Serik Sagitov, Chalmers Tekniska Högskola, September 12, 2005

Chapter 14. Linear least squares

X = independent variable assumed to be fixed

Y = dependent variable

1. Simple linear regression model

Random response

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1, \dots, n$$

to a fixed value x_i of independent variable

Model assumption:

noise random variables ϵ_i are independent $N(0,\sigma^2)$

Unknown model parameters: β_0 , β_1 , σ^2

$$L(\beta_0, \beta_1, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{(y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}\}$$

Least squares estimates

Regression lines:

true
$$y = \beta_0 + \beta_1 x$$
 and fitted $y = b_0 + b_1 x$

Responses:

observed y_i and predicted $\hat{y}_i = b_0 + b_1 x_i$

Least squares method: minimize $S(b_0, b_1) = \sum (y_i - \hat{y}_i)^2$ solve $\partial S/\partial b_0 = 0$ and $\partial S/\partial b_1 = 0$

Normal equations:

$$nb_0 + (\sum x_i)b_1 = \sum y_i$$
 and $(\sum x_i)b_0 + (\sum x_i^2)b_1 = \sum x_iy_i$

Slope
$$b_1 = \frac{n \sum x_i y_i - (\sum x_i)(\sum y_i)}{n \sum x_i^2 - (\sum x_i)^2}$$
, intercept $b_0 = \bar{y} - b_1 \bar{x}$

$$\ln L(\beta_0, \beta_1, \sigma^2) = n \ln(\frac{1}{\sqrt{2\pi}\sigma}) - \frac{1}{2\sigma^2} S(\beta_0, \beta_1), LSE = MLE$$

Least square regression line $y = \bar{y} + b_1(x - \bar{x})$ regression coefficient $b_1 = r \cdot \frac{s_y}{s_x}$ scale dependent Sample correlation coefficient $r = \frac{s_{xy}}{s_x s_y}$

sample covariance
$$s_{xy} = \frac{1}{n-1} \sum (x_i - \bar{x})(y_i - \bar{y})$$

 $s_x^2 = \frac{1}{n-1} \sum (x_i - \bar{x})^2, \ s_y^2 = \frac{1}{n-1} \sum (y_i - \bar{y})^2$

Least square estimates are not robust against outliers page 522: ouliers exert leverage on the fitted line

Sums of squares

SST = SSE + SSR

$$SST = \sum (y_i - \bar{y})^2 = (n - 1)s_y^2 \qquad df = n - 1$$

$$SSR = \sum (\hat{y}_i - \bar{y})^2 = (n - 1)b_1^2 s_x^2 \qquad df = 1$$

$$SSR = \sum (\hat{y}_i - \bar{y})^2 = (n-1)b_1^2 s_x^2 \qquad df = 1$$

SSE =
$$\Sigma (y_i - \hat{y}_i)^2 = (n-1)s_y^2(1-r^2)$$
 df = $n-2$

Corrected MLE of
$$\sigma^2$$
: $s^2 = \frac{\text{SSE}}{n-2} = \frac{n-1}{n-2} s_y^2 (1-r^2)$

Coefficient of determination $r^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$ proportion of variation in Y explained by factor X

2. CI and hypothesis testing

Unbiased and consistent estimates: $b_i \sim N(\beta_i, \sigma_i^2)$

$$\sigma_0^2 = \frac{\sigma^2 \cdot \sum x_i^2}{n(n-1)s_T^2}, \ \sigma_1^2 = \frac{\sigma^2}{(n-1)s_T^2}$$

weak negative dependence $Cov(b_0, b_1) = -\frac{\sigma^2 \cdot \bar{x}}{(n-1)s_x^2}$ Exact sampling distributions

$$\frac{b_i - \beta_i}{s_{b_i}} \sim t_{n-2}, \, s_{b_0} = \frac{s}{s_r} \cdot \sqrt{\frac{\sum x_i^2}{n(n-1)}}, \, s_{b_1} = \frac{s}{s_r} \cdot \sqrt{\frac{1}{n-1}}$$

Exact
$$100(1-\alpha)\%$$
 CI for β_i : $b_i \pm t_{\alpha/2,n-2} \cdot s_{b_i}$

Hypothesis testing H_0 : $\beta_1 = \beta_{10}$ test statistic $T = \frac{b_1 - \beta_{10}}{s_{b_1}}$, null distribution $T \sim t_{n-2}$ Model utility test

 H_0 : $\beta_1 = 0$ (no relationship between X and Y) test statistic $T = b_1/s_{b_1}$, null distribution $T \sim t_{n-2}$ Zero intercept hypothesis

$$H_0$$
: $\beta_0 = 0$
test statistic $T = b_0/s_{b_0}$, null distribution $T \sim t_{n-2}$

Intervals for individual observations

Given x predict $Y = \beta_0 + \beta_1 \cdot x + \epsilon$ expected value $\mu = \beta_0 + \beta_1 \cdot x$ least square estimate $\hat{\mu} = b_0 + b_1 \cdot x$

Standard error of $\hat{\mu}$

$$\operatorname{Var}(\hat{\mu}) = \frac{\sigma^2}{n} + \frac{\sigma^2}{n-1} \cdot (\frac{x-\bar{x}}{s_x})^2$$

Exact
$$100(1-\alpha)\%$$
 CI for the mean μ
 $b_0 + b_1 x \pm t_{\alpha/2, n-2} \cdot s \sqrt{\frac{1}{n} + \frac{1}{n-1}(\frac{x-\bar{x}}{s_x})^2}$

Exact $100(1-\alpha)\%$ prediction interval

$$b_0 + b_1 x \pm t_{\alpha/2, n-2} \cdot s \sqrt{1 + \frac{1}{n} + \frac{1}{n-1} (\frac{x-\bar{x}}{s_x})^2}$$

The latter are wider limits since

$$Var(Y - \hat{\mu}) = Var(\hat{\mu}) + \sigma^2 = \sigma^2(1 + \frac{1}{n} + \frac{1}{n-1} \cdot (\frac{x - \bar{x}}{s_x})^2)$$

Draw confidence bands around the regression line

both for the individual observation Y and its mean μ

3. Assessing the fit

Properties of the least square residuals $e_i = y_i - \hat{y}_i$ $e_1 + \ldots + e_n = 0, e_1^2 + \ldots + e_n^2$ at minimum $x_1e_1 + \ldots + x_ne_n = 0, e_i$ are uncorrelated with x_i $\hat{y}_1e_1 + \ldots + \hat{y}_ne_n = 0, e_i$ are uncorrelated with \hat{y}_i

Residual e_i has normal distribution with zero mean

$$Var(e_i) = \sigma^2 (1 - \frac{\sum_k (x_k - x_i)^2}{n \sum_i (x_k - \bar{x})^2})$$
$$Cov(e_i, e_j) = -\frac{\sum_k (x_k - x_i)(x_k - x_j)}{n \sum_i (x_k - \bar{x})^2}$$

Standardized residuals = e_i/s_{e_i} , $s_{e_i} = s\sqrt{1 - \frac{\sum_k (x_k - x_i)^2}{n\sum(x_k - \bar{x})^2}}$ normal distribution plot to test normality assumption Expected plot of the standardized residuals versus x_i : horizontal blur (linearity) variance does not depend on x (homoscedasticity)

Ex 1: flow rate vs stream depth

Page 517-518: scatter plot is slightly non-linear residual plot has the U-shape

Page 518-519: scatter log-log plot is closer to linear residual plot is horizontal

Ex 2: breast cancer

Page 520-521: absolute mortality y vs population size x heteroscedastic residual plot page 523: normal probability plot

Transformed variables: \sqrt{y} vs \sqrt{x}

page 521: homoscedastic residual plot

page 524: normal probability plot is closer to linear

4. Multiple regression

Linear regression model

$$Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_{p-1} x_{p-1} + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2)$$

n independent observations

$$Y_1 = \beta_0 + \beta_1 x_{1,1} + \ldots + \beta_{p-1} x_{1,p-1} + \epsilon_1$$

. . .

$$Y_n = \beta_0 + \beta_1 x_{n,1} + \ldots + \beta_{p-1} x_{n,p-1} + \epsilon_n$$

Matrix notation $\mathbf{Y} = \mathbf{X}\beta$

$$\mathbf{Y} = (y_1, \dots, y_n)^T$$

$$\beta = (\beta_0, \dots, \beta_{p-1})^T, \mathbf{X} = \begin{pmatrix} 1 & x_{1,1} & \dots & x_{1,p-1} \\ \dots & \dots & \dots \\ 1 & x_{n,1} & \dots & x_{n,p-1} \end{pmatrix}$$

Least square estimates

$$\mathbf{b} = (b_0, \dots, b_{p-1})^T$$

minimize
$$S(\mathbf{b}) = \|\mathbf{Y} - \hat{\mathbf{Y}}\|^2$$
, where $\hat{\mathbf{Y}} = \mathbf{X}\mathbf{b}$

Normal equations $\mathbf{X}^T \mathbf{X} \mathbf{b} = \mathbf{X}^T \mathbf{Y}$

if rank(
$$\mathbf{X}$$
) = p , then $\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$

$$\hat{\mathbf{Y}} = \mathbf{P}\mathbf{Y}$$
, where $\mathbf{P} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$

covariance matrix
$$\Sigma_{bb} = \|\operatorname{Cov}(b_i, b_j)\| = \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$$

 $s^2 = \|\mathbf{Y} - \hat{\mathbf{Y}}\|^2/(n-p)$ unbiased estimate of σ^2

Standard errors

$$s_{b_i} = s\sqrt{s_{ii}}$$
, where $\mathbf{C} = (\mathbf{X}^T\mathbf{X})^{-1}$ exact distributions $\frac{b_i - \beta_i}{s_{b_i}} \sim t_{n-p}$

Residuals
$$\mathbf{e} = \mathbf{Y} - \hat{\mathbf{Y}} = (\mathbf{I} - \mathbf{P})\mathbf{Y}$$

covariance matrix $\Sigma_{ee} = \|\text{Cov}(e_i, e_j)\| = \sigma^2(\mathbf{I} - \mathbf{P})$

Standardized residuals
$$\frac{y_i - \hat{y}_i}{s\sqrt{1 - p_{ii}}}$$

Coefficient of multiple determination

$$R^2 = 1 - \frac{\text{SSE}}{\text{SST}}$$

 $\text{SSE} = \|\mathbf{Y} - \hat{\mathbf{Y}}\|^2$, $\text{SST} = (n-1)s_y^2$

Adjusted coefficient of multiple determination

$$R_a^2 = 1 - \frac{n-1}{n-p} \cdot \frac{\text{SSE}}{\text{SST}}$$

Ex 1: flow rate vs stream depth

Quadratic model $y = \beta_0 + \beta_1 x + \beta_2 x^2$

page 543: residuals shows no signs of systematic misfit Linear and quadratic terms are stat. significant (n = 10)

Coefficient	Estimate	Standard Error	t Value
$oldsymbol{eta}_0$	1.68	1.06	1.52
eta_1	-10.86	4.52	-2.40
eta_2	23.54	4.27	5.51

Emperical relationship developed in a region might break down if extrapolated to a wider region in which no data been observed

Ex 3: heart catheter

Catheter length depending on child's height and weight page 546: pairwise scatterplots, n = 12

Two simple linear regressions

Estimate	Height	t Value	Weight	t Value
$\overline{b_0(s_{b_0})}$	12.1(4.3)	2.8	25.6(2.0)	13.3
$b_1(s_{b_1})$	0.60(0.10)	6.0	0.28(0.04)	8.0
s	4.0		3.8	
$r^2(R_a^2)$	0.78 (0.76)		0.80 (0.78)	

page 547: plots of standardized residuals

Multiple regression model $L = \beta_0 + \beta_1 H + \beta_2 W$

$$b_0 = 21, s_{b_0} = 8.8, b_0/s_{b_0} = 2.39$$

$$b_1 = 0.20, s_{b_1} = 0.36, b_1/s_{b_1} = 0.56$$

$$b_2 = 0.19, s_{b_2} = 0.17, b_2/s_{b_2} = 1.12$$

$$s = 3.9, R^2 = 0.81, R_a^2 = 0.77$$

Can not reject neither $H_1: \beta_1 = 0$ nor $H_2: \beta_2 = 0$

 $\beta_1 =$ expected change in L

when H increased by one unit and W held constant

Height and weight are highly collinear

strong linear relationship

Fitted plane has a well resolved slope along the line about which the (H, W) points fall

and poorly resolved slopes along the H and W axes

Page 549: stand. residuals from the multiple regression little gain from adding W to the model with H