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Introduction to Bayesian inference

1 Bayesian approach

The main idea of the Baysian approach is to treat the population parameter ¢ as a random variable,
where the source of randomness is the luck of knowledge. Two distributions of #
prior distribution density ¢g(#) brings into the model the knowledge on # before data is collected,
posterior distribution h(6|x) updates the knowledge on 6 using the collected data x.

Bayes formula h(0|x) = % ’Posterior  likelihood x prior

Here oc means proportional.

Marginal distribution of the data X has density ¢(z) = [ f(x]0)g(0)df. For a given x, the constant
¢(x) is the likelihood f(z]0) of the data value x averaged over different values of 6 using the prior
distribution.

Uninformative prior: when we have no prior knowledge of @, the prior distribution is often modelled
by the uniform distribution. In the uniform case, since g(#) o constant, we have h(f|x) x f(z|0) so
that all the posterior knowledge comes from the likelihood function.

Example (IQ measurement)
A randomly chosen individual has an unknown true intelligence quotient value 6. Its prior distribution
is 6 ~ N(100,225). This normal distribution describes the whole population with mean IQ of m = 100
and standard deviation v = 15.
Given a true personal value 6, the result of an 1QQ measurement has distribution X ~ N(, 100), with
no systematic error and a random error o = 10. Since
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and the posterior is proportional to g(6)f(z|0), we find that h(|z) is proportional to

h(lz) o exp {_(9 ;UT)Q B (552—029)2} o exp {_(9 - ’Ym;vg - 7)95)2} ’

where 7 = 7 is the so-called shrinkage factor. We conclude that the posterior distribution is
_(0—ym—(1—y)a)?
normal h(f|z) = \/2%06 202 with mean ym + (1 — v)x and variance yv?.

Suppose that the observed 1Q result is 2 = 130, then the posterior distribution becomes N(120.7,69.2).
We see that the prior expectation m = 100 has corrected the observed result z = 130 down to 120.7.
The posterior variance 69.2 is smaller than that of the prior distribution 225 by the shrinkage factor
~v = 0.308: the updated knowledge is less uncertain than the prior knowledge.



2 Conjugate priors

Suppose we have two parametric families of probability distributions G and H.

]g is called a family of conjugate priors to H, if a G-prior and a H-likelihood give a G-posterior.

Beta distribution Beta(a, b)
has density, mean, and variance
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Parameters a > 0, b > 0 determining the shape of the distribution are called pseudo-counts. Uniform

distribution is obtained with a =b = 1.

Exercise: verify that for given @ > 1 and b > 1, the maximum of density function f(p) is attained at

. a—1
P=avo—2
Dirichlet distribution Dir(aq, ..., «®,)
has density f(p1, ... ,pr):%p?l_l ...p>~1 with non-negative p; + ...+ p, = 1,
positive pseudo-counts aq, ..., q,, ag = a1 + ... + Q.
Dirichlet distribution is a multivariate extension of the beta distribution
marginal distributions p; ~ Beta(aj, a0 — o), 7 =1,...,r,
negative covariances Cov(py, pa) = —%.
List of conjugate prior models
Data distribution Prior Posterior distribution Comments
(X, - Xa), Xi ~ N(g, 02) p ~ N(m, Uz) N(vam + (1 — )7 '7n1)2) (1), (3), (4)
X ~ Bin(n, p) p ~ Beta(a,b) | Beta(a+z,b+n — ) (2), (3), (4)
(X1,..., X)) ~Mn(n;p1,...,p.) | Dir(aq,...,a.) | D(ag +21,..., 00 + ;) (2), (3), (4)
X ~ Pois(p) p~T(a,\) MNa+z,A+1) (3), (4)
X ~ Exp(p) p~T(a,\) Ia+1,A+2) (3), (4)
1) the shrinkage factor for n measurements is v, = #2””2

(1)
(2) the update rule: posterior pseudo-counts = prior pseudo-counts plus sample counts
(3) posterior variance is always smaller than the prior variance

(4) the contribution of the prior distribution becomes smaller for larger samples
Example (beta-binomial model)

Consider the probability p of a thumbtack landing on its base. Uninformative prior for p: the uni-
form over [0,1] distribution. Data: the number of base landings X ~ Bin(n,p) for n tossings of the
thumbtack.

Experiment 1: n; = 10 tosses, counts x; = 2, ny — x; = 8, prior distribution Beta(1, 1) with mean
po = 0,5 and standard deviation oy = 0.29, posterior distribution Beta(3, 9) with mean p = % =0.25
and standard deviation o; = 0.12.

Experiment 2: ny = 40 tosses, counts xo = 9, ny — xo = 31, prior distribution Beta(3, 9), posterior
distribution Beta(12, 40) with mean p = % = 0.23 and standard deviation oo = 0.06.



3 Bayesian estimation

In the language of decision theory we are searching for an optimal action
{assign value a to unknown parameter 6}.
The optimal a depends on the choice of the loss function (6, a). Bayes action minimises posterior risk

R(a|z) = /l(@,a)h(9|x)d€ or R(alzx) = Zl(@,a)h(ﬁ]:c).

We consider two loss functions leading to two Bayesian estimators.

Zero-one loss function: (0,a) = 1gpzq} | |Squared error loss: 1(6,a) = (6 — a)?

MAP (maximum a posteriori probability)

Using the zero-one loss function we find that the posterior risk is the probability of misclassification
R(alz) =24, MOlz) =1 = h(alz).

To minimise the risk we have to maximise the posterior probability: define émap as the value of # that

maximises h(6|z). With the uninformative prior, émap = Opnte.

PME (posterior mean estimate)

Using the squared error loss function we find that the posterior risk is a sum of two components
R(a|z) = E((0 — a)?|z) = Var(0|z) + [E(f|z) — a]>.

We minimise the posterior risk by putting 9pme = E(f]z).

Example (loaded die experiment)
A possibly loaded die is rolled 18 times, 211 453 324 142 343 515. Parameter of interest 6 = (py, ..., ps)-

Take the uninformative prior distribution Dir(1,1,1,1,1,1) and compare two Bayesian estimates
Omap = Omie = (lig, 1%, 14—8, %, %, 0) is based only on the sample counts,

Oome = (55> 54> 51 54 54> 51) Uses pseudo-counts.

Observe that the maximum likelihood estimate assigns value zero to pg, thereby excluding sixes in
future observations.

~

4 Credibility interval

Confidence interval formulas: ¢ is an unknown constant and a the confidence interval is random
P(0y(X)<0<6,(X))=1-q.

A credibility interval (Crl) is treated as a nonrandom interval while € is a random variable. A Crl is

computed from the posterior distribution P(6y(x) < 6 < 6,(z)) =1 — «.

Example (IQ measurement)
Given n =1, X ~ N(u;100) a 95% CI for p is 130 £ 1.96 - 10 = 130 = 19.6.
Posterior distribution of x is N(120.7;69.2)

95% Crl for p is 120.7 £ 1.96 - v/69.2 = 120.7 £ 16.3.



5 Bayesian hypotheses testing

We consider the case of two simple hypotheses. Choose between Hy: 8 = 6y and H;: 8 = 6; using not
only the likelihoods of the data f(z|0y), f(x|6;) but also prior probabilities P(Hy) = mo, P(Hy) = .
The rejection region R for the data X is found in terms of a cost function:

‘ Decision ‘ Hj true ‘ H; true
Cost values X ¢ R | Accept Hy 0 G

X € R | Accept H; Co 0

For a given set R, the average cost is the weighted mean of two values ¢y and ¢;

C()T('()P(X S R|90) + C17T1P(X ¢ R|81> =Ccm + /
R

<C()7T0f($|90) — clmf(xwl))dx.

It follows that the rejection region minimising the average cost is R = {x : como f(x|0p) < crmi f(x]61)}.
The optimal decision rule:

reject Hy for small values of the likelihood ratio % < ;1)—23,
or in other terms, for small posterior odds % < g—;

Example (rape - a case study)
The defendant A, age 37, local, is charged with rape.
The jury have to choose between two alternative hypotheses Hy: A is innocent, Hq: A is guilty.

Uninformative prior probability m = m. Prior to the evidence is taken into account any of 200
000 males in the appropriate group could be guilty.

Three pieces of evidence which are conditionally independent
E;: strong DNA match, P(E,|Hy) = m, P(E1|Hy)=1,
E5: defendant A is not recognised by the victim,

Ej3: an alibi supported by the girlfriend.

BETTER THAT TEN

Assumptions ouwty peisons sscart N
P(EQlHl) - 01, P(E2‘H0) = 097 INNOGENT SUFFER A
P(Engl) — 025, P(E3|H0) =0.5. — Sir Witzant Bracistons (1765

Posterior odds ratio

P(Ho|E) _ moP(E|Ho) _ moP(Fy|Ho)P(Fa|Ho)P(Es|Ho) _ () 018
P(HL|E) — mP(E|Hy) — mP(BEL|H1)P(E2|H1)P(E3|Hy) YO

Reject HO if a _ cost for uypl}nished.crime > 0.018.
co cost for punishing an innocent

Prosecutor’s fallacy: P(Hy|E) = P(FE|Hy), which is only true if P(E) = .
Example: mp = m = 1/2, P(E|Hy) = 0, P(E|H;) ~ 1.




