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Chapter 8. Estimation of parameters and
fitting of probability distributions

Given a parametric model with unknown parameter(s) 6
estimate 6 from a random sample (X3, ..., X})

Two basic methods of finding good estimates
1. method of moments, simple, first approximation for
2. max likelihood method, good for large samples

1. Parametric models
Binomial Bin(n, p): no. successes in n Bernoulli trials

f(k) = ()pbq"*, 0< k <n, p=np, c® = npq
Hypergeometric Hg( N, n, p): sampling without repl

flk) = % p=np, 0 =npq(l — %)

Geometric Geom(p): no. trials untill first success

fE)y=pd" " k>1,p= 0" =14

Poisson Pois(A): no. rare events ~ Bin(n, A/n)
f(k):?c—];e_’\,kZO,,LL:aQZA
Exponential Exp()): Poisson waiting times

fl@)=Xe 2>0,p=0=7
Normal N(u, 0%): many small independent contributions
f(z) \/1— e 27" —00 < 7 < 00

= 2no
Gamma(a, \): shape parameter «, scale parameter A
f@) = g le™, x>0, u=15, 0" =%



2. Method of moments
I1ID sample (X7, ..., X,) from PD(6,,65)
pop. moments E(X) = f(0y,0:), E(X?) = g(61, 62)
MME (61, 65)
solve equations X = f(6;,60,) and X2 = g(6;, 6,)
Ex 1: red mites
(6 apple trees) x (25 leaves) were selected
(X1, ..., X150) = numbers of red mites on 150 leaves
no. mites | 0 | 1| 2| 3 |4|5|6/|7]Total
no. leaves | 70 |38 | 17109 |3|2| 1| 150

Poisson model X ~ Pois(A): constant infestation rate A

E(X)=A MME X =X =12 = 1,147

To measure the Poisson model fit to the data compute

Chi-square test statistic: X2 = ¥ (©0j—E;)” EE )
J
Ej =150 WM oo By = 150 — By — ... — B
cell j | observed O; | expected E; w
1 70 47.7 10.4
2 38 54.6 5.0
3 17 31.3 6.5
4 10 12.0 0.3
5 15 4.4 30.6
Total 150 150 X2 =528




Ex 2: bird hops
X; = no. hops that a bird does between flights

No.hops | 1 |2|3|4|5]6]/7[8]9|10]11|12| Tot
Frequency |48 3120 [9(6|5[4[2|1| 1] 2|1 [130

Summary statistics
X = total number of hops __ 363 — 9.79

—— Surr}lber of g)lrds — 130 5 5
X2 =128 02 3 g2, 24192, L~ 13.90
s? = 10(X? — X?) =547

sg = /20T = 0.205

An approximate 95% CI for
X+ 200955¢ = 2.79 & 1.96 - 0.205 = 2.79 + 0.40

Geometric model X ~ Geom(p)

p=1/p, p=1/X =0.358
approx. 95% CI for p: (5751575 575515) = (0-31,0.42)
Model fit
il 1l 2] 3] 45|67+
O;| 48 | 31 | 20 9 6 | 5 |11
FE;146.5(29.9]19.2|1123|79|5.1]9.1

E; =130- (0.642)"~1(0.358)
E;=130—FE; — ... — Ej
chi-square test statistic X2 = 1.86



3. Maximum Likelihood method
Before sampling
X1, ..., X, have joint pmf/pdf f(z1,...z,|0)
- draw three pdf curves for 6, < 65 < 63
After sampling
ry,...,T, are the observed sample values (fixed)
likelihood L(0) = f(x1,...z,|0) is a function of 6
- likelihood curve connects pdf values for 8, < 6y < 65

MLE 6 of 6 is the value of 6 that maximizes L(6)

Large sample properties of MLE
If sample is iid, then
L(0) = f(z1]|0) ... f(x,|6) which implies for large n

Normal approximation 6 € N(8, - 11(9))

Fisher information in a single observation
1(6) = Ely log f(X|9)” = —E[ 5 log £(X|6)]
MLE 6 is asymptotically unbiased, consistent, and
asymptotically efficient (minimal variance)
Cramer-Rao inequality:

Var(6*) > n%w) if * is an unbiased estimate of 8

Approximate 100(1 — «)% CI for 6: 0+ Zo‘ﬁé)




Ex 3: bike helmets
Data: n = 10 new bike helmets are tested
X = 3 helmets are flawed
Binomial model X ~ Bin(n, p)
p = population proportion of flawed helmets
MME: sample proportion p = = = 0.3, since y = np

Bin(n, p): sample proportion is MME and MLE of p

For what value of p is the observed X = 3 most likely?
likelihood L(p) = P(X = 3) = 120p*(1 — p)’
Maximize log-likelihood
logL(p) = ¢+ 3log(p) + 7log(1 — p)
gip(i% 107g(p) — 710&3;(1 —p)) =0
2 = {2, so that p = 3/10
Ex 4: lifetimes
Lifetimes of five batteries measured in hours
x1=05,29=14.6,23=05.0,204 = 7.2, 25 = 1.2
Exponential model X ~ Exp()\): A = death rate per hour
p=1/AA=1/X = % =0.175
Likelihood function
L(X) = Ae 1 \e A2 \e~M3 \e ™A% \ e~ ATS
_ )\ne—)\(x1+...+xn) — Ve A285
It grows from 0 to 2.2 - 1077 and then falls down
likelihood maximum is reached at A = 0.175
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MLE A = 1/X is biased but asymptotically unbiased
E(A) ~ X for large samples since X ~ p
Flsher information
Selog F(X|N) = —1/0% I(N) = 3
Var(A) m &
Approximate 95% CI for A
0.175 £ 1.96% = 0.175 + 0.153
Ex 5: male heights
Male height sample of size n = 24
170,175,176,176,177,178,178,179,179,180,180,180,
180,180,181,181,182,183,184,186,187,192,192,199
Summary statistics
X = 181.46, X2 = 32964.2, X2 — X2 = 37.08
Gamma model X ~ Gamma(a, )\)
method of moments: E(X) = ( 2) = O‘H @@ fD) imply
a=X?/(X?2— X?)=88T7. 96 =a/X = 489
Maximum likelihood method
2 log L(a, \) = nlog()\) + > log X; — nFF/((s))
Slog L(a, \) =™ — ¥ X;
Solve numerically two equations
log(a/X) —Lxlog X; + (&) /T'(&)
=a/X
Wlth initial values & = 887.96, A = 4.89




A

Mathematica: & = 908.76, A = 5.01
FindRoot[Log[a] == 0.00055+Gamma’[a]/Gammala], {a, 887.96}]

Parametric bootstrap
Simulate
1000 samples of size 24 from Gamma(908.76; 5.01)
find 1000 estimates &; and plot a histogram
Use the simulated sampling distribution of & and )
tofind & = 1039.0 and s = |55 =(d; — @)2 = 331.29
large standard error because of small n = 24
Bootstrap algorithm to find approximate 95% CI:
& — aq,...,ap — sampling distribution of a
— 95% brackets ¢1, ¢
095~ P(¢; < & < )
:P(cl—&<&—&<02—&)
~Plcg—a<a—a<c—a)
=P2&a —c < a <2t —¢)
Matlab commands
gamrnd(908.76%ones(1000,24), 5.01*ones(1000,24))
pretile(x,2.5), pretile(x,97.5)

4. Exact CI

Assumption on the PD
[ID sample (X7, ..., X,) is taken from N(u, o?)
with unspecified parameters y and o
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. 2
Exact distributions XS—;H ~ t,_1 and % ~ X%_l

tn—1-distribution curve looks similar to N(0,1)-curve
n

symmetric around zero, larger variance = =%

If Z, 71, ..., 7% are N(0,1)

: Z
and independent, then NG TS 7

Different shapes of x?-distribution
p=k,o® =2k, pdf 1(0) = 0o, fo(0) = 0.5, f3(0) =
if Z; ~ N(0,1) are IID, then Z2 + ...+ Z% ~ 2

3
w

Exact 100(1 — )% CI for u: X +t,_1(a/2) - 5%

Exact CI for p is wider than the approximate CI
X 4+196-s¢  approximate CI for large n
X +226-s5y exact Cl forn = 10
X +£213-s5y  exact Clfor n = 16
X 4+£206-s; exact CI forn =25
X £200-s¢ exact CI for n = 60

Eact 10001 — af O or o ({5675 ' vmer)

Non-symmetric CI for o
(0.47s%,3.33s%) forn = 10 (0.555%,2.40s%) forn = 16
(0.61s%,1.94s%) forn = 25 (0.72s%,1.49s?) for n = 60
(0.945%,1.07s*) n = 2000  (0.98s%,1.02s%) n = 20000



5. Sufficiency

Definition
T =T(Xy,...,X,) is a sufficient statistic for 6
if given T" = t conditional distribution of
(X1,...,X,) does not depend on 6

A sufficient statistic 1" contains all the information
in the sample about 6

Factorization criterium

f(z1,...,z,|0) = g(t, H%h(acl, ey Tp)

PX =x|T =1) =+ g ()’i)t i independent of ¢

If T is sufficient for #, the MLE is a function of T’

Bernoulli distribution
P(X;=z)=6"(1— 9)1_””
flzy,...,z,|0) =1, 6%(1— (9)1_5” = 0" (1—0)" "
sufficient statistic 7= nX number of successes
g(t,0)=0"(1—09)" "

Normal distribution N(u, o?)

=1 g\/2m o™ (2m)1/2
sufficient statistic (¢1,%2) = (S i, S0 27)
Rao-Blackwell theorem
two estimates of 0: 0 and @

if £(6%) < oo, then MSE(f) <

A

BO|T)
MSE(6)



