SERIK SAGITOV, Chalmers Tekniska Hogskola, September 12, 2005
Chapter 14. Linear least squares
X = independent variable assumed to be fixed
Y = dependent variable
1. Simple linear regression model
Random response
}/;:604—611'1'—%6@',@.:1,...,71
to a fixed value x; of independent variable
Model assumption:
noise random variables ¢; are independent N(0,0?)
Unknown model parameters: 3y, 81, 0>
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Least squares estimates
Regression lines:
true y = By + Pix and fitted y = by + by«
Responses:
observed y; and predicted y; = by + b1x;
Least squares method: minimize S(by, by) = S(y; — ¥;)?
solve 05/0by = 0 and 0S5/0b; =0
Normal equations:
nboy + (Z $7)bl =2 and (Z 5137)50 + (Z 51372)[)1 = X T;Y;
n Y ziyi—(C i) (2 i)
ny a?—(2 ;)2
InL(Bo, /1, 0%) = nIn(5—) — 55560, 61), LSE = MLE
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Slope b = , intercept by = ¢y — b1




Least square regression line y = g + by (z — )
regression coefficient by = r - ’:—” scale dependent
Sample correlation coefficient r = ;ﬂ

xSy
Sample covariance S:)’/‘y = ﬁ Z<x7 _ j) <y7 - @)
2 2

1 )2 1 N2
5. = 5 2(1 — 1), 5, = =7 S(yi — y)
Least square estimates are not robust against outliers

page 522: ouliers exert leverage on the fitted line

Sums of squares

SST = SSE + SSR

SST =%(y; — y)* = (n — 1)s; df =n—1

SSR = =(; — §)? = (n — 1)b}s? df =

SSE = 2(y; — 9:)° = (n— 1)s;(1 —r°) df =n — 2

Corrected MLE of 0?: 5% = % = o2 so(1—1?)
Coefficient of determination r* = gg—% =1- gg—%

proportion of variation in Y explained by factor X

2. CI and hypothesis testing

Unbiased and consistent estimates: b; ~ N(;, 0?)
2 02'2 3322 2 _ o2

gy = n(n—1)s2’ g1 = (n—1)s2

weak negative dependence Cov(by, by) = —

Exact sampling distributions
bi—Bi ¢ s > af s 1

b, n—2, Sby = se [ n(n=1)> Sby = sy \n—1
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Exact 100(1 — )% CI for f;: b £t4/9,-2 - s,

Hypothesis testing Hy: 51 = Bo

test statistic T' = %, null distribution 7" ~ ¢,,_9
Model utility test 1

Hy: 81 = 0 (no relationship between X and Y)

test statistic T = by /sy, null distribution 7" ~ ¢,, 5
Zero intercept hypothesis

Hy: By =10

test statistic T = by/sy,, null distribution 7" ~ ¢,,_5

Intervals for individual observations
Given x predict Y = By + 681 - x + €
expected value up = Gy + 51 - x
least square estimate ft = by + by -
Standard error of [

Var(jn) = %+ 75 - (41

n—1 Sy

Exact 100(1 — «)% CI for the mean p
bo +b1x £ ty/n—- 3\/% + ﬁ(uy

St

Exact 100(1 — )% prediction interval
by + bx £ ta/Q,n—Q . 3\/1 + % + ﬁ(ﬂfs—j)Q
The latter are wider limits since
Var(Y — /}) — \/ar(l&) 402 = 02<1 + % + 11 _ (r—?)?)

n— Sy
Draw confidence bands around the regression line

both for the individual observation Y and its mean p



3. Assessing the fit

Properties of the least square residuals e; = y; — v;
e1+...+e,=0,el+ ...+ e, at minimum
xie1+ ...+ x,e, =0, e; are uncorrelated with x;
ie1+ ...+ yne, = 0, e; are uncorrelated with g;

Residual e; has normal distribution with zero mean

Var(e;) = 0?(1 — Z’“('77’f'”)2)

o) — 2k T )T
COV(€77 e]) ny (v —1)2
2
Standardized residuals = e;/s,,, S., = S\/l %

normal distribution plot to test normality assumption
Expected plot of the standardized residuals versus x;:

horizontal blur (linearity)

variance does not depend on x (homoscedasticity)

Ex 1: flow rate vs stream depth

Page 517-518: scatter plot is slightly non-linear
residual plot has the U-shape

Page 518-519: scatter log-log plot is closer to linear
residual plot is horizontal

Ex 2: breast cancer

Page 520-521: absolute mortality y vs population size x
heteroscedastic residual plot
page 523: normal probability plot



Transformed variables: |/y vs \/z
page 521: homoscedastic residual plot
page 524: normal probability plot is closer to linear

4. Multiple regression
Linear regression model

Y =060+ Biw1+ ...+ Bp1xy1 + €, € ~ N(0,07)
n independent observations

Yi=0o+Birii+ ...+ Bp1xip1 + €

Y, = 60 + len,l .t 6p—1xn,p—1 + €n
Matrix notation Y = X3
Y = (g1, )
I zi1 ... Tip—
B=(Bo,...,0-1), X=
1 Ipnil --- Tpp—1
Least square estimates
b= (by,...,b, 1)" A A
minimize S(b) = [|[Y — Y||?, where Y = Xb
Normal equations X' Xb = XY
if rank(X) = p, then b = (X’ X)'X"Y

Y = PY, where P = X(X"X) X"

covariance matrix Yy, = ||Cov(b;, b;)|| = o?(X' X)~!
s> =Y — Y||?/(n — p) unbiased estimate of o
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Standard errors
Sy, = S+/Sii, where C = (XTX)_l

exact distributions b78bﬂ Loty
Residualse =Y - Y = (I-P)Y
covariance matrix Y., = [|Cov(e;, €;)|| = o*(I — P)
Standardized residuals %
Coeflicient of multiple determination
R2—1_ S8E
- SST

SSE = |[Y — Y%, SST = (n — 1)s2
Adjusted coefficient of multiple determination
R2—=1—_n=1l 55

n—p " SST
Ex 1: flow rate vs stream depth
Quadratic model y = 8By + iz + [z’
page 543: residuals shows no signs of systematic misfit
Linear and quadratic terms are stat. significant (n = 10)

Coeflicient | Estimate | Standard Error | ¢ Value
B 1.68 1.06 1.52
b1 —10.86 4.52 —2.40
B 23.54 4.27 5.51

Emperical relationship developed in a region
might break down if extrapolated to a wider region
in which no data been observed




Ex 3: heart catheter

Catheter length depending on child’s height and weight
page 546: pairwise scatterplots, n = 12

Two simple linear regressions

Estimate | Height ¢t Value| Weight ¢ Value
bo(sp,) 12.1(4.3) 2.8 25.6(2.0) 13.3
b1(sp,) 0.60(0.10) 6.0 0.28(0.04) 8.0

s 4.0 3.8

r2(R?) |0.78 (0.76) 0.80 (0.78)

page 547: plots of standardized residuals
Multiple regression model L = By + 61 H + BoW
b() = 21, Shy — 88, bO/SbO = 2.39
b1 = OQO, Shy = 0.36,()1/8()1 = (.96
by = 0.19, s, = 0.17, by /sy, = 1.12
s=3.9 R*=0.81, R?=0.77
Can not reject neither Hy : 51 = 0 nor Hy : 5 =0
1 = expected change in L
when H increased by one unit and W held constant
Height and weight are highly collinear
strong linear relationship
Fitted plane has a well resolved slope
along the line about which the (H, W) points fall
and poorly resolved slopes along the H and W axes
Page 549: stand. residuals from the multiple regression
little gain from adding W to the model with H
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