Serik Sagitov, Chalmers Tekniska Högskola, January 28, 2008

Chapter 8. Estimation of parameters and fitting of probability distributions

Given a parametric model with unknown parameter(s) θ estimate θ from a random sample (X_1, \ldots, X_n)

Two basic methods of finding good estimates

- 1. method of moments, simple, first approximation for
- 2. max likelihood method, good for large samples

1. Parametric models

Binomial Bin(n, p): no. successes in n Bernoulli trials

$$f(k) = \binom{n}{k} p^k q^{n-k}, \ 0 \le k \le n, \ \mu = np, \ \sigma^2 = npq$$

Hypergeometric Hg(N, n, p): sampling without repl

$$f(k) = \frac{\binom{Np}{k}\binom{Nq}{n-k}}{\binom{N}{n}}, \ \mu = np, \ \sigma^2 = npq(1 - \frac{n-1}{N-1})$$

Geometric Geom(p): no. trials untill first success

$$f(k) = pq^{k-1}, k \ge 1, \mu = \frac{1}{p}, \sigma^2 = \frac{q}{p^2}$$

Poisson $Pois(\lambda)$: no. rare events $\approx Bin(n, \lambda/n)$

$$f(k) = \frac{\lambda^k}{k!} e^{-\lambda}, \ k \ge 0, \ \mu = \sigma^2 = \lambda$$

Exponential $\text{Exp}(\lambda)$: Poisson waiting times

$$f(x) = \lambda e^{-\lambda x}, x > 0, \mu = \sigma = \frac{1}{\lambda}$$

Normal N(μ , σ^2): many small independent contributions $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}, -\infty < x < \infty$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}, -\infty < x < \infty$$

Gamma(α, λ): shape parameter α , scale parameter λ

$$f(x) = \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}, \ x \ge 0, \ \mu = \frac{\alpha}{\lambda}, \ \sigma^2 = \frac{\alpha}{\lambda^2}$$

2. Method of moments

IID sample (X_1, \ldots, X_n) from $PD(\theta_1, \theta_2)$ pop. moments $E(X) = f(\theta_1, \theta_2)$, $E(X^2) = g(\theta_1, \theta_2)$ MME $(\tilde{\theta}_1, \tilde{\theta}_2)$

solve equations $\bar{X} = f(\tilde{\theta}_1, \tilde{\theta}_2)$ and $\bar{X}^2 = g(\tilde{\theta}_1, \tilde{\theta}_2)$

Ex 1: red mites

(6 apple trees) \times (25 leaves) were selected $(X_1, \ldots, X_{150}) = \text{numbers of red mites on 150 leaves}$

Poisson model $X \sim \text{Pois}(\lambda)$: constant infestation rate λ $E(X) = \lambda$, MME $\tilde{\lambda} = \bar{X} = \frac{172}{150} = 1.147$

To measure the Poisson model fit to the data compute

Chi-square test statistic:
$$X^2 = \sum \frac{(O_j - E_j)^2}{E_j}$$

$$E_j = 150 \cdot \frac{(1.147)^{j-1}}{(j-1)!} \cdot e^{-1.147}, E_5 = 150 - E_1 - \dots - E_4$$

$\operatorname{cell} j$	observed O_j	expected E_j	$rac{(O_j - E_j)^2}{E_j}$
1	70	47.7	10.4
2	38	54.6	5.0
3	17	31.3	6.5
4	10	12.0	0.3
5	15	4.4	30.6
Total	150	150	$X^2 = 52.8$

Ex 2: bird hops

 $X_i = \text{no. hops that a bird does between flights}$

No. hops	1	2	3	4	5	6	7	8	9	10	11	12	Tot
Frequency	48	31	20	9	6	5	4	2	1	1	2	1	130

Summary statistics

$$\bar{X} = \frac{\text{total number of hops}}{\text{number of birds}} = \frac{363}{130} = 2.79$$

$$\bar{X}^2 = 1^2 \cdot \frac{48}{130} + 2^2 \cdot \frac{31}{130} + \dots + 11^2 \cdot \frac{2}{130} + 12^2 \cdot \frac{1}{130} = 13.20$$

$$s^2 = \frac{130}{129} (\bar{X}^2 - \bar{X}^2) = 5.47$$

$$s_{\bar{X}} = \sqrt{\frac{5.47}{130}} = 0.205$$

An approximate 95% CI for μ

$$\bar{X} \pm z_{0.025} \cdot s_{\bar{X}} = 2.79 \pm 1.96 \cdot 0.205 = 2.79 \pm 0.40$$

Geometric model $X \sim \text{Geom}(p)$

$$\mu = 1/p, \quad \tilde{p} = 1/\bar{X} = 0.358$$
 approx. 95% CI for p : $(\frac{1}{2.79+0.40}, \frac{1}{2.79-0.40}) = (0.31, 0.42)$ Model fit

$$E_j = 130 \cdot (0.642)^{j-1} (0.358)$$

 $E_7 = 130 - E_1 - \dots - E_6$
chi-square test statistic $X^2 = 1.86$

3. Maximum Likelihood method

Before sampling

 X_1, \ldots, X_n have joint pmf/pdf $f(x_1, \ldots, x_n | \theta)$

- draw three pdf curves for $\theta_1 < \theta_2 < \theta_3$

After sampling

 x_1, \ldots, x_n are the observed sample values (fixed) likelihood $L(\theta) = f(x_1, \ldots, x_n | \theta)$ is a function of θ

- likelihood curve connects pdf values for $\theta_1 < \theta_2 < \theta_3$

MLE $\hat{\theta}$ of θ is the value of θ that maximizes $L(\theta)$

Large sample properties of MLE

If sample is iid, then

 $L(\theta) = f(x_1|\theta) \dots f(x_n|\theta)$ which implies for large n

Normal approximation
$$\hat{\theta} \in N(\theta, \frac{1}{nI(\theta)})$$

Fisher information in a single observation

$$I(\theta) = \mathbb{E}\left[\frac{\partial}{\partial \theta} \log f(X|\theta)\right]^2 = -\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2} \log f(X|\theta)\right]$$

MLE $\hat{\theta}$ is asymptotically unbiased, consistent, and asymptotically efficient (minimal variance)

Cramer-Rao inequality:

 $Var(\theta^*) \ge \frac{1}{nI(\theta)}$ if θ^* is an unbiased estimate of θ

Approximate
$$100(1-\alpha)\%$$
 CI for θ : $\hat{\theta} \pm \frac{z_{\alpha/2}}{\sqrt{nI(\hat{\theta})}}$

Ex 3: bike helmets

Data: n = 10 new bike helmets are tested

X = 3 helmets are flawed

Binomial model $X \sim Bin(n, p)$

p = population proportion of flawed helmets

MME: sample proportion $\tilde{p} = \frac{X}{n} = 0.3$, since $\mu = np$

Bin(n, p): sample proportion is MME and MLE of p

For what value of p is the observed X = 3 most likely? likelihood $L(p) = P(X = 3) = 120p^3(1-p)^7$

Maximize log-likelihood

$$\log L(p) = c + 3\log(p) + 7\log(1 - p)$$

$$\frac{d}{dp}(3\log(p) + 7\log(1 - p)) = 0$$

$$\frac{3}{p} = \frac{7}{1-p} \text{ so that } \hat{p} = 3/10$$

Ex 4: lifetimes

Lifetimes of five batteries measured in hours

$$x_1 = 0.5, x_2 = 14.6, x_3 = 5.0, x_4 = 7.2, x_5 = 1.2$$

Exponential model $X \sim \text{Exp}(\lambda)$: $\lambda = \text{death rate per hour}$

$$\mu = 1/\lambda, \ \tilde{\lambda} = 1/\bar{X} = \frac{5}{28.5} = 0.175$$

Likelihood function

$$L(\lambda) = \lambda e^{-\lambda x_1} \lambda e^{-\lambda x_2} \lambda e^{-\lambda x_3} \lambda e^{-\lambda x_4} \lambda e^{-\lambda x_5}$$
$$= \lambda^n e^{-\lambda (x_1 + \dots + x_n)} = \lambda^5 e^{-\lambda \cdot 28.5}$$

It grows from 0 to $2.2 \cdot 10^{-7}$ and then falls down likelihood maximum is reached at $\hat{\lambda} = 0.175$

MLE $\hat{\lambda} = 1/\bar{X}$ is biased but asymptotically unbiased $E(\hat{\lambda}) \approx \lambda$ for large samples since $\bar{X} \approx \mu$

Fisher information

$$\frac{\partial^2}{\partial \lambda^2} \log f(X|\lambda) = -1/\lambda^2, I(\lambda) = \frac{1}{\lambda^2}$$
$$\operatorname{Var}(\hat{\lambda}) \approx \frac{\lambda^2}{n}$$

Approximate 95% CI for λ

$$0.175 \pm 1.96 \frac{0.175}{\sqrt{5}} = 0.175 \pm 0.153$$

Ex 5: male heights

Male height sample of size n = 24

$$180,\!180,\!181,\!181,\!182,\!183,\!184,\!186,\!187,\!192,\!192,\!199$$

Summary statistics

$$\bar{X} = 181.46, \, \overline{X^2} = 32964.2, \, \overline{X^2} - \bar{X}^2 = 37.08$$

Gamma model $X \sim \text{Gamma}(\alpha, \lambda)$

method of moments:
$$E(X) = \frac{\alpha}{\lambda}$$
, $E(X^2) = \frac{\alpha(\alpha+1)}{\lambda^2}$ imply

$$\tilde{\alpha} = \bar{X}^2/(\bar{X}^2 - \bar{X}^2) = 887.96, \ \tilde{\lambda} = \tilde{\alpha}/\bar{X} = 4.89$$

Maximum likelihood method

$$\frac{\partial}{\partial \alpha} \log L(\alpha, \lambda) = n \log(\lambda) + \sum \log X_i - n \frac{\Gamma'(\alpha)}{\Gamma(\alpha)}$$

$$\frac{\partial}{\partial \lambda} \log L(\alpha, \lambda) = \frac{n\alpha}{\lambda} - \sum X_i$$

Solve numerically two equations

$$\log(\hat{\alpha}/\bar{X}) = -\frac{1}{n} \sum \log X_i + \Gamma'(\hat{\alpha})/\Gamma(\hat{\alpha})$$

$$\hat{\lambda} = \hat{\alpha}/\bar{X}$$

with initial values $\tilde{\alpha} = 887.96$, $\tilde{\lambda} = 4.89$

Mathematica:
$$\hat{\alpha} = 908.76, \hat{\lambda} = 5.01$$

FindRoot[Log[a] == 0.00055+Gamma'[a]/Gamma[a], {a, 887.96}]

Parametric bootstrap

Simulate

1000 samples of size 24 from Gamma(908.76; 5.01)

find 1000 estimates $\hat{\alpha}_j$ and plot a histogram

Use the simulated sampling distribution of $\hat{\alpha}$ and $\hat{\lambda}$ to find $\bar{\alpha} = 1039.0$ and $s_{\hat{\alpha}} = \sqrt{\frac{1}{999} \Sigma (\hat{\alpha}_j - \bar{\alpha})^2} = 331.29$ large standard error because of small n = 24

Bootstrap algorithm to find approximate 95% CI:

$$\hat{\alpha} \to \hat{\alpha}_1, \dots, \hat{\alpha}_B \to \text{sampling distribution of } \hat{\hat{\alpha}} \to 95\% \text{ brackets } c_1, c_2$$

$$0.95 \approx P(c_1 < \hat{\alpha} < c_2)$$

$$= P(c_1 - \hat{\alpha} < \hat{\alpha} - \hat{\alpha} < c_2 - \hat{\alpha})$$

$$\approx P(c_1 - \hat{\alpha} < \hat{\alpha} - \alpha < c_2 - \hat{\alpha})$$

$$= P(2\hat{\alpha} - c_2 < \alpha < 2\hat{\alpha} - c_1)$$

Matlab commands

gamrnd(908.76*ones(1000,24), 5.01*ones(1000,24))prctile(x,2.5), prctile(x,97.5)

4. Exact CI

Assumption on the PD

IID sample (X_1, \ldots, X_n) is taken from $N(\mu, \sigma^2)$ with unspecified parameters μ and σ

Exact distributions
$$\frac{\bar{X}-\mu}{s_{\bar{X}}} \sim t_{n-1}$$
 and $\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$

 t_{n-1} -distribution curve looks similar to N(0,1)-curve symmetric around zero, larger variance = $\frac{n-1}{n-3}$

If
$$Z, Z_1, \ldots, Z_k$$
 are $N(0,1)$ and independent, then $\frac{Z}{\sqrt{(Z_1^2 + \ldots + Z_k^2)/n}} \sim t_k$

Different shapes of χ_k^2 -distribution

$$\mu = k, \sigma^2 = 2k, \text{ pdf } f_1(0) = \infty, f_2(0) = 0.5, f_3(0) = 0$$
 if $Z_i \sim N(0,1)$ are IID, then $Z_1^2 + \ldots + Z_k^2 \sim \chi_k^2$

Exact
$$100(1-\alpha)\%$$
 CI for $\mu: \bar{X} \pm t_{n-1}(\alpha/2) \cdot s_{\bar{X}}$

Exact CI for μ is wider than the approximate CI

$$\bar{X} \pm 1.96 \cdot s_{\bar{X}}$$
 approximate CI for large n

$$\bar{X} \pm 2.26 \cdot s_{\bar{X}}$$
 exact CI for $n = 10$

$$\bar{X} \pm 2.13 \cdot s_{\bar{X}}$$
 exact CI for $n = 16$

$$\bar{X} \pm 2.06 \cdot s_{\bar{X}}$$
 exact CI for $n = 25$

$$\bar{X} \pm 2.00 \cdot s_{\bar{X}}$$
 exact CI for $n = 60$

Exact
$$100(1-\alpha)\%$$
 CI for σ^2 : $\left(\frac{(n-1)s^2}{\chi_{n-1}^2(\alpha/2)}; \frac{(n-1)s^2}{\chi_{n-1}^2(1-\alpha/2)}\right)$

Non-symmetric CI for σ^2

$$(0.47s^2, 3.33s^2)$$
 for $n = 10$ $(0.55s^2, 2.40s^2)$ for $n = 16$

$$(0.47s^2, 3.33s^2)$$
 for $n = 10$ $(0.55s^2, 2.40s^2)$ for $n = 16$ $(0.61s^2, 1.94s^2)$ for $n = 25$ $(0.72s^2, 1.49s^2)$ for $n = 60$

$$(0.94s^2, 1.07s^2)$$
 $n = 2000$ $(0.98s^2, 1.02s^2)$ $n = 20000$

5. Sufficiency

Definition

 $T = T(X_1, ..., X_n)$ is a sufficient statistic for θ if given T = t conditional distribution of $(X_1, ..., X_n)$ does not depend on θ

A sufficient statistic T contains all the information in the sample about θ

Factorization criterium

$$f(x_1, ..., x_n | \theta) = g(t, \theta) h(x_1, ..., x_n)$$

 $P(\mathbf{X} = \mathbf{x} | T = t) = \frac{h(\mathbf{x})}{\sum_{\mathbf{x}: T(\mathbf{x}) = t} h(\mathbf{x})}$ independent of θ

If T is sufficient for θ , the MLE is a function of T

Bernoulli distribution

$$P(X_i = x) = \theta^x (1 - \theta)^{1-x}$$

$$f(x_1, \dots, x_n | \theta) = \prod_{i=1}^n \theta^{x_i} (1 - \theta)^{1-x_i} = \theta^{n\bar{x}} (1 - \theta)^{n-n\bar{x}}$$
sufficient statistic $T = n\bar{X}$ number of successes
$$g(t, \theta) = \theta^{n\bar{x}} (1 - \theta)^{n-n\bar{x}}$$

Normal distribution $N(\mu, \sigma^2)$

$$\Pi_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}} = \frac{1}{\sigma^{n}(2\pi)^{n/2}} e^{-\frac{t_{2}-2\mu t_{1}+n\mu^{2}}{2\sigma^{2}}}$$
sufficient statistic $(t_{1}, t_{2}) = (\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2})$

Rao-Blackwell theorem

two estimates of
$$\theta$$
: $\hat{\theta}$ and $\tilde{\theta} = E(\hat{\theta}|T)$
if $E(\hat{\theta}^2) < \infty$, then $MSE(\tilde{\theta}) \leq MSE(\hat{\theta})$