Introduction to Bayesian inference

1 Bayesian approach

The main idea of the Baysian approach is to treat the population parameter θ as a random variable, where the source of randomness is the luck of knowledge. Two distributions of θ

prior distribution density $g(\theta)$ brings into the model the knowledge on θ before data is collected, posterior distribution $h(\theta|x)$ updates the knowledge on θ using the collected data x.

Bayes formula
$$h(\theta|x) = \frac{f(x|\theta)g(\theta)}{\phi(x)}$$
 Posterior \propto likelihood \times prior

Here \propto means proportional.

Marginal distribution of the data X has density $\phi(x) = \int f(x|\theta)g(\theta)d\theta$. For a given x, the constant $\phi(x)$ is the likelihood $f(x|\theta)$ of the data value x averaged over different values of θ using the prior distribution.

Uninformative prior: when we have no prior knowledge of θ , the prior distribution is often modelled by the uniform distribution. In the uniform case, since $g(\theta) \propto \text{constant}$, we have $h(\theta|x) \propto f(x|\theta)$ so that all the posterior knowledge comes from the likelihood function.

Example (IQ measurement)

A randomly chosen individual has an unknown true intelligence quotient value θ . Its prior distribution is $\theta \sim N(100, 225)$. This normal distribution describes the whole population with mean IQ of m = 100 and standard deviation v = 15.

Given a true personal value θ , the result of an IQ measurement has distribution $X \sim N(\theta, 100)$, with no systematic error and a random error $\sigma = 10$. Since

$$g(\theta) = \frac{1}{\sqrt{2\pi}v} e^{-\frac{(\theta - m)^2}{2v^2}}, \quad f(x|\theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x - \theta)^2}{2\sigma^2}},$$

and the posterior is proportional to $g(\theta)f(x|\theta)$, we find that $h(\theta|x)$ is proportional to

$$h(\theta|x) \propto \exp\left\{-\frac{(\theta-m)^2}{2v^2} - \frac{(x-\theta)^2}{2\sigma^2}\right\} \propto \exp\left\{-\frac{(\theta-\gamma m - (1-\gamma)x)^2}{2\gamma v^2}\right\},\,$$

where $\gamma=\frac{\sigma^2}{\sigma^2+v^2}$ is the so-called shrinkage factor. We conclude that the posterior distribution is normal $h(\theta|x)=\frac{1}{\sqrt{2\pi\gamma}v}e^{-\frac{(\theta-\gamma m-(1-\gamma)x)^2}{2\gamma v^2}}$ with mean $\gamma m+(1-\gamma)x$ and variance γv^2 .

Suppose that the observed IQ result is x = 130, then the posterior distribution becomes N(120.7, 69.2). We see that the prior expectation m = 100 has corrected the observed result x = 130 down to 120.7. The posterior variance 69.2 is smaller than that of the prior distribution 225 by the shrinkage factor $\gamma = 0.308$: the updated knowledge is less uncertain than the prior knowledge.

$\mathbf{2}$ Conjugate priors

Suppose we have two parametric families of probability distributions \mathcal{G} and \mathcal{H} .

 \mathcal{G} is called a family of conjugate priors to \mathcal{H} , if a \mathcal{G} -prior and a \mathcal{H} -likelihood give a \mathcal{G} -posterior.

Beta distribution Beta(a, b)

has density, mean, and variance

$$f(p) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} p^{a-1} (1-p)^{b-1}, \quad 0$$

Parameters a > 0, b > 0 determining the shape of the distribution are called pseudo-counts. Uniform distribution is obtained with a = b = 1.

Exercise: verify that for given a > 1 and b > 1, the maximum of density function f(p) is attained at

$$\hat{p} = \frac{a-1}{a+b-2}.$$

Dirichlet distribution $Dir(\alpha_1, ..., \alpha_r)$ has density $f(p_1, ..., p_r) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1)...\Gamma(\alpha_r)} p_1^{\alpha_1-1} ... p_r^{\alpha_r-1}$ with non-negative $p_1 + ... + p_r = 1$, positive pseudo-counts $\alpha_1, \ldots, \alpha_r, \alpha_0 = \alpha_1 + \ldots + \alpha_r$.

Dirichlet distribution is a multivariate extension of the beta distribution

marginal distributions $p_j \sim \text{Beta}(\alpha_j, \alpha_0 - \alpha_j), j = 1, \dots, r,$ negative covariances $\text{Cov}(p_1, p_2) = -\frac{\alpha_1 \alpha_2}{\alpha_0^2(\alpha_0 + 1)}.$

List of conjugate prior models

Data distribution	Prior	Posterior distribution	Comments
$(X_1,\ldots,X_n),X_i\sim N(\mu,\sigma^2)$	$\mu \sim N(m, v^2)$	$N(\gamma_n m + (1 - \gamma_n)\bar{x}; \gamma_n v^2)$	(1), (3), (4)
$X \sim \text{Bin}(n,p)$	$p \sim \text{Beta}(a, b)$	Beta(a+x,b+n-x)	(2), (3), (4)
$(X_1,\ldots,X_r) \sim \operatorname{Mn}(n;p_1,\ldots,p_r)$	$\operatorname{Dir}(\alpha_1,\ldots,\alpha_r)$	$D(\alpha_1 + x_1, \dots, \alpha_r + x_r)$	(2), (3), (4)
$X \sim \text{Pois}(\mu)$	$\mu \sim \Gamma(\alpha, \lambda)$	$\Gamma(\alpha+x,\lambda+1)$	(3), (4)
$X \sim \text{Exp}(\rho)$	$\rho \sim \Gamma(\alpha, \lambda)$	$\Gamma(\alpha+1,\lambda+x)$	(3), (4)

- (1) the shrinkage factor for n measurements is $\gamma_n = \frac{\sigma^2}{\sigma^2 + nv^2}$
- (2) the update rule: posterior pseudo-counts = prior pseudo-counts plus sample counts
- (3) posterior variance is always smaller than the prior variance
- (4) the contribution of the prior distribution becomes smaller for larger samples

Example (beta-binomial model)

Consider the probability p of a thumbtack landing on its base. Uninformative prior for p: the uniform over [0,1] distribution. Data: the number of base landings $X \sim \text{Bin}(n,p)$ for n tossings of the thumbtack.

Experiment 1: $n_1 = 10$ tosses, counts $x_1 = 2$, $n_1 - x_1 = 8$, prior distribution Beta(1,1) with mean $\mu_0 = 0.5$ and standard deviation $\sigma_0 = 0.29$, posterior distribution Beta(3, 9) with mean $\hat{p} = \frac{3}{12} = 0.25$ and standard deviation $\sigma_1 = 0.12$.

Experiment 2: $n_2 = 40$ tosses, counts $x_2 = 9$, $n_2 - x_2 = 31$, prior distribution Beta(3, 9), posterior distribution Beta(12, 40) with mean $\hat{p} = \frac{12}{52} = 0.23$ and standard deviation $\sigma_2 = 0.06$.

3 Bayesian estimation

In the language of decision theory we are searching for an optimal action

{assign value a to unknown parameter θ }.

The optimal a depends on the choice of the loss function $l(\theta, a)$. Bayes action minimises posterior risk

$$R(a|x) = \int l(\theta, a)h(\theta|x)d\theta$$
 or $R(a|x) = \sum_{\theta} l(\theta, a)h(\theta|x)$.

We consider two loss functions leading to two Bayesian estimators.

Zero-one loss function:
$$l(\theta, a) = 1_{\{\theta \neq a\}}$$
 Squared error loss: $l(\theta, a) = (\theta - a)^2$

MAP (maximum a posteriori probability)

Using the zero-one loss function we find that the posterior risk is the probability of misclassification $R(a|x) = \sum_{\theta \neq a} h(\theta|x) = 1 - h(a|x)$.

To minimise the risk we have to maximise the posterior probability: define $\hat{\theta}_{map}$ as the value of θ that maximises $h(\theta|x)$. With the uninformative prior, $\hat{\theta}_{map} = \hat{\theta}_{mle}$.

PME (posterior mean estimate)

Using the squared error loss function we find that the posterior risk is a sum of two components $R(a|x) = E((\theta - a)^2|x) = Var(\theta|x) + [E(\theta|x) - a]^2$.

We minimise the posterior risk by putting $\hat{\theta}_{pme} = E(\theta|x)$.

Example (loaded die experiment)

A possibly loaded die is rolled 18 times, 211 453 324 142 343 515. Parameter of interest $\theta = (p_1, \dots, p_6)$. Take the uninformative prior distribution Dir(1,1,1,1,1,1) and compare two Bayesian estimates

$$\hat{\theta}_{\text{map}} = \hat{\theta}_{\text{mle}} = (\frac{4}{18}, \frac{3}{18}, \frac{4}{18}, \frac{4}{18}, \frac{3}{18}, 0)$$
 is based only on the sample counts,

$$\hat{\theta}_{\text{pme}} = (\frac{5}{24}, \frac{4}{24}, \frac{5}{24}, \frac{5}{24}, \frac{4}{24}, \frac{1}{24})$$
 uses pseudo-counts.

Observe that the maximum likelihood estimate assigns value zero to p_6 , thereby excluding sixes in future observations.

4 Credibility interval

Confidence interval formulas: θ is an unknown constant and a the confidence interval is random $P(\theta_0(X) < \theta < \theta_1(X)) = 1 - \alpha$.

A credibility interval (CrI) is treated as a nonrandom interval while θ is a random variable. A CrI is computed from the posterior distribution $P(\theta_0(x) < \theta < \theta_1(x)) = 1 - \alpha$.

Example (IQ measurement)

Given n = 1, $\bar{X} \sim N(\mu; 100)$ a 95% CI for μ is $130 \pm 1.96 \cdot 10 = 130 \pm 19.6$.

Posterior distribution of μ is N(120.7; 69.2)

95% CrI for μ is $120.7 \pm 1.96 \cdot \sqrt{69.2} = 120.7 \pm 16.3$.

5 Bayesian hypotheses testing

We consider the case of two simple hypotheses. Choose between H_0 : $\theta = \theta_0$ and H_1 : $\theta = \theta_1$ using not only the likelihoods of the data $f(x|\theta_0)$, $f(x|\theta_1)$ but also prior probabilities $P(H_0) = \pi_0$, $P(H_1) = \pi_1$. The rejection region \mathcal{R} for the data X is found in terms of a cost function:

For a given set \mathcal{R} , the average cost is the weighted mean of two values c_0 and c_1

$$c_0 \pi_0 P(X \in \mathcal{R} | \theta_0) + c_1 \pi_1 P(X \notin \mathcal{R} | \theta_1) = c_1 \pi_1 + \int_{\mathcal{R}} \left(c_0 \pi_0 f(x | \theta_0) - c_1 \pi_1 f(x | \theta_1) \right) dx.$$

It follows that the rejection region minimising the average cost is $\mathcal{R} = \{x : c_0\pi_0 f(x|\theta_0) < c_1\pi_1 f(x|\theta_1)\}$. The optimal decision rule:

reject H_0 for small values of the likelihood ratio $\frac{f(x|\theta_0)}{f(x|\theta_1)} < \frac{c_1\pi_1}{c_0\pi_0}$ or in other terms, for small posterior odds $\frac{h(\theta_0|x)}{h(\theta_1|x)} < \frac{c_1}{c_0}$.

Example (rape - a case study)

The defendant A, age 37, local, is charged with rape.

The jury have to choose between two alternative hypotheses H_0 : A is innocent, H_1 : A is guilty.

Uninformative prior probability $\pi_1 = \frac{1}{200,000}$. Prior to the evidence is taken into account any of 200 000 males in the appropriate group could be guilty.

Three pieces of evidence which are conditionally independent

 E_1 : strong DNA match, $P(E_1|H_0) = \frac{1}{200,000,000}$, $P(E_1|H_1)=1$,

 E_2 : defendant A is not recognised by the victim,

 E_3 : an alibi supported by the girlfriend.

Assumptions

$$P(E_2|H_1) = 0.1, P(E_2|H_0) = 0.9,$$

 $P(E_3|H_1) = 0.25, P(E_3|H_0) = 0.5.$

Posterior odds ratio

$$\frac{\Pr(H_0|E)}{\Pr(H_1|E)} = \frac{\pi_0 \Pr(E|H_0)}{\pi_1 \Pr(E|H_1)} = \frac{\pi_0 \Pr(E_1|H_0) \Pr(E_2|H_0) \Pr(E_3|H_0)}{\pi_1 \Pr(E_1|H_1) \Pr(E_2|H_1) \Pr(E_3|H_1)} = 0.018.$$

Reject
$$H_0$$
 if $\frac{c_1}{c_0} = \frac{\text{cost for unpunished crime}}{\text{cost for punishing an innocent}} > 0.018$.

Prosecutor's fallacy: $P(H_0|E) = P(E|H_0)$, which is only true if $P(E) = \pi_0$. Example: $\pi_0 = \pi_1 = 1/2$, $P(E|H_0) \approx 0$, $P(E|H_1) \approx 1$.

