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Chapter 12. Analysis of variance

Chapter 11: I = 2 samples independent samples paired samples
Chapter 12: I ≥ 3 samples of equal size J one-way layout two-way layout

1 One-way layout

Consider I independent IID samples (Y11, . . . , Y1J), . . . , (YI1, . . . , YIJ) measuring I treatment results.
We have one main factor (factor A having I levels) as the principle cause of variation in the data.
The goal is to test

H0: all I treatments have the same effect, vs H1: there are systematic differences.

Example (seven labs)
Data: 70 measurements of chlorpheniramine maleate in tablets with a nominal dosage of 4 mg.
Seven labs made ten measurements each: I = 7, J = 10.

Lab 1 3 7 2 5 6 4
Mean 4.062 4.003 3.998 3.997 3.957 3.955 3.920

Normal theory model

Normally distributed observations Yij ∼ N(µi, σ
2) with equal variances (compare to the t-tests). In

other words,

Yij = µ+ αi + εij,
∑
i

αi = 0, εij ∼ N(0, σ2),

meaning: obs = overall mean + differential effect + noise.
Sample means as maximum likelihood estimates

Ȳi. =
1

J

∑
j

Yij, Ȳ.. =
1

I

∑
i

Yi. =
1

IJ

∑
i

∑
j

Yij,

µ̂ = Ȳ.., µ̂i = Ȳi., α̂i = Ȳi. − Ȳ..,
∑
i

α̂i = 0,

so that Yij = µ̂+ α̂i + ε̂ij, where ε̂ij = Yij − Ȳi. are the so-called residuals

Decomposition of the total sum of squares: SST = SSA + SSE.

SST =
∑

i

∑
j(Yij − Ȳ..)2 total sum of squares for the pooled sample with dfT = IJ − 1,

SSA = J
∑

i α̂
2
i factor A sum of squares (between-group variation) with dfA = I − 1,

SSE =
∑

i

∑
j ε̂

2
ij error sum of squares (within-group variation) with dfE = I(J − 1).

Mean squares and their expected values

MSA = SSA
dfA

, E(MSA) = σ2 + J
I−1
∑

i α
2
i ,

MSE = SSE
dfE

, E(MSE) = σ2.
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One-way F -test

Pooled sample variance

s2p = MSE =
1

I(J − 1)

∑
i

∑
j

(Yij − Ȳi.)2

is an unbiased estimate of σ2. Use F = MSA
MSE

as test statistic for

H0 : α1 = . . . = αI = 0 against H1 : αu 6= αv for some (u, v).

Reject H0 for large values of F , since

EH0(MSA) = σ2 and EH1(MSA) = σ2 + J
I−1
∑

i α
2
i > σ2.

Null distribution F ∼ Fn1,n2 with degrees of freedom n1 = I − 1 and n2 = I(J − 1).

If X1 ∼ χ2
n1

and X2 ∼ χ2
n2

are two independent random variables, then X1/n1

X2/n2
∼ Fn1,n2 .

Example (seven labs)
The normal probability plot of residuals ε̂ij supports the normality assumption. Noise size σ is esti-
mated by sp =

√
0.0037 = 0.061.

One-way Anova table

Source df SS MS F P -value
Labs 6 .125 .0210 5.66 .0001
Error 63 .231 .0037
Total 69 .356

Which of the
(
7
2

)
= 21 pairwise differences are significant?

Using the 95% CI for a single pair of independent samples (µu − µv) we get

(Ȳu. − Ȳv.)± t63(0.025) · sp√
5

= (Ȳu. − Ȳv.)± 0.055,

where t63(0.025) = 2.00. This formula yields 9 significant differences:

Labs 1–4 1–6 1–5 3–4 7–4 2–4 1–2 1–7 1–3 5–4
Diff 0.142 0.107 0.105 0.083 0.078 0.077 0.065 0.064 0.059 0.047

The multiple comparison problem: the above CI formula is aimed at a single difference, and may
produce false discoveries. We need a simultaneous CI formula for all 21 pairwise comparisons.

Bonferroni method

Think of k independent replications of a statistical test. The overall result is positive if we get at least
one positive result among these k tests. The overall significance level α is obtained, if each single test
is performed at significance level α/k:

indeed, assuming the null hypothesis is true, the number of positive results is X ∼ Bin(k, α
k
),

and due to independence P(X ≥ 1|H0) = 1− (1− α
k
)k ≈ α for small values of α.

Simultaneuos 100(1− α)% CI formula for
(
I
2

)
pairwise differences (µu − µv):
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(Ȳu. − Ȳv.)± tI(J−1)(
α

I(I − 1)
) · sp

√
2

J

Flexibility of the formula: works for different sample sizes as well after replacing
√

2
J

by
√

1
Ju

+ 1
Jv

.

Warnings:(
I
2

)
pairwise Anova comparisons are not independent as required by Bonferroni method,

Bonferroni method gives narrower intervals compared to the Tukey method.

Example (seven labs)
The Bonferroni simultaneuos 95% CI for (αu − αv)

(Ȳu. − Ȳv.)± t63( .0542 ) · sp√
5

= (Ȳu. − Ȳv.)± 0.086,

where t63(0.0012) = 3.17, detects 3 significant differences between labs (1,4), (1,5), (1,6).

Tukey method

If I independent samples (Yi1, . . . , YiJ) taken from N(µi, σ
2) have the same size J , then the sample

means Ȳi. ∼ N(µi,
σ2

J
) are independent. Consider the range of differences between (Ȳi. − µi):

R(I; J) = max{Ȳ1. − µ1, . . . , ȲI. − µI} −min{Ȳ1. − µ1, . . . , ȲI. − µI}.

Then we get
R(I; J)

sp/
√
J
∼ SR(I, I(J − 1)),

where the so-called studentized range distribution SR(k, df) has two parameters: the number of sam-
ples k, and the number of degrees of freedom used in the variance estimate s2p.

Tukey’s 95% simultaneuos CI = (Ȳu. − Ȳv.)± qI,I(J−1)(0.05) · sp√
J

Example (seven labs)
Using q7,60(0.05) = 4.31 from the SR-distribution table, we find four significant pairwise differences:
(1,4), (1,5), (1,6), (3,4), since (Ȳu. − Ȳv.)± q7,63(0.05) · 0.061√

10
= (Ȳu. − Ȳv.)± 0.083.

Kruskal-Wallis test

A nonparametric test, without assuming normality, for
H0: all observations are equal in distribution, no treatment effects.

Extending the idea of the rank-sum test, consider the pooled sample of size N = IJ . Let Rij be the

pooled ranks of the sample values Yij, so that
∑

i

∑
j Rij = N(N+1)

2
and R̄.. = N+1

2
is the mean rank.

Kruskal-Wallis test statistic K = 12J
N(N+1)

∑I
i=1(R̄i. − N+1

2
)2
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Reject H0 for large K using the null distribution table. For I = 3, J ≥ 5 or I ≥ 4, J ≥ 4, use the
approximate null distribution K

a∼ χ2
I−1.

Example (seven labs)
In the table below the actual measurements are replaced by their ranks 1 ÷ 70. With the observed
test statistic K = 28.17 and df = 6, using χ2

5-distribution table we get a P-value ≈ 0.0001.

Labs 1 2 3 4 5 6 7
70 4 35 6 46 48 38
63 3 45 7 21 5 50
53 65 40 13 47 22 52
64 69 41 20 8 28 58
59 66 57 16 14 37 68
54 39 32 26 42 2 1
43 44 51 17 9 31 15
61 56 25 11 10 34 23
67 24 29 27 33 49 60
55 19 30 12 36 18 62

Means 58.9 38.9 38.5 15.5 26.6 27.4 42.7

2 Two-way layout

Suppose the data values are influenced by two main factors and a noise:
Yijk = µ+ αi + βj + δij + εijk, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K,
grand mean + main A-effect +main B-effect + interaction + noise.

Factor A has I levels, factor B has J levels, and we have K observations for each combination (i, j).

Normal theory model

Key assumption: all noise components εijk ∼ N(0, σ2) are independent and have the same variance.
Parameter constraints and numbers of degrees of freedom

dfA = I − 1, because
∑

i αi = 0,
dfB = J − 1, because

∑
j βj = 0,

dfAB = IJ − I − J + 1 = (I − 1)(J − 1), because
∑

i δij = 0,
∑

j δij = 0.

Maximum likelihood estimates: µ̂ = Ȳ..., α̂i = Ȳi.. − Ȳ..., β̂j = Ȳ.j. − Ȳ...,
δ̂ij = Ȳij. − Ȳ... − α̂i − β̂j = Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...,

and the residuals ε̂ijk = Yij. − Ȳijk.

Example (iron retention)
Raw data Xijk is the percentage of iron retained in mice. Factor A: I = 2 iron forms, factor B: J = 3
dosage levels, K = 18 observations for each (iron form, dosage level) combination. From the graphs
we see that the raw data is not normally distributed.
However, the transformed data Yijk = ln(Xijk) produce more satisfactory graphs. The sample means
and maximum likelihood estimates for the transformed data
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(Ȳij.) =

(
1.16 1.90 2.28
1.68 2.09 2.40

)
two rows produce two profiles: not parallel - possible interaction,

Ȳ... = 1.92, α̂1 = −0.14, α̂2 = 0.14,

β̂1 = −0.50, β̂2 = 0.08, β̂3 = 0.42, (δ̂ij) =

(
−0.12 0.04 0.08

0.12 −0.04 −0.08

)
Sums of squares

SST =
∑

i

∑
j

∑
k(Yijk − Ȳ...)2 = SSA + SSB + SSAB + SSE, dfT = IJK − 1

SSA = JK
∑

i α̂
2, dfA = I − 1, MSA = SSA

dfA
, E(MSA) = σ2 + JK

I−1
∑

i α
2
i

SSB = IK
∑

j β̂
2, dfB = J − 1, MSB = SSB

dfB
, E(MSB) = σ2 + IK

J−1
∑

j β
2
j

SSAB = K
∑

i

∑
j δ

2
ij, dfAB = (I − 1)(J − 1), MSAB = SSAB

dfAB
, E(MSAB) = σ2 + K

(I−1)(J−1)
∑

i

∑
j δ

2
ij

SSE =
∑

i

∑
j

∑
k(Yijk − Ȳij.)2, dfE = IJ(K − 1), MSE = SSE

dfE
, E(MSE) = σ2

Pooled sample variance s2p = MSE is an unbiased estimate of σ2.

Three F -tests

Null hypothesis No-effect property Test statistics and null distribution

HA: α1 = . . . = αI = 0 E(MSA) = σ2 FA = MSA
MSE
∼ FdfA,dfE

HB: β1 = . . . = βJ = 0 E(MSB) = σ2 FB = MSB
MSE
∼ FdfB,dfE

HAB: all δij = 0 E(MSAB) = σ2 FAB = MSAB

MSE
∼ FdfAB,dfE

Reject null hypothesis for large values of the respective test statistic F .
Inspect normal probability plot for the residuals ε̂ijk.

Example (iron retention)
Two-way Anova table for the transformed iron retention data. Dosage effect was expected from the
beginning. Interaction is not significant.

Source df SS MS F P
Iron form 1 2.074 2.074 5.99 0.017
Dosage 2 15.588 7.794 22.53 0.000
Interaction 2 0.810 0.405 1.17 0.315
Error 102 35.296 0.346
Total 107 53.768

Significant effect due to iron form. Estimated log scale difference α̂2 − α̂1 = Ȳ2.. − Ȳ1.. = 0.28 yields
the multiplicative effect of e0.28 = 1.32 on a linear scale.

3 Randomized block design

Blocking is used to remove the effects of a few of the most important nuisance variables. Randomization
is then used to reduce the contaminating effects of the remaining nuisance variables.

Block what you can, randomize what you cannot.
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Experimental design: randomly assign I treatments within each of J blocks.
Test the null hypothesis of no treatment effects using the two-way layout Anova.
The block effect is anticipated and is not of major interest. Examples:

Block Treatments Observation
A homogeneous plot of land I fertilizers each applied to The yield on the
divided into I subplots a randomly chosen subplot subplot (i, j)
A four-wheel car 4 types of tires tested on the same car tire’s life-length
A litter of I animals I diets randomly assigned to I sinlings the weight gain

Additive model

If K = 1, then we cannot estimate interaction. This leads to the additive model without interaction
Yij = µ+ αi + βj + εij. Maximum likelihood estimates

µ̂ = Ȳ.., α̂i = Ȳi. − Ȳ.., β̂i = Ȳ.j − Ȳ.., ε̂ij = Yij − Ȳ.. − α̂i − β̂i = Yij − Ȳi. − Ȳ.j + Ȳ..
Sums of squares

SST =
∑

i

∑
j(Ȳij − Ȳ..)2 = SSA + SSB + SSE, dfT = IJ − 1

SSA = J
∑

i α̂
2
i , dfA = I − 1, MSA = SSA

dfA
FA = MSA

MSE
∼ FdfA,dfE

SSB = I
∑

j β̂
2
j , dfB = J − 1 MSB = SSB

dfB
FB = MSB

MSE
∼ FdfB,dfE

SSE =
∑

i

∑
j ε̂

2
ij, dfE = (I − 1)(J − 1) MSE = SSE

dfE
E(MSE) = σ2

Example (itching)
Data: the duration of the itching in seconds Yij, with K = 1 observation per cell,

I = 7 treatments to relieve itching applied to J = 10 male volunteers aged 20-30.

Subject No Drug Placebo Papaverine Morphine Aminophylline Pentabarbital Tripelennamine

BG 174 263 105 199 141 108 141
JF 224 213 103 143 168 341 184
BS 260 231 145 113 78 159 125
SI 225 291 103 225 164 135 227
BW 165 168 144 176 127 239 194
TS 237 121 94 144 114 136 155
GM 191 137 35 87 96 140 121
SS 100 102 133 120 222 134 129
MU 115 89 83 100 165 185 79
OS 189 433 237 173 168 188 317

Boxplots indicate violations of the assumptions of normality and equal variance. Notice much bigger
variance for the placebo group.

Two-way Anova table

Source df SS MS F P
Drugs 6 53013 8835 2.85 0.018
Subjects 9 103280 11476 3.71 0.001
Error 54 167130 3096
Total 69 323422
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Tukey’s method of multiple comparison qI,(I−1)(J−1)(α) · sp√
J

= q7,54(0.05) ·
√

3096
10

= 75.8 reveals only

one significant difference: papaverine vs placebo with 208.4− 118.2 = 90.2 > 75.8.

Treatment 2 1 6 7 4 5 3
Mean 208.4 191.0 176.5 167.2 148.0 144.3 118.2

Friedman test

Nonparametric test, when εij are non-normal, to test H0: no treatment effects.

Ranking within j-th block: (R1j, . . . , RIj) = ranks of (Y1j, . . . , YIj) so that R1j + . . . + RIj = I(I+1)
2

,
implying 1

I
(R1j + . . .+RIj) = I+1

2
and R̄.. = I+1

2
.

Test statistic Q = 12J
I(I+1)

∑I
i=1(R̄i. − I+1

2
)2 has an approximate null distribution Q

a∼ χ2
I−1.

Since Q is a measure of agreement between J rankings, we reject H0 for large values of Q.

Example (itching)
From the values Rij and R̄i. below and I+1

2
= 4, we find the Friedman test statistic Q = 14.86. Using

the chi-square distribution table with df = 6 we obtain an approximate P-value to be 2.14%. We
reject the null hypothesis of no effect even in the non-parametric setting.

Subject No Drug Placebo Papaverine Morphine Aminophylline Pentabarbital Tripelennamine

BG 5 7 1 6 3.5 2 3.5
JF 6 5 1 2 3 7 4
BS 7 6 4 2 1 5 3
SI 6 7 1 4 3 2 5
BW 3 4 2 5 1 7 6
TS 7 3 1 5 2 4 6
GM 7 5 1 2 3 6 4
SS 1 2 5 3 7 6 4
MU 5 3 2 4 6 7 1
OS 4 7 5 2 1 3 6
R̄i. 5.10 4.90 2.30 3.50 3.05 4.90 4.25
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