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Chapter 7. Survey sampling

1 Randomisation

Population is a set of N elements characterised by values {x1, x2, . . . , xN}. We are interested in the
population distribution of x-values. In many situations enumeration is expensive and even impossible.
Solution: collect a random sample of n random observations (X1, . . . , Xn).

If we pick at random one element from the population, then its
x-value X is a random variable whose distribution is the population distribution.

Types of data:
quantitative (continuous or discrete) and categorical.

General population parameters for quantitative data
population mean µ = E(X),

population standard deviation σ =
√

Var(X).

Important special case of categorical data is dichotomous data. Example: xi ∈ {male, female}. After
converting to a quantitative form by xi ∈ {0, 1}, the population mean turns into

population proportion p = P (X = 1).

Randomisation is a guard against investigator’s biases even unconscious.

2 Two basic ways of random sampling

Sampling without replacement produces so called Simple Random Sample:
negative dependence between observations σij := Cov(Xi, Xj) = − σ2

N−1
, i 6= j,

indeed, since X1 + . . .+XN is a constant,
we get Var(X1 + . . .+XN) = 0, and Nσ2 +N(N − 1)σ12 = 0.

Sampling with replacement produces an IID sample:
Independent Identically Distributed observations (X1, . . . , Xn),
easier to analyse, good approximation of the simple random sample if n/N is small.

Example. We collect data on students heights in cm and gender. Questions: is this a random sample,
estimate the mean height of the Swedish population, what is the error of the estimate?
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3 Point estimation

To estimate a population parameter θ we need a sensible point estimator θ̂ = θ̂(X1, . . . , Xn).
Sampling distribution of θ̂ around unknown θ: different values θ̂ observed for different samples. The
sampling distribution has mean µθ̂ = E(θ̂) and variance σ2

θ̂
= E(θ̂ − µθ̂)2.

The quality of the the point estimator is given by the mean square error
E(θ̂ − θ)2 = E(θ̂ − µθ̂)2 + 2E(θ̂ − µθ̂)(µθ̂ − θ) + (µθ̂ − θ)2 = σ2

θ̂
+ (µθ̂ − θ)2.

The mean square error has two components
µθ̂ − θ is the size of systematic error, bias, lack of accuracy;
σθ̂ is the size of random error, lack of precision.

Desired properties of point estimates:
θ̂ is an unbiased estimate of θ, if µθ̂ = θ,

θ̂ is consistent, if the mean square error E(θ̂ − θ)2 → 0 as n→∞.

The standard error for an estimator θ̂ is its standard deviation σθ̂ =
√

Var(θ̂).

The estimated standard error sθ̂ is an estimator of σθ̂.

4 Sample mean and variance

Two most basic summary statistics: the sample mean and sample variance

X̄ =
X1 + . . .+Xn

n
, s2 =

1

n− 1

∑
(Xi − X̄)2.

An alternative formula s2 = n
n−1

(X2 − X̄2), where X2 = 1
n
(X2

1 + . . .+X2
n).

Consider an IID sample. The sample mean X̄ and sample variance s2 are unbiased and consistent
estimators for the population mean and variance respectively

E(X̄) = µ, Var(X̄) =
σ2

n
, E(s2) = σ2, Var(s2) =

σ4

n

(
E(Y 4)− n− 3

n− 1

)
, Y =

X − µ
σ

.

The sample standard deviation s is a biased estimate of the population standard deviation σ:

E(s) =
√
σ2 − Var(s).

In the dichotomous case, when X takes values 1 or 0 with probabilities p and q = 1 − p, we have
µ = p and σ2 = pq. Then the sample proportion p̂ = X̄ is an unbiased and consistent estimate of p.
In this case s2 = n

n−1
p̂q̂.

Estimated standard errors for the sample mean and proportion sX̄ = s√
n
, sp̂ =

√
p̂q̂
n−1

5 Finite population correction

Now consider simple random sampling, when there is dependence between observations. In this
case the sample mean X̄ is again an unbiased and consistent estimator for the population mean.
However, the sample variance s2 is a biased estimator of σ2, since E(s2) = σ2 N

N−1
, where N is the

finite population size.

We have Var(X̄) = σ2

n

(
1 − n−1

N−1

)
, so that the formulas for the estimated standard errors of X̄ and p̂

for the simple random sample take new form sX̄ = s√
n

√
1− n

N
, sp̂ =

√
p̂q̂
n−1

√
1− n

N
.
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6 Confidence interval, CI

By the Central Limit Theorem, the sample mean distribution is approximately normal X̄
a∼ N(µ,σ

2

n
)

P(X̄ − zsX̄ < µ < X̄ + zsX̄) = P(−z < X̄−µ
sX̄

< z) ≈ 2(1− Φ(z)).

Approximate 100(1–α)% two-sided CI for µ and p: X̄ ± zα/2 · sX̄ and p̂± zα/2 · sp̂
100(1–α)% 68% 80% 90% 95% 99% 99.7%
zα/2 1.00 1.28 1.64 1.96 2.58 3.00

The higher is confidence level the wider is the CI, the larger is sample the narrower is the CI.
95% CI is a random interval: out of 100 intervals computed for 100 samples only
Z ∼ Bin(100,0.95) ≈ N(95,(2.18)2) intervals will cover the true value.

7 Stratified random sampling

Population consists of L strata with known L strata fractions W1 + . . .+WL = 1 and
unknown strata means µl and standard deviations σl.

Population mean µ = W1µ1 + . . .+WLµL,
population variance σ2 = σ2 +

∑
Wl(µl − µ)2,

average variance σ2 = W1σ
2
1 + . . .+WLσ

2
L,

average standard deviation σ̄ = W1σ1 + . . .+WLσL.
Example: for students heights, we have L = 2 and W1 = W2 = 0.5.

Stratified random sampling:
take L independent samples from each stratum with sample means X̄1, . . . , X̄L.

Pooled sample mean X̄p = 1
n
(n1X̄1 + . . .+ nLX̄L), pooled sample size n = n1 + . . .+ nL.

E(X̄p) = n1

n
µ1 + . . .+ nL

n
µL = µ+

∑
(nl

n
−Wl)µl bias in the non-proportional allocation.

Stratified sample mean: X̄s = W1X̄1 + . . .+WLX̄L

E(X̄s) = W1E(X̄1) + . . .+WLE(X̄L) = µ no bias.
The variance of X̄s and its estimate

σ2
X̄s

= W 2
1 σ

2
X̄1

+ . . .+W 2
Lσ

2
X̄L

, s2
X̄s

= W 2
1 s

2
X̄1

+ . . .+W 2
Ls

2
X̄L

=
W 2

1 s
2
1

n1
+ . . .+

W 2
Ls

2
L

nL
.

Approximate CI for µ: X̄s ± zα/2 · sX̄s

Question: how shall we allocate n = n1 + . . .+ nL observations among different strata?

Optimal allocation: nl = nWlσl
σ̄

, Var(X̄so) = 1
n
· σ̄2

Optimal allocation (n1, . . . , nL) minimises the error size: σ2
X̄s

=
W 2

1 σ
2
1

n1
+ . . .+

W 2
Lσ

2
L

nL
→ min.

Proportional allocation: nl = nWl, Var(X̄sp) = 1
n
· σ2

Compare three unbiased estimates of the population mean Var(X̄so) ≤ Var(X̄sp) ≤ Var(X̄)
variability in σl across strata makes optimal allocation more effective than proportional

Var(X̄sp)− Var(X̄so) = 1
n
(σ2 − σ̄2)= 1

n

∑
Wl(σl − σ̄)2,

variability in µl across strata makes proportional allocation more effective than IID sample

Var(X̄)− Var(X̄sp) = 1
n
(σ2 − σ2) = 1

n

∑
Wl(µl − µ)2.
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