SERIK SAGITOV, Chalmers Tekniska Högskola, January 28, 2008

Chapter 7. Survey sampling

1. Random sampling

Population = set of elements $\{1, 2, ..., N\}$ labeled by values $\{x_1, x_2, ..., x_N\}$

PD = population distribution of x-values value of a random element $X \sim PD$

Types of x-values (data): continuous, discrete categorical, dichotomous (2 categories)

General population parameters population mean $\mu = E(X)$ population standard deviation $\sigma = \sqrt{Var(X)}$ population proportion p (dichotomous data)

Two methods of studying PD and population parameters enumeration - expensive, sometimes impossible random sample: n random observations (X_1, \ldots, X_n)

Randomisation is a guard against investigator's biases even unconscious

IID sample (sampling with replacement)
Independent Identically Distributed observations
Simple random sample (sampling without replacement)
negative dependence $Cov(X_i, X_j) = -\frac{\sigma^2}{N-1}$

Ex 1: students heights

height in cm = discrete data, sex = dichotomous data

2. Point estimates

Population parameter θ estimation point estimate $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$

Sampling distribution of $\hat{\theta}$ around unknown θ different values $\hat{\theta}$ observed for different samples

Mean square error

$$\mathrm{E}(\hat{\theta} - \theta)^2 = \left[\mathrm{E}(\hat{\theta}) - \theta\right]^2 + \sigma_{\hat{\theta}}^2$$

 $E(\hat{\theta}) - \theta = \text{systematic error}, \text{ bias, lack of accuracy}$

 $\sigma_{\hat{\theta}} = \text{random error}, \text{ lack of precision}$

Desired properties of point estimates

 $\hat{\theta}$ is an unbiased estimate of θ , if $E(\hat{\theta}) = \theta$

 $\hat{\theta}$ is consistent, if $E(\hat{\theta} - \theta)^2 \to 0$ as $n \to \infty$

Sample mean $\bar{X} = \frac{X_1 + ... + X_n}{n}$ is an unbiased and consistent estimate of μ

$$\operatorname{Var}(\bar{X}) = \begin{cases} \sigma^2/n & \text{if IID sample} \\ \frac{\sigma^2}{n}(1 - \frac{n-1}{N-1}) & \text{if simple random sample} \end{cases}$$

Finite population correction $1 - \frac{n-1}{N-1}$ can be neglected if sample proportion $\frac{n}{N}$ is small

Population proportion p estimation

$$P(X_i = 1) = p$$
, $P(X_i = 0) = q$, $\mu = p$, $\sigma^2 = pq$ sample proportion $\hat{p} = \bar{X}$

is an unbiased and consistent estimate of p

Sample variance $s^2 = \frac{1}{n-1} \sum (X_i - \bar{X})^2$

s =sample standard deviation

Other formulae

$$s^2 = \frac{n}{n-1}(\overline{X^2} - \overline{X}^2)$$
, where $\overline{X^2} = \frac{1}{n}(X_1^2 + \ldots + X_n^2)$ dichotomous data case $s^2 = \frac{n}{n-1}\hat{p}\hat{q}$

Sample variance is an unbiased estimate of σ^2

$$\mathbf{E}(s^2) = \begin{cases} \sigma^2 & \text{if IID sample} \\ \sigma^2 \frac{N}{N-1} & \text{if simple random sample} \end{cases}$$

Standard errors of \bar{X} and \hat{p} for simple random sample $s_{\bar{X}} = \frac{s}{\sqrt{n}} \sqrt{1 - \frac{n}{N}}, \ s_{\hat{p}} = \sqrt{\frac{\hat{p}\hat{q}}{n-1}} \sqrt{1 - \frac{n}{N}}$

Standard errors for IID sampling
$$s_{\bar{X}} = \frac{s}{\sqrt{n}}, \ s_{\hat{p}} = \sqrt{\frac{\hat{p}\hat{q}}{n-1}}$$

3. Confidence intervals

Approximate sampling distribution $\bar{X} \stackrel{a}{\sim} \mathrm{N}(\mu, \frac{\sigma^2}{n})$ approximate $100(1-\alpha)\%$ two-sided CI for μ and p $\bar{X} \pm z_{\alpha/2} \cdot s_{\bar{X}}$ and $\hat{p} \pm z_{\alpha/2} \cdot s_{\hat{p}}$, if n is large

The higher is confidence level the wider is the CI the larger is sample the narrower is the CI

95% CI is a random interval:

out of 100 intervals computed for 100 samples $Bin(100,0.95) \approx N(95,(2.18)^2)$ will cover the true value

4. Estimation of a ratio

Two variables X and Y characterizing a population two population means μ_x , μ_y and variances σ_x^2 , σ_y^2 covariance $\sigma_{xy} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)$ correlation coefficient $\rho = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$

Estimate the ratio $r = \mu_y/\mu_x$ by $R = \bar{Y}/\bar{X}$ $\sigma_{\bar{x}\bar{y}} = \frac{\sigma_{xy}}{n} \left(1 - \frac{n-1}{N-1}\right), \, \rho_{\bar{x}\bar{y}} = \rho$

Using the method of propagation of error find

$$E(R) \approx r + \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) \frac{1}{\mu_x^2} (r \sigma_x^2 - \rho \sigma_x \sigma_y)$$

$$Var(R) \approx \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) \frac{1}{\mu_x^2} (r^2 \sigma_x^2 + \sigma_y^2 - 2r \rho \sigma_x \sigma_y)$$

Mean square error

$$E(R-r)^2 = [E(R) - r]^2 + Var(R)$$

negligible (of order n^{-2}) contribution of the bias

The standard error s_R

$$\begin{split} s_R^2 &= \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) \frac{1}{\bar{X}^2} (R^2 s_x^2 + s_y^2 - 2R s_{xy}) \\ s_{xy} &= \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}) (y_i - \bar{y}) = \frac{1}{n-1} (\sum_{i=1}^n x_i y_i - n \bar{x} \bar{y}) \\ \text{approximate CI for } r \text{ is } R \pm z_{\alpha/2} \cdot s_R \end{split}$$

Strong correlation decreases both the bias and random error size. Small μ_x has an opposite effect.

Ratio estimate of the mean μ_y

Assuming μ_x is known compare \bar{Y} to $\bar{Y}_R = \mu_x R$

$$E(\bar{Y}_R) \approx \mu_Y + \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) \frac{1}{\mu_x} (r\sigma_x^2 - \rho\sigma_x\sigma_y)$$

$$Var(\bar{Y}_R) \approx \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) (r^2\sigma_x^2 + \sigma_y^2 - 2r\rho\sigma_x\sigma_y)$$

$$\frac{\mathrm{Var}(\bar{Y}_R)}{\mathrm{Var}(\bar{Y})} \approx 1 + r^2 \frac{\sigma_x^2}{\sigma_y^2} - 2r \rho \frac{\sigma_x}{\sigma_y}$$

For r > 0 and large n estimate \bar{Y}_R is better than \bar{Y} if $\rho > \frac{C_x}{2C_y}$ coefficients of variation $C_x = \sigma_x/\mu_x$ and $C_y = \sigma_y/\mu_y$ Another approximate CI for μ_y is given by $\bar{Y}_R \pm z_{\alpha/2} \cdot s_{\bar{Y}_R}$ $s_{\bar{Y}_R}^2 = \frac{1}{n} \left(1 - \frac{n-1}{N-1}\right) \left(R^2 s_x^2 + s_y^2 - 2R s_{xy}\right)$

5. Stratified random sampling

Population consists of L strata with known L strata fractions $W_1 + \ldots + W_L = 1$ and unknown strata means μ_l and standard deviations σ_l

Population mean $\mu = W_1 \mu_1 + \ldots + W_L \mu_L$ population variance $\sigma^2 = \overline{\sigma^2} + \sum W_l (\mu_l - \mu)^2$ average variance $\overline{\sigma^2} = W_1 \sigma_1^2 + \ldots + W_L \sigma_L^2$

Stratified random sampling

L independent samples from each stratum with sample means $\bar{X}_1, \ldots, \bar{X}_L$

Stratified sample mean:
$$\bar{X}_s = W_1 \bar{X}_1 + \ldots + W_L \bar{X}_L$$

 \bar{X}_s is an unbiased and consistent estimate of μ $\mathrm{E}(\bar{X}_s) = W_1 \mathrm{E}(\bar{X}_1) + \ldots + W_L \mathrm{E}(\bar{X}_L) = \mu$ $s_{\bar{X}_s}^2 = (W_1 s_{\bar{X}_1})^2 + \ldots + (W_L s_{\bar{X}_L})^2$

Approximate CI for
$$\mu$$
: $\bar{X}_s \pm z_{\alpha/2} \cdot s_{\bar{X}_s}$

Pooled sample mean

$$ar{X}_p = \frac{1}{n}(n_1ar{X}_1 + \ldots + n_Lar{X}_L), \ n = n_1 + \ldots + n_L$$
 $E(ar{X}_p) = \frac{n_1}{n}\mu_1 + \ldots + \frac{n_L}{n}\mu_L = \mu + \Sigma(\frac{n_l}{n} - W_l)\mu_l$
 $bias(ar{X}_p) = \Sigma(\frac{n_l}{n} - W_l)\mu_l$

Ex 1: students heights

$$L=2, W_1=W_2=0.5, \text{ compare } \bar{X}_s \text{ with } \bar{X}_p$$

Optimal allocation:
$$n_l = n \frac{W_l \sigma_l}{\bar{\sigma}}$$
, $Var(\bar{X}_{so}) = \frac{1}{n} \cdot \bar{\sigma}^2$

average standard deviation $\bar{\sigma} = W_1 \sigma_1 + \ldots + W_L \sigma_L$ \bar{X}_{so} minimizes standard error of X_s weakness: usually unknown σ_l and $\bar{\sigma}$

Proportional allocation:
$$n_l = nW_l$$
, $Var(\bar{X}_{sp}) = \frac{1}{n} \cdot \overline{\sigma^2}$

Compare three unbiased estimates of μ

$$\operatorname{Var}(\bar{X}_{so}) \le \operatorname{Var}(\bar{X}_{sp}) \le \operatorname{Var}(\bar{X})$$

Variability in σ_l accross strata

$$\operatorname{Var}(\bar{X}_{sp}) - \operatorname{Var}(\bar{X}_{so}) = \frac{1}{n} (\overline{\sigma^2} - \bar{\sigma}^2) = \frac{1}{n} \sum W_l (\sigma_l - \bar{\sigma})^2$$

Variability in means μ_l accross strata

$$\operatorname{Var}(\bar{X}) - \operatorname{Var}(\bar{X}_{sp}) = \frac{1}{n}(\sigma^2 - \overline{\sigma^2}) = \frac{1}{n}\sum W_l(\mu_l - \mu)^2$$