratio for a pair of random events

$$\Delta_{AB} = \frac{\operatorname{odds}(A|B)}{\operatorname{odds}(A|B)} = \frac{\operatorname{P}(AB)\operatorname{P}(\bar{A}\bar{B})}{\operatorname{P}(AB)\operatorname{P}(AB)}$$

Measure of dependence

if $\Delta_{AB} = 1$, events A and B are independent

if
$$\Delta_{AB} > 1$$
, $P(A|B) > P(A|\bar{B})$

if
$$\Delta_{AB} < 1$$
, $P(A|B) < P(A|\bar{B})$

$$\Delta_{AB} = \Delta_{BA}, \, \Delta_{A\bar{B}} = \frac{1}{\Delta_{AB}}$$

Ex 4: Hodgkin's disease and tonsills

Conditional probabilities and observed counts in a retrospective study like VGD-1971

$$\begin{array}{c|cccc} & X & \bar{X} & \\ \hline D & n_{00} & n_{01} & n_{0.} \\ \hline \bar{D} & n_{10} & n_{11} & n_{1.} \\ \end{array}$$

Odds ratio
$$\Delta_{DX} = \frac{P(X|D)P(\bar{X}|\bar{D})}{P(\bar{X}|D)P(X|\bar{D})}$$

measures the influence of tonsillectomy on

Hodgkin's disease

Estimated odds ratio
$$\hat{\Delta} = \frac{(n_{00}/n_{0.})(n_{11}/n_{1.})}{(n_{01}/n_{0.})(n_{10}/n_{1.})} = \frac{n_{00}n_{11}}{n_{01}n_{10}}$$

VGD-data

$$\hat{\Delta} = \frac{65.64}{43.34} = 2.93 \quad \text{odds}(D|X) = 2.93 \cdot \text{odds}(D|\bar{X})$$