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Abstract

This collection of solved exercises is produced for the undergraduate course on course MVE155
”Statistical Inference”. These are the end-of-chapter exercises form the textbook: John Rice, Math-
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1 Survey sampling

Problem 7.1

Consider a population consisting of five values

1, 2, 2, 4, 8.

Find the population mean and variance. Calculate the sampling distribution of the mean of a sample of
size 2 by generating all possible such samples. From them, find the mean and variance of the sampling
distribution, and compare the results to those obtained by the formulas from Section 1 of the Lecture
Notes.

Solution 7.1

Here we consider sampling with replacement. For an answer in the case of sampling without replacement
consult the book page A36.

Population distribution

Values 1 2 4 8
Probab. 1

5
2
5

1
5

1
5

Population mean and variance are computed in three steps

µ = 1 · 1
5 + 2 · 2

5 + 4 · 1
5 + 8 · 1

5 = 3.4

E(X2) = 1 · 1
5 + 4 · 2

5 + 16 · 1
5 + 64 · 1

5 = 17.8

σ2 = 17.8− µ2 = 6.24.

The list of X̄ values (and their probabilities in brackets) for n = 2 observations taken with replacement:

1 2 4 8 Total prob.
1 1.0 (1/25) 1.5 (2/25) 2.5 (1/25) 4.5 (1/25) 1/5
2 1.5 (2/25) 2.0 (4/25) 3.0 (2/25) 5.0 (2/25) 2/5
4 2.5 (1/25) 3.0 (2/25) 4.0 (1/25) 6.0 (1/25) 1/5
8 4.5 (1/25) 5.0 (2/25) 6.0 (1/25) 8.0 (1/25) 1/5

Tot. prob. 1/5 2/5 1/5 1/5 1

This yields the followig sampling distribution of X̄:

Values 1 1.5 2 2.5 3 4 4.5 5 6 8
Probab. 1

25
4
25

4
25

2
25

4
25

1
25

2
25

4
25

2
25

1
25

Using the same three steps we find

E(X̄) = 1 · 1
25 + 1.5 · 4

25 + 2 · 4
25 + 2.5 · 2

25 + 3 · 4
25 + 4 · 1

25 + 4.5 · 2
25 + 5 · 4

25 + 6 · 2
25 + 8 · 1

25 = 3.4

E(X̄2) = 1
25 + (1.5)2 · 4

25 + 4 · 4
25 + (2.5)2 · 2

25 + 9 · 4
25 + 16 · 1

25 + (4.5)2 · 2
25 + 25 · 4

25 + 36 · 2
25 + 64 · 1

25 = 14.68

Var(X̄) = 14.68− (3.4)2 = 3.12.

We see that indeed,

E(X̄) = µ, Var(X̄) = 3.12 =
σ2

n
.

Problem 7.9

In a simple random sample of 1500 voters, 55% said they planned to vote for a particular proposition,
and 45% said they planned to vote against it. The estimated margin of victory for the proposition is
thus 10%. What is the standard error of this estimated margin? What is an approximate 95% confidence
interval for the margin?

2



Solution 7.9

Dichotomous data

n = 1500, p̂ = 0.55, 1− p̂ = 0.45, sp̂ =
√

p̂(1−p̂)
n−1 =

√
0.55×0.45

1499 = 0.013.

Population margin of victory
v = p− (1− p) = 2p− 1.

Estimated margin of victory
v̂ = p̂− (1− p̂) = 2p̂− 1 = 0.1.

(a) Since
Var(V̂ ) = Var(2P̂ ),

the standard error of v̂ is twice the standard error of p̂

sv̂ = 2sp̂ = 0.026.

(b) Approximate 95% confidence interval for v is

Iv = v̂ ± 1.96sv̂ = 0.10± 0.05.

Problem 7.19

This problem introduces the concept of a one-sided confidence interval. Using the central limit theorem,
how should the constant k1 be chosen so that the interval

(−∞, x̄+ k1sx̄)

is a 90% confidence interval for µ? How should k2 be chosen so that

(x̄− k2sx̄,∞)

is a 95% confidence interval for µ?

Solution 7.19

Normal approximation: X̄−µ
SX̄

is asymptotically N(0,1)-distributed. From

0.90 ≈ P( X̄−µSX̄
> −1.28) = P(−∞ < µ < X̄ + 1.28SX̄),

0.95 ≈ P( X̄−µSX̄
< 1.645) = P(X̄ − 1.645SX̄ < µ <∞).

we find
k1 = 1.28, k2 = 1.645.

Problem 7.28

Warner (1965) introduced the method of randomised response to deal with surveys asking sensitive
questions. Suppose we want to estimate the proportion q of illegal drug users among prison inmates. We
are interested in the population as a whole - not in punishing particular individuals. Randomly chosen
n inmates have responded yes/no to a randomised statement (after rolling a die):

“I use heroin” (with probability 5/6)
“I do not use heroin” (with probability 1/6).

Suggest a probability model for this experiment, find a method of moments estimate for q and its standard
error.
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Solution 7.28

Randomised response method. Consider

x = number of ”yes” responses for n inmates.

Then X has Bin (n, p) distribution, where

p = P(a “yes” answer) =
5

6
· q +

1

6
· (1− q) =

1 + 4q

6
.

Replacing p by p̂ = x
n we get an equation

p̂ =
1 + 4q̃

6
,

whose solution gives a method of moments estimate q̃ of the population proportion q

q̃ =
6p̂− 1

4
.

The estimate is unbiased

E(Q̃) =
6p− 1

4
= q.

Its variance equals

Var(Q̃) =
9

4
·Var(Q̂) =

9

4
· p(1− p)

n
=

(1 + 4q)(5− 4q)

16n
.

Take for example n = 40, x = 8. Then p̂ = 0.2 and

q̃ =
6p̂− 1

4
= 0.05.

The estimated standard error

sq̃ =

√
(1 + 4q̃)(5− 4q̃)

16n
= 0.095.

The estimate is unreliable. We have to increase the sample size.

Problem 7.35

A simple random sample of a population size 2000 yields the following 25 values:

104 109 11 109 87
86 80 119 88 122
91 103 99 108 96

104 98 98 83 107
79 87 94 92 97

(a) Calculate an unbiased estimate of the population mean.
(b) Calculate an unbiased estimates of the population variance and Var(X̄).
(c) Give an approximate 95% confidence interval for the population mean and total.

Solution 7.35

Data summary

N = 2000, n = 25,
∑

xi = 2451,
∑

x2
i = 243505.

(a) Unbiased estimate of µ is

x̄ =
2451

25
= 98.04.

(b) Unbiased estimate of σ2 is

N − 1

N
s2 =

1999

2000
133.71 = 133.64,
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where

s2 =
n

n− 1
(x2 − x̄2) =

25

24

(243505

25
− (98.04)2

)
= 133.71.

Unbiased estimate of Var(X̄) is

s2
x̄ =

s2

n

(
1− n

N

)
= 5.28.

(b) An approximate 95% confidence interval for µ

Iµ = x̄± 1.96sx̄ = 98.04± 1.96
√

5.28 = 98.04± 4.50.

Approximate 95% confidence interval for the total τ = Nµ

Iτ = Nx̄± 1.96Nsx̄ = 196080± 9008.

Problem 7.36

For a simple random sample, take x̄2 as a point estimate of µ2. (This is an example of the method of
moments estimate.) Compute the bias of this point estimate.

Solution 7.36

The bias is

E(X̄2)− µ2 = E(X̄2)− (EX̄)2 = Var(X̄) =
σ2

n

(
1− n− 1

N − 1

)
.

For large n, the bias is small.

Problem 7.53

The following table (Cochran 1977) shows the stratification of all farms in a county by farm size and the
mean and standard deviation of the number of acres of corn in each stratum.

Farm size 0-40 41-80 81-120 121-160 161-200 201-240 241+
Number of farms Nj 394 461 391 334 169 113 148
Stratum mean µj 5.4 16.3 24.3 34.5 42.1 50.1 63.8
Stratum standard deviation σj 8.3 13.3 15.1 19.8 24.5 26.0 35.2

(a) For a sample size of 100 farms, compute the sample sizes from each stratum for proportional and
optimal allocation, and compare them.

(b) Calculated the variances of the sample mean for each allocation and compare them to each other
and to the variance of an estimated formed from simple random sampling.

(c) What are the population mean and variance?
(d) Suppose that ten farms are sampled per stratum. What is Var(X̄s)? How large a simple random

sample would have to be taken to attain the same variance? Ignore the finite population correction.
(e) Repeat part (d) using proportional allocation of the 70 samples.

Solution 7.53

Stratified population of size N = 2010 with k = 7 strata.

(a) With n = 100, we get the following answers using the relevant formulas

Stratum number j 1 2 3 4 5 6 7 Weighted mean
Stratum proportion wj 0.20 0.23 0.19 0.17 0.08 0.06 0.07
Stratum mean µj 5.4 16.3 24.3 34.5 42.1 50.1 63.8 µ = 26.49
Stratum standard deviation σj 8.3 13.3 15.1 19.8 24.5 26.0 35.2 σ̄ = 17.04
Optimal allocation n

wjσl
σ̄j

10 18 17 19 12 9 15

Proportional allocation nwj 20 23 19 17 8 6 7

5



(b) Var(X̄so) = σ̄2

n = 2.90, Var(X̄sp) = σ2

n = 3.44, Var(X̄) = σ2

n = 6.21, where σ2 is computed in the
next item.

(c) We have µ = 26.49, and σ̄2 = 275.33. Moreover σ2 = 347.40, and therfore

σ2 = 347.40 + 275.33 = 622.73, σ = 24.95.

(d) If n1 = . . . = n7 = 10 and n = 70, then Var(X̄s) = 4.45. The requested sample size x = 140 is
found from the equation

Var(X̄) =
σ2

x
= 4.45.

(e) If n = 70, then Var(X̄sp) = 4.92. Solving the equation

Var(X̄) =
σ2

x
= 4.92,

we find that the the requested sample size is x = 127 which is smaller than that the answer for (d).

Problem 7.57

Consider stratifying the population of Problem 7.1 into two strata (1,2,2) and (4,8). Assuming that one
observation is taken from each stratum, find the sampling distribution of the estimate of the population
mean and the mean and standard deviation of the sampling distribution. Check the formulas of Section
1.4 in the Lecture Notes.

Solution 7.57

Stratified population with

N = 5, k = 2, w1 = 0.6, w2 = 0.4, µ1 = 1.67, µ2 = 6, σ2
1 = 0.21, σ2

2 = 4.

Given n1 = n2 = 1 and n = 2, the sampling distribution of the stratified sample mean x̄s = 0.6x1 +0.4x2

is

x1 = 1 x1 = 2 Total prob.
x2 = 4 2.2 (1/6) 2.8 (2/6) 1/2
x2 = 8 3.8 (1/6) 4.4 (2/6) 1/2

Tot. prob. 1/3 2/3 1

We find that

E(X̄s) = 2.2 · 1
6 + 2.8 · 2

6 + 3.8 · 1
6 + 4.4 · 1

6 = 3.4,

(E(X̄s))
2 = 11.56,

E(X̄2
s ) = (2.2)2 · 1

6 + (2.8)2 · 2
6 + (3.8)2 · 1

6 + (4.4)2 · 2
6 = 12.28,

Var(X̄s) = 12.28− 11.56 = 0.72.

These results are in agreement with the formulas

E(X̄s) = µ, Var(X̄s) =
w2

1σ
2
1

n1
+ . . .+

w2
kσ

2
k

nk
= 0.36σ2

1 + 0.16σ2
2 .

2 Estimation of parameters

Problem 8.3

One of the earliest applications of the Poisson distribution was made by Student (1907) in studying errors
made in counting yeast cells.In this study, yeast cells were killed and mixed with water and gelatin; the
mixture was then spread on a glass and allowed to cool. Four different concentrations were used. Counts
were made on 400 squares, and the data are summarised in the following table:
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Number of cells Concent. 1 Concent. 2 Concent. 3 Concent. 4
0 213 103 75 0
1 128 143 103 20
2 37 98 121 43
3 18 42 54 53
4 3 8 30 86
5 1 4 13 70
6 0 2 2 54
7 0 0 1 37
8 0 0 0 18
9 0 0 1 10
10 0 0 0 5
11 0 0 0 2
12 0 0 0 2

(a) Estimate the parameter λ for each of the four sets of data.
(b) Find an approximate 95% confidence interval for each estimate.
(c) Compare observed and expected counts.

Solution 8.3

Number X of yeast cells on a square. Test the Poisson model X ∼ Pois(λ).

Concentration 1.

x̄ = 0.6825, x2 = 1.2775, s2 = 0.8137, s = 0.9021, sx̄ = 0.0451.

Approximate 95% confidence interval

Iµ = 0.6825± 0.0884.

Pearson’s chi-square test based on λ̂ = 0.6825:

x 0 1 2 3 4+ Total
Observed 213 128 37 18 4 400
Expected 202.14 137.96 47.08 10.71 2.12 400

Observed test statistic χ2 = 10.12, df = 5− 1− 1 = 3, p-value < 0.025. Reject the model.

Concentration 2.

x̄ = 1.3225, x2 = 3.0325, s = 1.1345, sx̄ = 0.0567.

Approximate 95% confidence interval

Iµ = 1.3225± 0.1112.

Pearson’s chi-square test: observed test statistic χ2 = 3.16, df = 4, p-value > 0.10. Do not reject the
model.

Concentration 3.
x̄ = 1.8000, s = 1.1408, sx̄ = 0.0701.

Approximate 95% confidence interval for

Iµ = 1.8000± 0.1374.

Pearson’s chi-square test: observed test statistic χ2 = 7.79, df = 5, p-value > 0.10. Do not reject the
model.
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Concentration 4.
n = 410, x̄ = 4.5659, s2 = 4.8820, sx̄ = 0.1091.

Approximate 95% confidence interval
Iµ = 4.566± 0.214.

Pearson’s chi-square test: observed test statistic χ2 = 13.17, df = 10, p-value > 0.10. Do not reject the
model.

Problem 8.4

Suppose that X is a discrete random variable with

P(X = 0) = 2
3θ,

P(X = 1) = 1
3θ,

P(X = 2) = 2
3 (1− θ),

P(X = 3) = 1
3 (1− θ),

where θ ∈ [0, 1] is parameter. The following 10 independent observations were taken from such a
distribution:

(3, 0, 2, 1, 3, 2, 1, 0, 2, 1).

(a) Find the method of moments estimate of θ.
(b) Find an approximate standard error for your estimate.
(c) What is the maximum likelihood estimate of θ?
(d) What is an approximate standard error of the maximum likelihood estimate?

Solution 8.4

Population distribution: X takes values 0, 1, 2, 3 with probabilities

p0 =
2

3
· θ, p1 =

1

3
· θ, p2 =

2

3
· (1− θ), p3 =

1

3
· (1− θ),

so that
p0 + p1 = θ, p2 + p3 = 1− θ.

We are given an iid-sample with
n = 10, x̄ = 1.5, s = 1.08,

and observed counts

x 0 1 2 3 Total
Ox 2 3 3 2 10

(a) Method of moments. Using

µ =
1

3
· θ + 2 · 2

3
· (1− θ) + 3 · 1

3
· (1− θ) =

7

3
− 2θ,

derive an equation

x̄ =
7

3
− 2θ̃.

It gives an unbiased estimate

θ̃ =
7

6
− x̄

2
=

7

6
− 3

4
= 0.417.

(b) To find sθ̃, observe that

Var(Θ̃) =
1

4
Var(X̄) =

σ2

40
.

Thus we need to find sθ̃, which estimates σθ̃ = σ
6.325 . Next we estimate σ using two methods.
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Method 1. From

σ2 = E(X2)− µ2 =
1

3
· θ + 4 · 2

3
· (1− θ) + 9 · 1

3
· (1− θ) =

7

3
− 2θ −

(
7

3
− 2θ

)2

=
2

9
+ 4θ − 4θ2,

we estimate σ as √
2

9
+ 4θ̃ − 4θ̃2 = 1.093.

This gives

sθ̃ =
1.093

6.325
= 0.173.

Method 2:

sθ̃ =
s

6.325
=

1.08

6.325
= 0.171.

(c) Likelihood function is obtained using (O0, O1, O2, O3) ∼ Mn(n, p0, p1, p2, p3)

L(θ) =
(

2
3θ
)O0

(
1
3θ
)O1

(
2
3 (1− θ)

)O2
(

1
3 (1− θ)

)O3
= const θt(1− θ)n−t,

where t = O0 +O1 is a sufficient statistic. Notice that T = O0 +O1 has Bin(n, θ) distribution.
Log-likelihood and its derivative

l(θ) = const + t ln θ + (n− t) ln(1− θ),

l′(θ) =
t

θ
− n− t

1− θ
.

Setting the last expression to zero, we find

t

θ̂
=
n− t
1− θ̂

, θ̂ =
t

n
=

2 + 3

10
=

1

2
.

The maximum likelihood estimate is the sample proportion, an unbiased estimate of the population
proportion θ.

(d) We find sθ̂ using the formula for the standard error of sample proportion

sθ̂ =

√
θ̂(1−θ̂)
n−1 = 0.167.

A similar answer is obtained using the formula

sθ̂ =
√

1
nI(θ̂)

, I(θ) = −E(g(Y, θ)), g(y, θ) = ∂2

∂θ2 ln f(y|θ),

where Y ∼ Ber(θ). Since f(1|θ) = θ, f(0|θ) = 1− θ, we have

g(1, θ) =
∂2

∂θ2
ln θ = − 1

θ2
, g(0, θ) =

∂2

∂θ2
ln(1− θ) = − 1

(1− θ)2
,

we get

I(θ) = −E (g(Y, θ)) = g(1, θ)f(1|θ) + g(0, θ)f(0|θ) =
1

θ2
· θ +

1

(1− θ)2
· (1− θ) =

1

θ(1− θ)
.

Problem 8.6

Suppose that X ∼ Bin(n, p).
(a) Show that the maximum estimate of p is p̂ = x

n .
(b) Show that p̂ = x

n attains the Cramer-Rao lower bound.
(c) If n = 10 and X = 5, plot the log-likelihood function.
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Solution 8.6

Likelihood function of X ∼ Bin(n, p) for a given n and X = x is

L(p) =

(
n

x

)
px(1− p)n−x ∝ px(1− p)n−x.

(a) To maximise L(p) we minimise

ln px(1− p)n−x) = x ln p+ (n− x) ln(1− p).

Since
∂

∂p
(x ln p+ (n− x) ln(1− p)) =

x

p
− n− x

1− p
,

we have to solve x
p = n−x

1−p , which brings the maximum likelihood estimate formula p̂ = x
n .

(b) We have X = Y1 + . . .+ Yn, where (Y1, . . . , Yn) are iid Bernoulli random variables with

f(y|p) = py(1− p)1−y, y = 0, 1.

By Cramer-Rao, if p̃ is an unbiased estimate of p, then

Var(P̃ ) ≥ 1

nI(p)
,

where

I(p) = −E

(
∂2

∂p2
ln f(Y |p)

)
=

1

p(1− p)
,

see Solution 8.4 d. We conclude that the variance sample proportion p̂ attains the Cramer-Rao lower
bound since

Var(P̂ ) = p(1−p)
n .

(c) Plot L(p) = 252p5(1− p)5. The top of the curve is in the middle p̂ = 0.5.

Problem 8.26

Capture-recapture method for estimating the number N of fish living in a lake:

1. capture and tag say n = 100 fish, then release them in the lake,

2. recapture say k = 50 fish and count the number of tagged fish.

Suppose x = 20 fish were tagged among the k = 50 fish. Find a maximum likelihood estimate N after
suggesting a simple parametric model.

Solution 8.26

Statistical model: x is the number of black balls obtained by sampling k balls without replacement from
an urn with N balls of which n balls are black. Hypergeometric distribution

P(X = 20) =

(
n
20

)(
N−n

30

)(
N
50

) .

The likelihood function

L(N) =

(
100
20

)(
N−100

30

)(
N
50

) = const · (N − 100)(N − 101) · · · (N − 129)

N(N − 1) · · · (N − 49)
.

To find the value of N = N̂ that maximises L(N), consider the ratio

L(N)

L(N − 1)
=

(N − 100)(N − 50)

N(N − 130)
.
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If N < N̂ , then L(N)
L(N−1) > 1, and N > N̂ , then L(N)

L(N−1) < 1 Solving the equation

L(N̂)

L(N̂ − 1)
= 1⇔ (N̂ − 100)(N̂ − 50) = N̂(N̂ − 130),

we arrive at the maximum likelihood estimate estimate N̂ = 5000
20 = 250. The answer is very intuitive as

we expect that
100 : N ≈ 20 : 50.

Problem 8.32

The following 16 numbers came from normal random generator on a computer

5.3299 4.2537 3.1502 3.7032
1.6070 6.3923 3.1181 6.5941
3.5281 4.7433 0.1077 1.5977
5.4920 1.7220 4.1547 2.2799

(a) What would you guess the mean and the variance of the generating normal distribution were?
(b) Give 90%, 95%, and 99% confidence intervals for µ and σ2.
(c) Give 90%, 95%, and 99% confidence intervals for σ.
(d) How much larger sample do you think you would need to halve the length of the confidence

interval for µ?

Solution 8.32

An iid-sample of size n = 16 from a normal distribution.

(a) The summary statistics

x̄ = 3.6109, s2 = 3.4181, sx̄ = 0.4622

suggest an estimate for µ to be 3.6109, and an estimate for σ2 to be 3.4181.

(b), (c) Exact confidence intervals

90% 95% 99%
Iµ 3.61± 0.81 3.61± 0.98 3.61± 1.36
Iσ2 (2.05; 7.06) (1.87; 8.19) (1.56; 11.15)
Iσ (1.43; 2.66) (1.37; 2.86) (1.25; 3.34)

(d) To find sample size x that halves the confidence interval length we set up an equation using the
exact confidence interval formula for the mean

t15(α/2) · s√
16

= 2 · tx−1(α/2) · s
′
√
x
,

where s′ is the sample standard deviation for the sample of size x. A simplistic version of this equation
1
4 = 2√

x
implies x ≈ (2 · 4)2 = 64. Further adjustment for a 95% confidence interval is obtained using

t15(α/2) = 2.13, tx−1(α/2) ≈ 2,

yielding x ≈ (2 · 4 · 2
2.13 )2 = 56.4. We conclude that going from a sample of size 16 to a sample of size 56

would halve the length of the confidence interval for µ.
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Problem 8.53

Let X1, . . . , Xn be i. i. d. uniform on [0, θ].

(a) Find the method of moments estimate of θ and its mean and variance.
(b) Find the maximum likelihood estimate of θ.
(c) Find the probability density of the maximum likelihood estimate and calculate its mean and

variance. Compare the variance, the bias, and the mean square error to those of the method of moments
estimate.

(d) Find a modification of the maximum likelihood estimate that renders it unbiased.

Solution 8.53

An IID sample (X1, . . . , Xn) from the uniform distribution U(0, θ) with density

f(x|θ) = 1
θ1{0≤x≤θ}.

(a) Method of moments estimate θ̃ is unbiased

µ = θ/2, θ̃ = 2x̄, E(Θ̃) = θ, Var(Θ̃) =
4σ2

n
=
θ2

3n
.

(b) Denote x(n) = max(x1, . . . , xn). Likelihood function takes the form

L(θ) = f(x1|θ) · · · f(xn|θ) = 1
θn 1{θ≥x1} · · · 1{θ≥xn} = 1

θn 1{θ≥x(n)},

so that x(n) is a sufficient statistic. The maximum is achieved at θ̂ = x(n).

(c) Sampling distribution of the maximum likelihood estimate θ̂ = x(n):

P(X(n) ≤ x) = P(X1 ≤ x, . . . ,Xn ≤ x) = P(X1 ≤ x) · · ·P(Xn ≤ x) =
(x
θ

)n
with pdf

fΘ̂(x) =
n

θn
· xn−1, 0 ≤ x ≤ θ.

The maximum likelihood estimate is biased

E(Θ̂) =
n

θn

∫ θ

0

xndx =
n

n+ 1
θ, E(Θ̂2) =

n

n+ 2
θ2, Var(Θ̂) =

θ2

(n+ 1)2(n+ 2)
,

but asymptotically unbiased. Compare two mean square errors:

MSE(Θ̂) = E(Θ̂− θ)2 =

(
− θ

n+ 1

)2

+
θ2

(n+ 1)2(n+ 2)
=
n+ 3

n+ 2
· θ2

(n+ 1)2
,

MSE(Θ̃) =
θ2

3n
.

(d) Corrected maximum likelihood estimate

θ̂c =
n+ 1

n
· x(n)

becomes unbiased E(Θ̂c) = θ with Var(Θ̂c) = θ2

n2(n+2) .
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Problem 8.55

For two factors, starchy-or-sugary and green-or-white base leaf, the following counts for the progeny of
self-firtilized heterozygotes were observed (Fisher 1958)

Type Count
Starchy green x1 = 1997
Starchy white x2 = 906
Sugary green x3 = 904
Sugary white x4 = 32

According to the genetic theory the cell probabilities are

p1 =
2 + θ

4
, p2 =

1− θ
4

, p3 =
1− θ

4
, p4 =

θ

4
,

where 0 < θ < 1. In particular, if θ = 0.25, then the genes are unlinked and the genotype frequencies are

Green White Total
Starchy 9/16 3/16 3/4
Sugary 3/16 1/16 1/4
Total 3/4 1/4 1

(a) Find the maximum likelihood estimate of θ and its asymptotic variance.
(b) For an approximate 95% confidence interval for θ based on part (a).
(c) Use the bootstrap to find the approximate standard deviation of the maximum likelihood estimate

and compare to the result of part (a).

Solution 8.55

(a) Sample counts (X1, X2, X3, X4) ∼ Mn(n, p1, p2, p3, p4) with n = 3839. The likelihood function

L(θ) =

(
n

x1, x2, x3, x4

)
px1

1 px2
2 px3

3 px4
4 =

(
n

x1, x2, x3, x4

)
(2 + θ)x1(1− θ)x2+x3θx44−n

reveals two sufficient statistics (x1, x4), as

x2 + x3 = n− x1 − x4.

Putting
d

dθ
lnL(θ) =

x1

2 + θ
− x2 + x3

1− θ
+
x4

θ

equal to zero, we arrive at the equation

x1

2 + θ
+
x4

θ
=
x2 + x3

1− θ

or equivalently
θ2n+ θu− 2x4 = 0,

where u = 2x2 + 2x3 + x4 − x1. We find the maximum likelihood estimate to be

θ̂ =
−u+

√
u2 + 8nx4

2n
= 0.0357.

Asymptotic variance

Var(Θ̂) ≈ 1

I(θ)
, I(θ) = −E(g(X1, X2, X3, X4, θ)).
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where

g(x1, x2, x3, x4, θ) =
∂2

∂θ2
ln f(x1, x2, x3, x4|θ) = − x1

(2 + θ)2
− x2 + x3

(1− θ)2
− x4

θ2
.

Since E(Xi) = npi, we find

I(θ) =
n

4(2 + θ)
+

2n

4(1− θ)
+

n

4θ
=

n(1 + 2θ)

2θ(2 + θ)(1− θ)
,

and get I(θ̂) = 29345.8, so that sθ̂ = 0.0058.

(b) Iθ = 0.0357± 1.96 · 0.0058 = 0.0357± 0.0114.

(c) Parametric bootstrap using Matlab:

p1=0.5089, p2=0.2411, p3=0.2411, p4=0.0089,
n=3839; B=1000; b=ones(B,1);
x1=binornd(n,p1,B,1);
x2=binornd(n*b-x1,p2/(1-p1));
x3=binornd(n*b-x1-x2,p3/(1-p1-p2));
x4=n*b-x1-x2-x3;
u=2*x2+2*x3+x4-x1;
t=(-u+sqrt(u.̂ 2+8*n*x4))/(2*n);
std(t)
histfit(t)

gives std(t)=0.0058 similar to the answer in (a).

3 Testing hypotheses and assessing goodness of fit

Problem 9.3

Suppose that X ∼ Bin(100, p). Consider a test

H0 : p = 1/2, H1 : p 6= 1/2.

that rejects H0 in favour of H1 for |x − 50| > 10. Use the normal approximation to the binomial
distribution to answer the following:

(a) What is α?
(b) Graph the power as a function of p.

Solution 9.3

The z-score

Z =
X − 100p

10
√
p(1− p)

has a distribution that is approximated ny N(0, 1).

(a) Under H0 we have

Z =
X − 50

10
√
p(1− p)

,

and the significance level in question is

α = P(|X − 50| > 10) = P(|Z| > 2) ≈ 2(1− Φ(2)) = 2 · 0.0228 = 0.046.

14



(b) The power of the test is a function of the parameter value p

Pw(p) = P(|X − 50| > 10) = P(X < 40) + P(X > 60)

= P

(
Z <

40− 100p

10
√
p(1− p)

)
+ P

(
Z >

60− 100p

10
√
p(1− p)

)

= Φ

(
4− 10p√
p(1− p)

)
+ Φ

(
10p− 6√
p(1− p)

)
.

Putting δ = 1/2− p, we see that the power function

Pw(p) = Φ

(
10δ − 1√
1/4− δ2

)
+ Φ

(
− 10δ + 1√

1/4− δ2

)

is symmetric around p = 1/2

p 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Pw(p) 0.986 0.853 0.500 0.159 0.046 0.159 0.500 0.853 0.986

Problem 9.4

Let X have one of the following two distributions

X-values x1 x2 x3 x4

P(x|H0) 0.2 0.3 0.3 0.2
P(x|H1) 0.1 0.4 0.1 0.4

(a) Compare the likelihood ratio, Λ, for each xi and order the xi according to Λ.
(b) What is the likelihood ratio test of H0 versus H1 at level α = 0.2? What is the test at level

α = 0.5?

Solution 9.4

Data: one observation of X = x. Likelihood ratio test: reject for small values of Λ = P(x|H0)
P(x|H1) .

(a) See the bottom line of the table:

X-values x4 x2 x1 x3

P(x|H0) 0.2 0.3 0.2 0.3
P(x|H1) 0.4 0.4 0.1 0.1

Likelihood ratio Λ = P(x|H0)
P(x|H1) 0.5 0.75 2 3

(b) The null distribution of Λ

X-values x4 x2 x1 x3

Likelihood ratio Λ 0.5 0.75 2 3
P(x|H0) 0.2 0.3 0.2 0.3
Cumulative probab. 0.2 0.5 0.7 1

At α = 0.2 we reject H0 only if Λ = 0.5, that is when X = x4.
At α = 0.5 we reject H0 for Λ ≤ 0.75, that is when X = x4 or x2.

Problem 9.7

Let (x1, . . . , xn) be a sample from a Poisson distribution. Find the likelihood ratio for testing H0 : λ = λ0

against H1 : λ = λ1, where λ1 > λ0. Use the fact that the sum of independent Poisson random variables
follows a Poisson distribution to explain how to determine a rejection region for a test at level α.
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Solution 9.7

Likelihood function

L(λ) =

n∏
i=1

1

xi!
λxie−λ = e−λnλy

n∏
i=1

1

xi!

where
y = x1 + . . .+ xn

is a sufficient statistic. Reject H0 for small values of the likelihood ratio

L(λ0)

L(λ1)
= e−n(λ0−λ1)(λ0

λ1
)y.

If λ1 > λ0, then we reject H0 for large values of y. Test statistic Y has null distribution Pois(nλ0).

Problem 9.9

Let (x1, . . . , x25) be a sample from a normal distribution having a variance of 100.

(a) Find the rejection region for a test at level α = 0.1 of H0 : µ = 0 versus H1 : µ = 1.5.
(b) What is the power of the test?
(c) Repeat for α = 0.01.

Solution 9.9

IID sample from N(µ, 100) of size n = 25. Two simple hypotheses

H0 : µ = 0, H1 : µ = 1.5

Test statistic and its exact sampling distribution

X̄ ∼ N(µ, 4).

Its null and alternative distributions are

X̄
H0∼ N(0, 4), X̄

H1∼ N(1.5, 4).

(a) The rejection region at α = 0.1 is {x̄ > x}, where x is the solution of the equation

0.1 = P(X̄ > x|H0) = 1− Φ(x/2).

From the normal distribution table we find x/2 = 1.28, so that x = 2.56 and the rejection region is

R = {x̄ > 2.56}.

(b) The power of the test (a) is

P(X̄ > 2.56|H1) = P( X̄−1.5
2 > 0.53|H1) = 1− Φ(0.53) = 1− 0.7019 = 0.298.

(c) For α = 0.01, since 1− Φ(2.33) = 0.01, the rejection region is

R = {x̄ > 4.66}.

The power of this test is

P(X̄ > 4.66|H1) = P( X̄−1.5
2 > 1.58|H1) = 1− Φ(1.58) = 1− 0.9429 = 0.057.

Problem 9.22

Let (x1, . . . , x15) be a sample from a normal distribution.

(a) Find a 95% confidence interval for the population variance σ2.
(b) Using the confidence interval method test H0 : σ = 1 versus H0 : σ 6= 1 at α = 0.05.
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Solution 9.22

Let s2 be the sample variance computed from (x1, . . . , x15).

(a) An exact 95% confidence interval for σ2 if n = 15 is

Iσ2 = (0.536s2; 2.487s2).

(b) We reject H0 : σ = 1 if the value 1 falls outside the confidence interval interval Iσ2 , so that

R = {1 /∈ (0.536s2; 2.487s2)} = {s2 > 1.866 or s2 < 0.402}.

Problem 9.23

An iid-sample from N(µ, σ2) gives a 99% confidence interval for µ to be (−2, 3). Test

H0 : µ = −3 against H1 : µ 6= −3

at α = 0.01.

Solution 9.23

Using the confidence interval-method of hypotheses testing we reject H0 in favour of the two-sided
alternative, since the value µ = −3 is not covered by the two-sided confidence interval (−2, 3).

Problem 9.24

Binomial model for the data value x:
X ∼ Bin(n, p).

(a) What is the generalised likelihood ratio for testing H0 : p = 0.5 against H1 : p 6= 0.5?
(b) Show that the test rejects for large values of |x− n

2 |.
(c) How the significance level corresponding to the rejection region

R = {|x− n

2
| > k}

can be determined?
(d) If n = 10 and k = 2, what is the significance level of the test?
(e) Use the normal approximation to the binomial distribution to find the significance level if n = 100
and k = 10.

Solution 9.24

The analysis is the basis of the sign test.

(a) Generalised likelihood ratio

Λ =
L(p0)

L(p̂)
=

(
n
x

)
px0(1− p0)n−x(

n
x

)
p̂x(1− p̂)n−x

=
( 1

2 )n

( xn )x(n−xn )n−x
=

(n2 )n

xx(n− x)n−x
.

(b) The generalised likelihood ratio test rejects H0 for small values of

ln Λ = n ln(n/2)− x lnx− (n− x) ln(n− x),

or equivalently, for large values of
x lnx+ (n− x) ln(n− x),

or equivalently, for large values of

a(y) = (n/2 + y) ln(n/2 + y) + (n/2− y) ln(n/2− y),
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where
y = |x− n/2|.

The function a(y) is monotonely increasing over y ∈ [0, n/2], since

a′(y) = ln
n
2 + y
n
2 − y

> 0.

We conclude that the test rejects for large values of y.

(c) Compute the significance level for the rejection region |x− n
2 | > k:

α = P(|X − n
2 | > k|H0) = 2

∑
i<n

2−k

(
n

i

)
2−n.

(d) In particular, for n = 10 and k = 2 we get

α = 2−9
2∑
i=0

(
10

i

)
=

1 + 10 + 45

512
= 0.11.

(d) Using the normal approximation for n = 100 and k = 10, we find

α = P(|X − n
2 | > k|H0) ≈ 2(1− Φ( k√

n/4
)) = 2(1− Φ(2)) = 0.046.

Problem 9.28

Suppose that a test statistic Z has a standard normal distribution.

(a) If the test rejects for large values of |z|, what is the p-value corresponding to z = 1.5?
(b) Answer the same question if the test rejects for large values of z.

Solution 9.28

(a) Two-sided p-value = 0.134.

(b) One-sided p-value = 0.067.

Conclusion: choose H1 before you see your data.

Problem 9.33

It has been suggested that dying people may be able to postpone their death until after an important
occasion, such as a wedding or birthday. Phillips and King (1988) studied the patterns of death sur-
rounding Passover, an important Jewish holiday.

(a) California data 1966-1984. They compared the number of deaths during the week before Passover
to the number of deaths during the week after Passover for 1919 people who had Jewish surnames. Of
these, 922 occurred in the week before and 997 in the week after Passover.

(b) For 852 males of Chinese and Japanese ancestry, 418 died in the week before and 434 died in the
week after Passover.

18



Solution 9.33

We are supposed to test

H0 : death cannot be postponed,
H1 : death can be postponed until after an important date.

(a) Jewish data: n = 1919 death dates

x = 922 deaths during the week before Passover,
n− x = 997 deaths during the week after Passover.

Under the binomial model X ∼ Bin(n, p), we would like to test

H0 : p = 0.5 against H1 : p < 0.5.

We apply the large sample test for proportion. Observed test statistic

z =
x− np0√
np0(1− p0)

=
922− 1919 · 0.5√

1919 · 0.5
= −1.712.

One-sided p-value of the test

Φ(−1.712) = 1− Φ(1.712) = 1− 0.9564 = 0.044.

Reject H0 in favour of one-sided H1 at the significance level 5%.

(b) To control for the seasonal effect the Chinese and Japanese data were studied

n = 852, x = 418, n− x = 434, z = −0.548.

One-sided p-value is 29%, showing no significant effect.

(c) Overeating during the important occasion might be a contributing factor.

Problem 9.35

If gene frequencies are in equilibrium, the genotypes AA, Aa, and aa occur with probabilities

p1 = (1− θ)2, p2 = 2θ(1− θ), p3 = θ2.

Plato et al. (1964) published the following data on haptoglobin type in a sample of 190 people

Genotype Hp 1-1 Hp 1-2 Hp 2-2
Observed count xi 10 68 112

Test the goodness of fit of the data to the equilibrium model.

Solution 9.35

Multinomial model
(X1, X2, X3) ∼ Mn(190, p1, p2, p3).

Composite null hypothesis (Hardy-Weinberg Equilibrium)

H0 : p1 = (1− θ)2, p2 = 2θ(1− θ), p3 = θ2.

Likelihood function and maximum likelihood estimate

L(θ) =

(
190

10, 68, 112

)
268θ292(1− θ)88, θ̂ =

88

380
= 0.768.

Pearson’s chi-square test:

cell 1 2 3 Total
observed 10 68 112 190
expected 10.23 67.71 112.07 190

Observed chi-square test statistic χ2 = 0.0065, df = 1, p-value = 2(1− Φ(
√

0.0065)) = 0.94.

Conclusion: the Hardy-Weinberg Equilibrium model fits well the haptoglobin data.
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Problem 9.36

US suicides in 1970. Check for the seasonal variation

Month Number of suicides
Jan 1867
Feb 1789
Mar 1944
Apr 2094
May 2097
Jun 1981
Jul 1887
Aug 2024
Sep 1928
Oct 2032
Nov 1978
Dec 1859

Solution 9.36

Month Oj Days Ej Oj − Ej
Jan 1867 31 1994 −127
Feb 1789 28 1801 −12
Mar 1944 31 1994 −50
Apr 2094 30 1930 164
May 2097 31 1994 103
Jun 1981 30 1930 51
Jul 1887 31 1994 -107
Aug 2024 31 1994 30
Sep 1928 30 1930 -2
Oct 2032 31 1994 38
Nov 1978 30 1930 48
Dec 1859 31 1994 -135

Simple null hypothesis

H0 : p1 = p3 = p5 = p7 = p8 = p10 = p12 =
31

365
, p2 =

28

365
, p4 = p6 = p9 = p11 =

30

365
.

The total number suicides n = 23480, so that the expected counts are

Ej = np
(0)
j , j = 1, . . . , 12.

The χ2-test statistic

χ2 =
∑
j

(Oj − Ej)2

Ej
= 47.4.

Since df = 12− 1 = 11, and χ2
11(0.005) = 26.8, we reject H0 of no seasonal variation. Merry Christmas!

Problem 9.43

In 1965, a newspaper carried a story about a high school student who reported getting 9207 heads and
8743 tails in 17950 coin tosses.

(a) Is this a significant discrepancy from the null hypothesis H0 : p = 1
2?a time (b) A statistician

contacted the student and asked him exactly how he had performed the experiment (Youden 1974). To
save time the student had tossed groups of five coins at a time, and a younger brother had recorded the
results, shown in the table:
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number of heads 0 1 2 3 4 5 Total
observed 100 524 1080 1126 655 105 3590

Are the data consistent with the hypothesis that all the coins were fair (p = 1
2 )?

(c) Are the data consistent with the hypothesis that all five coins had the same probability of heads
but this probability was not necessarily 1

2?

Solution 9.43

Number of heads
Y ∼ Bin(n, p), n = 17950.

(a) For H0 : p = 0.5 the observed z-score

z = y−np0√
np0(1−p0)

= 3.46.

According to the three-sigma rule this is a significant result and we reject H0.

(b) Pearson’s chi-square test for the simple null hypothesis

H0 : p0 = (0.5)5 = 0.031, p1 = 5 · (0.5)5 = 0.156, p2 = 10 · (0.5)5 = 0.313,

p3 = 10 · (0.5)5 = 0.313, p4 = 5 · (0.5)5 = 0.156, p5 = (0.5)5 = 0.031.

number of heads 0 1 2 3 4 5 Total
observed 100 524 1080 1126 655 105 3590
expected 112.2 560.9 1121.9 1121.9 560.9 112.2 3590

Observed χ2 = 21.58, df = 5, p-value = 0.001.

(c) Composite null hypothesis

H0 : pi =

(
5

i

)
pi(1− p)5−i, i = 0, 1, 2, 3, 4, 5.

Pearson’s chi-square test based on the maximum likelihood estimate p̂ = 0.5129

number of heads 0 1 2 3 4 5 Total
observed 100 524 1080 1126 655 105 3590
expected 98.4 518.3 1091.5 1149.3 605.1 127.4 3590

Observed χ2 = 8.74, df = 6− 1− 1 = 4, p-value = 0.07. Do not reject H0 at 5% level.

4 Introduction to Bayesian inference

Problem 8.4 (cont)

This is a continuation of the Problem 8.4 (a)-(d).

(e) Assume uniform prior Θ ∼ U(0, 1) and find the posterior density. Plot it. What is the mode of
the posterior?

Solution 8.4

Since
f(x|θ) ∝ θ5(1− θ)5,

and the prior is flat, we get
h(θ|x) ∝ f(x|θ) ∝ θ5(1− θ)5.

We conclude that the posterior distribution is Beta (6, 6). This yields

θ̂MAP = θ̂PME =
1

2
.
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Problem 8.8

In an ecological study of the feeding behaviour of birds, the number of hops between flights was counted
for several birds.

Number of hops j 1 2 3 4 5 6 7 8 9 10 11 12 Tot
Observed frequency Oj 48 31 20 9 6 5 4 2 1 1 2 1 130

Assuming that the data were generated by a Geom(p) model and take a uniform prior for p. What is
then the posterior distribution and what are the posterior mean and standard deviation?

Solution 8.8

Number of bird hops X ∼ Geom(p)

f(x|p) = (1− p)x−1p, x = 1, 2, . . . .

Data in the table summarises an iid-sample

(x1, . . . , xn), n = 130.

(d) Using a uniform prior P ∼ U(0, 1), we find the posterior to be

h(p|x1, . . . , xn) ∝ f(x1|p) · · · f(xn|p) = (1− p)nx̄−npn, n = 130, nx̄ = 363.

It is a beta distribution
Beta(n+ 1, nx̄− n+ 1) = Beta(131, 234).

Posterior mean

µ =
a

a+ b
=

131

131 + 234
= 0.36.

Observe that

µ =
1 + 1

n

x̄+ 2
n

,

gets closer to the method of moments estimate of p as n→∞. The standard deviation of the posterior
distribution

σ =

√
µ(1− µ)

a+ b+ 1
=

√
0.36 · 0.64

366
= 0.025.

Problem 8.61

Laplace’s rule of succession. Laplace claimed that when an event happens n times in a row and never fails
to happen, the probability that the event will occur the next time is n+1

n+2 . Can you suggest a rationale
for this claim?

Solution 8.61

We use the binomial model X ∼ Bin(n, p), with p being the probability that the event will occur at a
given trial. Use an uninformative conjugate prior p ∼ Beta(1, 1). Given X = n, the posterior becomes
P ∼ Beta(n+ 1, 1). Since the posterior mean is n+1

n+2 , we get

p̂PME =
n+ 1

n+ 2
.

Problem 9.4 (cont)

Let X have one of the following two distributions

X-values x1 x2 x3 x4

P(x|H0) 0.2 0.3 0.3 0.2
P(x|H1) 0.1 0.4 0.1 0.4

(c) If the prior probabilities are P(H0) = P(H1) = 1
2 , which outcomes favour H0?

(d) What prior probabilities correspond to the decision rules with α = 0.2 and α = 0.5?

22



Solution 9.4

Recall solutions of parts (a) and (b).

(c) By Bayes formula,

P(H0|x) =
P(x|H0)P(H0)

P(x|H0)P(H0) + P(x|H1)P(H1)
=

P(x|H0)

P(x|H0) + P(x|H1)
.

Thus the posterior odds ratio equals the likelihood ratio

P(H0|x)

P(H1|x)
= Λ,

and we conclude that outcomes x1 and x3 favour H0 since with these outcomes Λ > 1.

(d) For the general prior
P(H0) = π0, P(H1) = π1 = 1− π0,

we get

P(Hi|x) =
P(x|Hi)πi

P(x|H0)π0 + P(x|H1)π1
,

yielding a relation for the posterior odds ratio

P(H0|x)

P(H1|x)
=

P(x|H0)π0

P(x|H1)π1
= Λ · π0

π1
.

Assuming equal costs c0 = c1, the rejection rule is

P(H0|x)

P(H1|x)
<
c1
c0

= 1,

so that in terms of the likelihood ratio,

Λ <
π1

π0
=

1

π0
− 1, π0 <

1

1 + Λ
.

If x = x4, then Λ = 0.5, and we reject H0, provided π0 <
2
3 . This corresponds to the decision rules

with α = 0.2.
If x = x2, then Λ = 0.75, and we reject H0, provided π0 <

4
7 . This corresponds to the decision rules

with α = 0.5.
Furthermore, if x = x1, then Λ = 2, and we reject H0, provided π0 <

1
3 , and if x = x3, then Λ = 3,

and we reject H0, provided π0 <
1
4 .

Problem 9.14

Suppose that under H0, a measurement X is N(0, σ2), and under H1, the measurement X is N(1, σ2).
Assume that the prior probabilities satisfy

P(H0) = 2P(H1).

The hypothesis H0 will be chosen if P(H0|x) > P(H1|x). For σ2 = 0.1, 0.5, 1.0, 5.0:

(a) For what values of X = x will H0 be chosen?
(b) In the long run, what proportion of the time will H0 be chosen if H0 is true 2

3 of the time?
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Solution 9.14

For a single observation X ∼ N(µ, σ2), where σ2 is known, test H0 : µ = 0 vs H1 : µ = 1. Prior
probabilities

P(H0) =
2

3
, P(H1) =

1

3
.

(a) Likelihood ratio

f(x|0)

f(x|1)
=

e−
x2

2σ2

e−
(x−1)2

2σ2

= e
1
2
−x
σ2 .

Choose H0 for x such that

P(H0|x)

P(H1|x)
= 2e

1
2
−x
σ2 > 1, x <

1

2
+ σ2 ln 2.

We conclude that

σ2 = 0.1 σ2 = 0.5 σ2 = 1 σ2 = 5
Choose H0 for x < 0.57 x < 0.85 x < 1.19 x < 3.97

(b) In the long run, the proportion of the time H0 will be chosen is

P(X < 1
2 +σ2 ln 2) = 2

3P(X−µ < 1
2 +σ2 ln 2)+ 1

3P(X−µ < σ2 ln 2− 1
2 ) = 2

3Φ(σ ln 2+ 1
2σ )+ 1

3Φ(σ ln 2− 1
2σ ).

We conclude that

σ2 = 0.1 σ2 = 0.5 σ2 = 1 σ2 = 5
Proportion of the time H0 will be chosen 0.67 0.73 0.78 0.94

5 Summarising data

Problem 10.2

Suppose that (X1, . . . , Xn) are independent uniform U(0, 1) random variables.

(a) Sketch the population distribution function F (x) and the standard deviation of the empirical
distribution function F̂ (x).

(b) Generate many samples of size 16. For each sample plot F̂ (x)− F (x) and relate what you see to
your answer to (a).

Solution 10.2

Recall that for a fixed x, the empirical distribution function F̂ (x) is the sample proportion estimate of
p = F (x) = x.

(a) The variance of F̂ (x) is

σ2
F̂ (x)

=
p(1− p)

n
=
x(1− x)

n
,

so that the standard deviation is

σF̂ (x) =

√
x(1− x)

n
, x ∈ [0, 1].

(b) Generate 100 samples of size n = 16. Matlab code

x=rand(16,100);
y=sort(x)’;
for k=1:100
plot(y(k,:),(1:16)/16-y(k,:),’.’)
hold on
end

24



See the figure

Problem 10.5

Let (X1, . . . , Xn) be independent random variables with the same distribution F , and let F̂ denote the
empirical distribution function. Show that for u < v,

Cov(F̂ (u), F̂ (v)) = 1
nF (u)(1− F (v)).

If follows that F̂ (u) and F̂ (v) are positively correlated: if F̂ (u) overshoots F (u), then F̂ (v) will tend to
overshoot F (v).

Solution 10.5

We have

F̂ (u) =
1{X1≤u} + . . .+ 1{Xn≤u}

n
, E(F̂ (u)) = F (u),

F̂ (v) =
1{X1≤v} + . . .+ 1{Xn≤v}

n
, E(F̂ (v)) = F (v).

Assuming u < v, we get

E(F̂ (u) · F̂ (v)) =
1

n2

[ n∑
i=1

E(1{Xi≤u}1{Xi≤v}) +

n∑
i=1

∑
j 6=i

E(1{Xi≤u}1{Xj≤v})
]

=
1

n2

[ n∑
i=1

F (u) +

n∑
i=1

∑
j 6=i

F (u)F (v)
]

=
1

n

[
F (u) + (n− 1)F (u)F (v)

]
.

Finish by using

Cov(F̂ (u), F̂ (v)) = E(F̂ (u) · F̂ (v))− E(F̂ (u)) · E(F̂ (v))

=
1

n
[F (u) + (n− 1)F (u)F (v)]− F (u)F (v)

= 1
nF (u)(1− F (v)).
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Problem 10.6

A random sample x1, . . . , xn, n = 59:

14.27 14.80 12.28 17.09 15.10 12.92 15.56 15.38 15.15 13.98
14.90 15.91 14.52 15.63 13.83 13.66 13.98 14.47 14.65 14.73
15.18 14.49 14.56 15.03 15.40 14.68 13.33 14.41 14.19 15.21
14.75 14.41 14.04 13.68 15.31 14.32 13.64 14.77 14.30 14.62
14.10 15.47 13.73 13.65 15.02 14.01 14.92 15.47 13.75 14.87
15.28 14.43 13.96 14.57 15.49 15.13 14.23 14.44 14.57

are the percentages of hydrocarbons in each sample of beeswax.

(a) Plot the empirical distribution function, a histogram, and a normal probability plot. Find the
0.9, 0.75, 0.5, 0.25, and 0.1 quantiles. Does the distribution appear Gaussian?

(b) The average percentage of hydrocarbons in a synthetic wax is 85%. Suppose that beeswax was
diluted with 1% synthetic wax. Could this be detected? What about 3% and 5% dilution?

Solution 10.6

Ordered sample x(1), . . . , x(n)

12.28 12.92 13.33 13.64 13.65 13.66 13.68
13.73 13.75 13.83 13.96 13.98 13.98 14.01
14.04 25% quantile
14.10 14.19 14.23 14.27 14.30 14.32 14.41
14.41 14.43 14.44 14.47 14.49 14.52 14.56
14.57 50% quantile
14.57 14.62 14.65 14.68 14.73 14.75 14.77
14.80 14.87 14.90 14.92 15.02 15.03 15.10
15.13 75% quantile
15.15 15.18 15.21 15.28 15.31 15.38 15.40
15.47 15.47 15.49 15.56 15.63 15.91 17.09

(a) The figure shows the empirical distribution function and a normal probability plot.

Use Matlab commands
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x=data vector;
stairs(sort(x),(1:length(x))/length(x)) % empirical cdf
hist(x) % histogram, the same as hist(x,10)
normplot(x) % normal probability plot
prctile(x,90) % 0.90-quantile

The distribution appears to be rather close to normal. The 10% quantile

x(6) + x(7)

2
=

13.66 + 13.68

2
= 13.67.

(b) Since x̄ = 14.58 and s = 0.78, the one-sided 99% of the population distribution for the natural
wax is

(−∞, 14.58 + 2.33 · 0.78) = (−∞, 16.40).

Expected means

1% dilution µ1 = 14.58 · 0.99 + 85 · 0.01 = 15.28 can not be detected
3% dilution µ3 = 14.58 · 0.97 + 85 · 0.03 = 16.69 can be detected
5% dilution µ5 = 14.58 · 0.95 + 85 · 0.05 = 18.10 can be detected

Problem 10.11

Calculate the hazard function for the Weibull distribution (Waloddi Weibull was a Swedish engineer,
scientist, and mathematician)

F (t) = 1− e−αt
β

, t ≥ 0,

where α and β are two positive parameters.

Solution 10.11

Taking the derivative of

1− F (t) = e−αt
β

,

we find the density

f(t) = αβtβ−1e−αt
β

,

and dividing the latter by the former we obtain the hazard function

h(t) = αβtβ−1.

Problem 10.13 and 10.14

Give an example of a distribution with an increasing failure rate. Give an example of a distribution with
a decreasing failure rate.

Solution 10.13 and 10.14

Take the Weibull distribution with parameters α and β.

• If β = 1, then h(t) = α is constant and the distribution is memoryless.

• If β > 1, then h(t) increases with t meaning that the older individuals die more often than the
younger.

• If 0 < β < 1, then h(t) decreases with t meaning that the longer you live the healthier you become.
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Problem 10.29

Of the 26 measurements of the heat of sublimation of platinum, 5 are outliers.

136.3 136.6 135.8 135.4 134.7 135 134.1 143.3 147.8 148.8
134.8 135.2 134.9 146.5 141.2 135.4 134.8 135.8 135 133.7
134.4 134.9 134.8 134.5 134.3 135.2

Stem and leaf display for n = 26 observations including k = 5 outliers:

133:7
134:134
134:5788899
135:002244
135:88
136:36
High: 141.2, 143.3, 146.5, 147.8, 148.8

Let N be the number of outliers in a non-parametric bootstrap sample.

(a) Explain why the distribution of N is binomial.
(b) Find P(N ≥ 10).
(c) In 1000 bootstrap samples, how many would you expect to contain 10 or more of theses outliers.
(d) What is the probability that a bootstrap sample is composed entirely of these outliers?

Solution 10.29

(a) Due to sampling with replacement we have N ∼ Bin (26, 5
26 ).

(b) Using the binomial distribution command we find

P(N ≤ 9) = binocdf(9, 26, 5/26) = 0.9821,

P(N ≥ 10) = 1− 0.9821 = 0.018.

(c) In B = 1000 bootstrap samples, we expect

B · P(N ≥ 10) = 18

samples to contain 10 or more of outliers.

(d) The probability that a bootstrap sample is composed entirely of these outliers is negligibly small

P(N = 25) = (5/26)26 = 2.4 · 10−19.

Problem 10.37

For the data in Problem 10.6.

(a) Find the mean, median, and 10% and 20% trimmed means.
(b) Find an approximate 90% confidence interval for the mean.
(c) Find a confidence interval with coverage near 90% for the median.
(d) Use the bootstrap to find a pproximate standard errors of the trimmed means.
(f) Find and compare the standard deviation of the measurements, the interquartile range, and the

MAD.
(g) Use the bootstrap to find the approximate sampling distribution and standard error of the upper

quartile.
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Solution 10.37

(a) The Matlab commands

trimmean(x,10)
trimmean(x,20)

give X̄0.1 = 14.586 and X̄0.2 = 14.605.

m = trimmean(X,percent) calculates the trimmed mean of the values in X. For a vec-
tor input, m is the mean of X, excluding the highest and lowest k data values, where
k=n*(percent/100)/2 and where n is the number of values in X.

(b) An approximate 90% confidence interval for the mean is

Iµ = 14.58± 1.645 · 0.78√
59

= 14.58± 0.17 = (14.41; 14.75)

(c) Nonparametric 90% confidence interval for the population median M is (X(k), X(60−k)), where
P(Y < k) = 0.05 and Y ∼ Bin (59, 0.5). Applying the normal approximation for Bin (n, p) with
continuity correction

P(Y < k) = P(Y ≤ k − 1) ≈ Φ

(
k − 0.5− np√
np(1− p)

)
,

we arrive at equation
k − 0.5− 59

2√
59
4

= −1.645,

that gives k = 24. This yields

Im = (x(k), x(60−k)) = (x(24), x(36)) = (14.43; 14.75).

(d) The Matlab commands for the non-parametric bootstrap

n=59; B=1000;
z=x(random(’unid’,n,n,B)); % (’unid’,n) - uniform discrete [1, n], 1000 samples of size n
t1=trimmean(z,10);
t2=trimmean(z,20);
std(t1)
std(t2)

give the standard errors 0.1034 and 0.1004 for x̄0.1 and x̄0.2 respectively.

(f) Matlab commands

iqr(x)
median(abs(x-median(x)))

Warning: mad(x) in Matlab stands for the mean abs. dev.

(g) Matlab commands (vector z comes from the (d) part)

q=prctile(z,75);
hist(q)
std(q)

give the standard error 0.1332 of the upper quartile.
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Problem 10.40

Olson, Simpson, and Eden (1975) discuss the analysis of data obtained from a cloud seeding experiment.
The following data present the rainfall from 26 seeded and 26 control clouds.

Seeded clouds
129.6, 31.4, 2745.6, 489.1, 430, 302.8, 119, 4.1, 92.4, 17.5,
200.7, 274.7, 274.7, 7.7, 1656, 978, 198.6, 703.4, 1697.8, 334.1,
118.3, 255, 115.3, 242.5, 32.7, 40.6
Control clouds
26.1, 26.3, 87, 95, 372.4, .01, 17.3, 24.4, 11.5, 321.2,
68.5, 81.5, 47.3, 28.6, 830.1, 345.5, 1202.6, 36.6, 4.9, 4.9,
41.1, 29, 163, 244.3, 147.8, 21.7

Make a QQ-plot for rainfall versus rainfall and log rainfall versus log rainfall. What do these plots
suggest about the effect, if any, of seeding?

Solution 10.40

Matlab command (x = control and y = seeded data)

qqplot(x,y)

produces a QQ-plot that fits the line y = 2.5x claiming 2.5 times more rainfall from seeded clouds. On
the other hand, Matlab command

qqplot(log(x),log(y))

produces a QQ-plot that fits the line
ln y = 2 + 0.8 lnx

meaning a decreasing slope in the relationship y = 7.4x0.8.

6 Comparing two samples

Problem 11.1

Four random numbers generated from a normal distribution

x1 = 1.1650, x2 = 0.6268, x3 = 0.0751, x4 = 0.3516,

along with five random numbers with the same variance σ2 but perhaps a different mean

y1 = 0.3035, y2 = 2.6961, y3 = 1.0591, y4 = 2.7971, y5 = 1.2641.

(a) What do you think the means of the random normal number generators were? What do you
think the difference of the means was?

(b) What do you think the variance of the random number generator was?
(c) What is the estimated standard error of your estimate of the difference of the means?
(d) Form a 90% confidence interval for the difference of the means.
(e) In this situation, is it more appropriate to use a one-sided test or a two-sided test of the equality

of the means?
(f) What is the p-value of a two-sided test of the null hypothesis of equal means?
(g) Would the hypothesis that the means were the same versus a two-sided alternative be rejected at

the significance level α = 0.1?
(h) Suppose you know that the variance of the normal distribution was σ2 = 1. How would your

answers to the preceding questions change?
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Solution 11.1

(a) x̄ = 0.5546, ȳ = 1.6240, ȳ − x̄ = 1.0694

(b) We have s2
x = 0.2163, s2

y = 1.1795, s2
p = 0.7667. The latter is an unbiased estimate of σ2.

(c) sȳ−x̄ = 0.5874

(d) Based on t7-distribution, an exact 90% confidence interval for mean difference is

Iµy−µx = 1.0694± 1.1128.

(e) More appropriate to use a two-sided test.

(f) From the observed test statistic value t = 1.8206, we find the two-sided p = 0.1115 using the
Matlab command 2*tcdf(-1.8206,7).

(g) No, because the obtained p-value is larger than 0.1.

(h) Given σ2 = 1, we answer differently to some of the the above questions:

b: σ2 = 1,
c: sȳ−x̄ = 0.0.6708,
d: Iµy−µx = 1.0694± 1.1035,
f: z = 1.5942 two-sided p-value = 0.11.

Problem 11.3

In the ”two independent samples” setting we have two ways of estimating the variance of X̄ − Ȳ :

(a) s2
p( 1
n + 1

m ), if σx = σy,

(b)
s2x
n +

s2y
m without the assumption of equal variances.

Show that if m = n, then these two estimates are identical.

Solution 11.3

If m = n, then

s2
p

(
1

n
+

1

m

)
=

2

n
·
∑n
i=1(xi − x̄)2 +

∑n
i=1(yi − ȳ)2

2n− 2
=
s2
x + s2

y

n
=
s2
x

n
+
s2
y

m
.

Problem 11.8

An experiment of the efficacy of a drug for reducing high blood pressure is performed using four subjects
in the following way:

two of the subjects are chosen at random for the control group and two for the treatment
group.

During the course of a treatment with the drug, the blood pressure of each of the subjects in the teatment
group is measured for ten consecutive days as is the blood pressure of each og the subjects in the control
group.

(a) In order to test whether the treatment has an effect, do you think it is appropriate to use the
two-sample t test with n = m = 20?

(b) Do you think it is appropriate to use the rank sum test?
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Solution 11.8

Test the null hypothesis of no drug effect

H0 : µ1 = µ2, the drug is not effective for reducing high blood pressure.

Suggested measurement design: during the same n = 10 days take blood pressure measurements on 4
people, two on the treatment

x11, . . . , x1n,

x21, . . . , x2n,

and two controls

x31, . . . , x3n,

x41, . . . , x4n.

Dependencies across the days and the people make inappropriate both two-sample t test and rank sum
test. Proper design for 40 measurements is that of two independent samples: 20 people on the treatment
and 20 controls:

x1, . . . , x20,

y1, . . . , y20.

Problem 11.13

Let x1, . . . , x25 be an iid-sample drawn from N(0.3, 1). Consider testing at α = 0.05

H0 : µ = 0, H1 : µ > 0.

Compare
(a) the power of the sign test , and
(b) the power of the test based on the normal theory assuming that σ is known.

Solution 11.13

(a) The sign test statistic

t = number of positive xi, T
H0∼ Bin(25, 1

2 ) ≈ N( 25
2 ,

25
4 ).

Reject H0 for t ≥ k, where k is found from

0.05 = P(T ≥ k|H0) = P(T > k − 1|H0) ≈ 1− Φ

(
k − 0.5− 12.5

5/2

)
= 1− Φ

(
k − 13

2.5

)
,

which gives
k − 13

2.5
= 1.645, k = 17.

We know the true population distribution is N(0.3, 1). Since

P(X > 0|N(0.3, 1)) = 1− Φ(−0.3) = Φ(0.3) = 0.62,

we can use
T ∼ Bin(25, 0.62) ≈ N(15.5, 5.89)

to find the power of the sign test by

1− β = P(T ≥ 17) ≈ 1− Φ

(
17− 0.5− 15.5

2.4

)
= 1− Φ(0.41) = 0.34.
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(b) Normal distribution model X ∼ N(µ, 1). Since X̄−µ
1/5 ∼ N(0, 1), we reject H0 for

5x̄ > 1.645, that is for x̄ > 0.33.

The power of the test

1− β = P(X̄ > 0.33|µ = 0.3) = 1− Φ

(
0.33− 0.3

1/5

)
= 1− Φ(0.15) = 0.44

is higher than the power of the sign test.

Problem 11.15

Suppose that n measurements are to be taken under a treatment condition and another n measurements
are to be taken independently under a control condition. It is thought that the standard deviation of a
single observation is about 10 under both conditions. How large should n be so that a 95% confidence
interval for the mean difference has a width of 2? Use the normal distribution rather than the t-
distribution, since n will turn out to be rather large.

Solution 11.15

Two independent samples
x1, . . . , xn, y1, . . . , yn,

are taken from two population distributions with equal standard deviation σ = 10. Approximate 95%
confidence interval

Iµ1−µ2 = x̄− ȳ ± 1.96 · 10 ·
√

2
n = x̄− ȳ ± 27.72√

n
.

If the confidence interval has width 2, then

27.72√
n

= 1,

implying n ≈ 768.

Problem 11.21

Data: millions of cycles until failure for two types of engine bearings

Type I Type II
3.03 3.19
5.53 4.26
5.60 4.47
9.30 4.53
9.92 4.67
12.51 4.69
12.95 6.79
15.21 9.37
16.04 12.75
16.84 12.78

(a) Use normal theory to test the null hypothesis of no difference against the two-sided alternative

H0 : µx = µy, H1 : µx 6= µy.

(b) Test the hypothesis that there is no difference between the two types of bearing using a nonpara-
metric method.

(c) Which of the methods (a) or (b) do you think is better in this case?
(d) Estimate π, the probability that a type I bearing will outlast a type II bearing.
(e) Use the bootstrap to estimate the sampling distribution of π̂ and its standard error.
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Solution 11.21

Rank Type I Type II Rank
1 3.03 3.19 2
8 5.53 4.26 3
9 5.60 4.47 4
11 9.30 4.53 5
13 9.92 4.67 6
14 12.51 4.69 7
17 12.95 6.79 10
18 15.21 9.37 12
19 16.04 12.75 15
20 16.84 12.78 16

Rank sum 130 80

(a) Two-sample t-test

x̄ = 10.693, ȳ = 6.750, s2
x = 23.226, s2

y = 12.978, sx̄−ȳ =
√
s2
x̄ + s2

ȳ = 1.903.

Assume equal variances. The observed test statistic

t =
10.693− 6.750

1.903
= 2.072.

With df = 18, the two-sided p-value = 0.053 is found using the Matlab command 2*tcdf(-2.072,18).

(b) Wilcoxon rank sum test statistics Rx = 130, Ry = 80. From the table on page A22 we find that
the two-sided p-value is between 0.05 < p-value < 0.10.

(c) The non-parametric test in (b) is more relevant, since both normplot(x) and normplot(y) show
non-normality of the data distribution.

(d) To estimate the probability π, that a type I bearing will outlast a type II bearing, we turn to the
ordered pooled sample

X-YYYYYY-XX-Y-X-Y-XX-YY-XXXX.

Pick a pair (X,Y ) at random, then by the division rule of probability

P(X < Y ) =
number of (xi < yj)

total number of pairs (xi, yj)
=

10 + 4 + 4 + 3 + 2 + 2

100
= 0.25.

This implies a point estimate π̂ = 0.75.

(e) The matlab commands

u=x(random(’unid’,10,10,1000));
v=y(random(’unid’,10,10,1000));
N=zeros(1,1000);
for k=1:1000 for i=1:10 for j=1:10
N(k)=N(k)+(u(i,k)>v(j,k));
end,end,end
P=N/100;
hist(P,20)
std(P)

estimate the sampling distribution of π̂ with sπ̂ = 0.1187.
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Problem 11.27

Find the exact null distribution for the test statistic of the signed rank test with n = 4.

Solution 11.27

Model: iid-sample of the differences d1, . . . , dn whose population distribution is symmetric around the
unknown median m. Test the null hypothesis of no difference H0 : m = 0 using the signed ranks defined
as follows:

step 1: remove signs |d1|, . . . , |dn|,
step 2: assign ranks 1, . . . , n to |d1|, . . . , |dn|,
step 3: attach accordingly the original signs to the ranks 1, . . . , n,
step 4: compute w+ as the sum of the positive ranks.

Under H0 : m = 0, on the step 4, the signs ± are assigned symmetrically at random. There are 16
equally likely outcomes

1 2 3 4 w+

− − − − 0
+ − − − 1
− + − − 2
+ + − − 3
− − + − 3
+ − + − 4
− + + − 5
+ + + − 6
− − − + 4
+ − − + 5
− + − + 6
+ + − + 7
− − + + 7
+ − + + 8
− + + + 9
+ + + + 10

Thus the null distribution of W+ is given by the table

k 0 1 2 3 4 5 6 7 8 9 10
pk

1
16

1
16

1
16

2
16

2
16

2
16

2
16

2
16

1
16

1
16

1
16

The smallest one-sided p-value is 1
16 = 0.06 which is higher than 5%. Thus n = 4 is too small sample

size.

Problem 11.28

Turn to the two-sided signed rank test. For n = 10, 20, 25 and α = 0.05, 0.01, compare the critical values
from the table and using the normal approximation of the null distribution.

Solution 11.28

Using

W0.05(n) =
n(n+ 1)

4
− 1.96 ·

√
n(n+ 1)(2n+ 1)

24
,

W0.01(n) =
n(n+ 1)

4
− 2.58 ·

√
n(n+ 1)(2n+ 1)

24
,

we find (table/normal approximation)
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n = 10 n = 20 n = 25
n(n+1)

4 27.5 105 162.5√
n(n+1)(2n+1)

24 9.81 26.79 37.17

α = 0.05 8/8.3 52/53.5 89/89.65
α = 0.01 3/2.2 38/36.0 68/67.6

Problem 11.34

Two population distributions with σx = σy = 10. Two samples of sizes n = 25 can be taken in two ways

(a) paired with Cov(Xi, Yi) = 50, i = 1, . . . , 25,
(b) unpaired x1, . . . , x25 and y1, . . . , y25.

Compare the power curves for testing

H0 : µx = µy, H1 : µx > µy, α = 0.05.

Solution 11.34

(a) The variance of a difference

Var(D) = Var(X − Y ) = σ2
x + σ2

y − 2Cov(X,Y ) = 100 + 100− 100 = 100.

Using the normal approximation we get

D̄ = X̄ − Ȳ ≈ N(µx − µy, 100
25 ) = N(δ, 4).

The rejection region becomes
R = { d̄2 > 1.645} = {d̄ > 3.29}.

The power function
Pw(δ) = P(D̄ > 3.29|N(δ, 4)) ≈ 1− Φ( 3.29−δ

2 ).

(b) Two independent samples

D̄ ≈ N(µx − µy, 100
25 + 100

25 ) = N(δ, 8).

The rejection region
R = { d̄√

8
> 1.645} = {d̄ > 4.65}.

The power function
Pw(δ) = P(D̄ > 4.65|N(δ, 8)) ≈ 1− Φ( 4.65−δ

2.83 ).

The two power functions are compared graphically on the next figure.

0.05

0.5

1

3.29 4.65

Independent samples

Paired samples

Power function
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Problem 11.36

Lin, Sutton, and Qurashi (1979) compared microbiological and hydroxylamine methods for the analysis
of ampicillin dosages. In one series of experiments, pairs of tablets were analysed by the two methods.
The data in the table give the percentages of claimed amount of ampicillin found by the two methods in
several pairs of tablets.

Microbiological method Hydroxylamine method
97.2 97.2
105.8 97.8
99.5 96.2
100 101.8
93.8 88
79.2 74
72 75
72 67.5

69.5 65.8
20.5 21.2
95.2 94.8
90.8 95.8
96.2 98
96.2 99
91 100.2

What are x̄− ȳ and sx̄−ȳ? If the pairing had been erroneously ignored and it had been assumed that the
two samples were independent, what would have been the estimate of the standard deviation of X̄ − Ȳ ?
Analyse the data to determine if there is a systematic difference between the two methods.

Solution 11.36

Paired samples

x̄ = 85.26, sx = 21.20, sx̄ = 5.47, nx = 15,

ȳ = 84.82, sy = 21.55, sȳ = 5.57, ny = 15,

d̄ = x̄− ȳ = 0.44,

sd = 4.63, sx̄−ȳ = 1.20.

If the pairing had been erroneously ignored, then the two independent samples formula would give 6
times larger standard error

sx̄−ȳ = 7.81.

To test H0 : µx = µy against H1 : µx 6= µy assume D ∼ N(µ, σ2) and apply one-sample t-test

t =
d̄

sd̄
= 0.368.

With df = 14, two-sided p-value = 0.718, we can not reject H0.
Without normality assumption we apply the signed rank test. Matlab command

signrank(x,y)

computes the two-sided p-value = 0.604. We can not reject H0.

Problem 11.52

The media often present short reports of the results of experiments. To the critical reader, such reports
often raise more questions than they answer. Comment on the following pitfalls in the interpretation of
each of the following.
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(a) It is reported that patients whose hospital rooms have a window recover faster than those whose
rooms do not.

(b) Nonsmoking wives whose husbands whose husbands smoke have a cancer rate twice that of wives
whose husbands do not smoke.

(c) A two-year study in North Carolina found that 75% of all industrial accidents in the state happened
to workers who had skipped breakfast.

(d) A school integration program involved busing children from minority schools to majority (pri-
marily white) schools. Participation in the program was voluntary. It was found that the students who
were bused scored lower on standardised tests than did their peers who chose not to be bused.

(e) When a group of students were asked to match pictures of newborns and with pictures of their
mothers, they were correct 36% of the time.

(f) A survey found that that those who drank a moderate amount of beer were healthier than those
who totally abstained from alcohol.

(g) A 15-year study of more than 45 000 Swedish soldiers revealed that heavy users of marijuana
were six times more likely than nonusers to develop schizophrenia.

(h) A University of Wisconsin study showed that within 10 years of wedding, 38% of those who had
lived together before marriage had split up, compared to 27% of those who had married without a ”trial
period”.

(i) A study of nearly 4000 elderly North Carolinians has found that those who attended religious
services every week were 46% less likely to die over a six-year period than people who attended less often
or not at all.

Solution 11.52

Possible explanations

(a) room with a window ← rich patient → recovers faster,

(b) besides passive smoking: smoker ← the man is a bad husband → wife gets cancer,

(c) no breakfast ← more stress → accident,

(d) choose to change the school and to be bused ← lower grades before → lower grades after,

(e) match two babies with two mothers (or even 3 babies with 3 mothers) then it is pure chance,
(f) abstain from alcohol ← poor health,
(g) marijuana ← schizophrenia,
(h) total time together = time before wedding + time after wedding,
(i) being part of a community can have a positive effect on mental health and emotional wellbeing.

7 Analysis of variance

Useful Matlab commands:

boxplot(x)
anova1(x)
anova2(x)

where x is the data matrix.

Problem 12.3

For a one-way analysis of variance with two treatment groups, show that the F statistic is t2, where t is
the test statistic for a two-sample t-test.

Solution 12.3

Consider one-way ANOVA test statistic

F =
MSA
MSE

=
J
I−1

∑I
i=1(ȳi· − ȳ··)2

1
I(J−1)

∑I
i=1

∑J
j=1(yij − ȳi·)2
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For I = 2 and J = n, put

ȳ1· = x̄, ȳ2· = ȳ, ȳ·· =
x̄+ ȳ

2
.

In this two-sample setting, the F-test statistic becomes

F =
n[(x̄− x̄+ȳ

2 )2 + (ȳ − x̄+ȳ
2 )2]

1
2(n−1) [

∑n
j=1(xj − x̄)2 +

∑n
j=1(yj − ȳ)2]

=
2n( x̄−ȳ2 )2

s2
p

=
(

x̄−ȳ
sp
√

2
n

)2

.

This equals t2, where t = x̄−ȳ
sp
√

2
n

is the two-sample t-test statistic.

Problem 12.5

Derive the likelihood ratio test for the null hypothesis of the one-way layout, and show that it is equivalent
to the F-test.

Solution 12.5

The null hypothesis says that the data (yij) comes from a single normal distribution

H0 : µ1 = . . . = µI = µ

described by two parameters µ and σ2, so that dim Ω0 = 2, while

dim Ω = I + 1

since the general setting is described by parameters µ1, . . . , µI and σ2. The likelihood ratio

Λ =
L0(µ̂, σ̂2

0)

L(µ̂1, . . . , µ̂I , σ̂2)
,

is expressed in terms of two likelihood functions

L(µ1, . . . , µI , σ
2) =

I∏
i=1

J∏
j=1

1√
2πσ

e
(yij−µi)

2

2σ2 ∝ σ−n exp{−
∑
i

∑
j

(yij−µi)2

2σ2 },

L0(µ, σ2) = L(µ, . . . , µ, σ2) ∝ σ−n exp{−
∑
i

∑
j

(yij−µ)2

2σ2 }.

where n = IJ . We find the maximum likelihood estimates to be

µ̂ = ȳ··, σ̂2
0 =

SST

n
, µ̂i = ȳi·, σ̂2 =

SSE

n
,

which yields

Λ =
σ̂−n0 exp{−

∑∑ (yij−µ̂)2

2σ̂2
0
}

σ̂−n exp{−
∑∑ (yij−µ̂i)2

2σ̂2 }
=
( σ̂2

0

σ̂2

)−n/2
.

The likelihood ratio test rejects the null hypothesis for small values of Λ or equivalently for large
values of

σ̂2
0

σ̂2
= SST

SSE
= 1 + SSA

SSE
= 1 + J(I−1)MSA

I(J−1)MSE
= 1 + J(I−1)

I(J−1) · F

that is for large values of F-test statistics. This leads to an asymptotic approximation of the FJ(I−1),I(J−1)

in terms of the chi-square distribution with df = I − 1.

Problem 12.10

Suppose in a one-way layout there are 10 treatments and seven observations under each treatment. What
is the ratio of the length of a simultaneous confidence interval for the difference of two means formed
by Tukey’s method to that of one formed by the Bonferroni method? How do both of these compare in
length to an interval based on the t-distribution that does not take account of multiple comparisons?
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Solution 12.10

One-way layout with I = 10, J = 7,
Yij ∼ N(µi, σ

2).

Pooled sample variance

s2
p = MSE =

1

I(J − 1)

∑
i

∑
j

(xij − x̄i.)2

uses df = I(J − 1) = 60.

(a) A 95% confidence interval for a single difference µu − µv

Iµu−µv = ȳu· − ȳv· ± t60(0.025)sp

√
2
J

has the half-width of
2.82 · sp√

J
.

(b) Bonferroni simultaneous 95% confidence interval for
(

10
2

)
= 45 differences µu − µv

Bµu−µv = ȳu· − ȳv· ± t60( 0.025
45 )sp

√
2
J

has the half-width of
4.79 · sp√

J
,

giving the ratio
4.79
2.82 = 1.7.

(c) Tukey simultaneous 95% confidence interval for differences µu − µv

Tµu−µv = ȳu· − ȳv· ± q10,60(0.05)
sp√
J

has the half-width of
4.65 · sp√

J
,

giving the ratio
Bonferroni

Tukey = 4.79
4.65 = 1.03.

Problem 12.21

Duringeach of four experiments on the use of carbon tetrachloride as a worm killer, ten rats were infested
with larvae (Armitage 1983). Eight days later, five rats were treated with carbon tetrachloride; theother
five were kept as controls. After two more days, all the rats were killed and the numbers of worms were
counted. The table below gives the counts of worms for the four control groups.

Group I Group II Group III Group IV
279 378 172 381
338 275 335 346
334 412 335 340
198 265 282 471
303 286 250 318

Significant differences among the control groups, although not expected, might be attributable to changes
in the experimental conditions. A finding of significance differences could result in more carefully con-
trolled experimentation and thus greater precision in later work.

Use both graphical techniques and the F-test to test whether there are significant differences among
the four groups. Use a nonparametric technique as well.
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Solution 12.21

For I = 4 control groups of J = 5 mice each, test H0: no systematic differences between groups. One
way ANOVA table

Source SS df MS F P
Columns 27230 3 9078 2.271 0.12
Error 63950 16 3997
Total 91190 19

Do not reject H0 at 10% significance level. Boxplots show non-normality. The largest difference is
between the third and the fourth boxplots. Control question: why the third boxplot has no upper
whisker?

Kruskal-Wallis test. Pooled sample ranks

Group I 2 6 9 11 14 r̄1. = 8.4
Group II 4 5 8 17 19 r̄2. = 10.6
Group III 1 3 7 12.5 12.5 r̄3. = 7.2
Group IV 10 15 16 18 20 r̄4. = 15.8

Kruskal-Wallis test statistic

K =
12 · 5
20 · 21

(
(8.4− 10.5)2 + (10.6− 10.5)2 + (7.2− 10.5)2 + (15.8− 10.5)2

)
= 6.20.

Since χ2
3(0.1) = 6.25, we do not reject H0 at 10% significance level.

Problem 12.26

The concentrations (in nanogram per milimiter) of plasma epinephrine were measured for 10 dogs under
isofluorane, halothane, and cyclopropane anesthesia. The measurements are given in the following table
(Perry et al. 1974).

Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Dog 6 Dog 7 Dog 8 Dog 9 Dog 10
Isofluorane 0.28 0.51 1.00 0.39 0.29 0.36 0.32 0.69 0.17 0.33
Halothane 0.30 0.39 0.63 0.68 0.38 0.21 0.88 0.39 0.51 0.32
Cyclopropane 1.07 1.35 0.69 0.28 1.24 1.53 0.49 0.56 1.02 0.30

Is there a difference in treatment effects? Use a parametric and a nonparametric analysis.

Solution 12.26

Two-way layout with I = 3 treatments on J = 10 subjects with K = 1 observations per cell. ANOVA
table
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Source SS df MS F P
Columns (blocks) 0.517 9 0.0574 0.4683 0.8772
Rows (treatments) 1.081 2 0.5404 4.406 0.0277
Error 2.208 18 0.1227
Total 3.806 29

Reject
H0: no treatment effects

at 5% significance level. (Interestingly, no significant differences among the blocks.)

Friedman’s test. Ranking within blocks:

Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Dog 6 Dog 7 Dog 8 Dog 9 Dog 10 r̄i.
Isof 1 2 3 2 1 2 1 3 1 3 1.9
Halo 2 1 1 3 2 1 3 1 2 2 1.8
Cycl 3 3 2 1 3 3 2 2 3 1 2.3

The observed value of the Friedman test statistic

Q =
12 · 10

3 · 4
(
(1.8− 2)2 + (1.9− 2)2 + (2.3− 2)2

)
= 1.4.

Since χ2
2(0.1) = 4.61, we can not reject H0 even at 10% significance level.

Problem 12.28

Samples of each of three types of stopwatches were tested. The following table gives thousands of cycles
(on-off-restart) survived until some part of the mechanism failed (Natrella 1963).

Type I 1.7 1.9 6.1 12.5 16.5 25.1 30.5 42.1 82.5
Type II 13.6 19.8 25.2 46.2 46.2 61.1
Type III 13.4 20.9 25.1 29.7 46.9

Test whether there is a significant difference among the types. Use both a parametric and a nonparametric
technique.

Solution 12.28
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One way layout with I = 3 types of stopwatches, different sample sizes. ANOVA table

Source SS df MS F P
Columns 446.6 2 223.3 0.4974 0.6167
Error 7632 17 449
Total 8079 19
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gives the p-value of 0.6167. We do not reject H0: no systematic differences between groups.

Kruskal-Wallis test. Pooled sample ranks

Type I 1 2 3 4 7 10.5 14 15 20 r̄1. = 8.5
Type II 6 8 12 16.5 16.5 19 r̄2. = 13.0
Type III 5 9 10.5 13 18 r̄3. = 11.1

The observed value of the test statistic

K =
12

20 · 21

(
9 · (8.5− 10.5)2 + 6 · (13.0− 10.5)2 + 5 · (11.1− 10.5)2

)
= 2.15.

Since χ2
2(0.1) = 4.61, we do not reject H0 even at 10% significance level.

Problem 12.34

The following table gives the survival times (in hours) for animals in an experiment whose design consisted
of three poisons, four treatments, and four observations per cell.

Treatment A Treatment B Treatment C Treatment D
Poison I 3.1 4.5 8.2 11.0 4.3 4.5 4.5 7.1

4.6 4.3 8.8 7.2 6.3 7.6 6.6 6.2
Poison II 3.6 2.9 9.2 6.1 4.4 3.5 5.6 10.0

4.0 2.3 4.9 12.4 3.1 4.0 7.1 3.8
Poison III 2.2 2.1 3.0 3.7 2.3 2.5 3.0 3.6

1.8 2.3 3.8 2.9 2.4 2.2 3.1 3.3

(a) Conduct a two-way analysis of variance to test the effects of the two main factors and their
interaction.

(b) Box and Cox (1964) analysed the reciprocals of the data, pointing out that the reciprocal of
a survival time can be interpreted as the rate of death. Conduct a two-way analysis of variance, and
compare to the results of part (a). Comment on how well the standard two-way ANOVA model fits and
on the interaction in both analyses.

Solution 12.34

Forty eight survival times: I = 3 poisons and J = 4 treatments with K = 4 observations per cell. Cell
means for the survival times

A B C D
I 4.125 8.800 5.675 6.100
II 3.200 8.150 3.750 6.625
III 2.100 3.350 2.350 3.250

Draw three profiles: I and II cross each other, and profile III is more flat. Three null hypotheses of
interest

HA: no poison effect,
HB : no treatment effect,
HAB : no interaction.

(a) Survival in hours x data matrix. Results of anova2(x,4)

Source SS df MS F P
Columns (treatments) 91.9 3 30.63 14.01 0.0000
Rows (poisons) 103 2 51.52 23.57 0.0000
Intercation 24.75 6 4.124 1.887 0.1100
Error 78.69 36 2.186
Total 298.4 47
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Reject HA and HB at 1% significance level, we can not reject HAB even at 10% significance level:

3 poisons act differently,
4 treatments act differently,
some indication of interaction.

Analysis of the residuals

normal probability plot reveals non-normality,
skewness = 0.59,
kurtosis = 4.1.
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Figure 1: Left panel: survival times. Right panel: death rates.

(b) Transformed data: death rate = 1/survival time. Cell means for the death rates

A B C D
I 0.249 0.116 0.186 0.169
II 0.327 0.139 0.271 0.171
III 0.480 0.303 0.427 0.309

Draw three profiles: they look more parallel.
New data matrix y=x.̂ (-1). Results of anova2(y,4):

Source SS df MS F P
Columns (treatments) 0.204 3 0.068 28.41 0.0000
Rows (poisons) 0.349 2 0.174 72.84 0.0000
Intercation 0.01157 6 0.0026 1.091 0.3864
Error 0.086 36 0.0024
Total 0.6544 47

Reject HA and HB at 1% significance level. Do not reject HAB . Conclusions

3 poisons act differently,
4 treatments act differently,
no interaction,
the normal probability plot of residuals reveals a closer fit to normality assumption.

8 Categorical data analysis

Warning: in some of the contingency tables the expected counts are rounded. If you then will compute
the chi-square test statistic χ2 from the table, you will often get a somewhat different value.
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Problem 13.1

Adult-onset diabetes is known to be highly genetically determined. A study was done comparing fre-
quencies of a particular allele in a sample of such diabetics and a sample of nondiabetics. The data is
shown in the following table:

Diabetic Normal Total
Bb or bb 12 4 16
BB 39 49 88
Total 51 53 104

Are the relative frequencies of the alleles significantly different in the two groups?

Solution 13.1

Test
H0: same genotype frequencies for diabetics and normal

using the chi-square test of homogeneity.

Diabetic Normal Total
Bb or bb 12 (7.85) 4 (8.15) 16
BB 39 (43.15) 49 (44.85) 88
Total 51 53 104

Observed χ2=5.10, df=1, p-value = 0.024. Reject H0. Diabetics have genotype BB less often.

The exact Fisher test uses Hg(104,51, 16
104 ) as the null distribution of the test statistic N11 = 12

one-sided P-value: 1-hygecdf(11,104,16,51)=0.0225,
two-sided P-value P = 0.045.

Normal approximation of the null distribution

Hg(104, 51, 16
104 ) ≈ N(7.85, 3.41).

Since zobs = 12−7.85√
3.41

=2.245, the approximate two-sided p-value = 0.025.

Problem 13.3

Overfield and Klauber (1980) published the following data on the incidence of tuberculosis in relation to
blood groups in a sample of Eskimos. Is there any association of the disease and blood group within the
ABO system or within the MN system?

O A AB B
Moderate 7 5 3 13
Minimal 27 32 8 18
Not present 55 50 7 24

MM MN NN
Moderate 21 6 1
Minimal 54 27 5
Not present 74 51 11

Solution 13.3

(a) H0: no association of the disease and the ABO blood group:

O A AB B Total
Moderate 7 (10.4) 5 (9.8) 3 (2.0) 13 (6.2) 28
Minimal 27 (30.4) 32 (29.7) 8 (6.1) 18 (18.8) 85
Not present 55 (48.6) 50 (47.5) 7 (9.8) 24 (30.0) 136
Total 89 87 18 55 249
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Observed χ2=15.37, df=6, p-value = 0.018. Reject H0.

(b) H0: no association of the disease and the MN blood group:

MM MN NN Total
Moderate 21 (16.7) 6 (9.4) 1 (1.9) 28
Minimal 54 (51.3) 27 (28.9) 5 (5.8) 86
Not present 74 (81.1) 51 (45.7) 11 (9.2) 136
Total 149 84 17 250

Observed χ2=4.73, df=4, p-value = 0.42. Can not reject H0.

Problem 13.6

It is conventional wisdom in military squadron that pilots tend to father more girls than boys. Snyder
(1961) gathered data for military fighter pilots. The sex of the pilots’ offspring were tabulated for three
kinds of flight duty during the month of conception, as shown in the following table.

Girl Boy
Flying fighter 51 38
Flying transport 14 16
Not flying 38 46

(a) Is there any significant difference between the three groups?
(b) In the United States in 1950, 105.37 males were born for every 100 females. Are the data consistent

with this sex ratio?

Solution 13.6

(a) Apply the chi-square test of homogeneity:

Girl Boy Total
Flying fighter 51 (45.16) 38 (43.84) 89
Flying transport 14 (15.22) 16 (14.78) 30
Not flying 38 (42.62) 46 (41.38) 84
Total 103 100 203

Observed χ2=2.75, df=2, p-value = 0.25. Can not reject H0.

(b) Goodness of fit chi-square test for the same sex ratio for three father’s activities

H0: boys proportions p12 = p22 = p32 = 0.513.

Here 0.513 is obtained as
105.37

105.37 + 100
= 0.513.

Observed and expected counts

Girl Boy Total
Flying fighter 51 (45.66) 38 (43.34) 89
Flying transport 14 (15.39) 16 (14.61) 30
Not flying 38 (43.09) 46 (40.91) 84
Total 103 100 203

Observed χ2=2.775, df=3, p-value = 0.43. Can not reject H0.
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Problem 13.8

A randomized double-blind experiment compared the effectiveness of several drugs in ameliorating post-
operative nausea. All patients were anesthetized with nitrous oxide and ether. The following table shows
the incidence of nausea during the first four hours for each of several drugs and a placebo (Beecher 1959).

Number of patients Incidence of nausea
Placebo 165 95
Chlorpromazine 152 52
Dimenhydrinate 85 52
Pentobarbital (100 mg) 67 35
Pentobarbital (150 mg) 85 37

Compare the drugs to each other and to the placebo.

Solution 13.8

We use the chi-square test for homogeneity

No nausea Incidence of nausea Total
Placebo 70 (84) 95 (81) 165
Chlorpromazine 100 (78) 52 (74) 152
Dimenhydrinate 33 (43) 52 (42) 85
Pentobarbital (100 mg) 32 (34) 35 (33) 67
Pentobarbital (150 mg) 48 (43) 37 (42) 85
Total (150 mg) 283 271 554

The observed test statistic χ2 = 35.8 according to the χ2
4-distribution table gives p-value = 3 · 10−7.

Comparing the observed and expected counts we conclude that Placebo and Dimenhydrinate are most
effective in ameliorating postoperative nausea.

Problem 13.17

In a study of the relation of blood type to various diseases, the following data were gathered in London
and Manchester (Woolf 1955).

London Control Peptic Ulcer
Group A 4219 579
Group O 4578 911

Manchester Control Peptic Ulcer
Group A 3775 246
Group O 4532 361

First, consider the two tables separately. Id there a relationship between blood type and propensity to
peptic ulcer? If so, evaluate the strength of the relationship. Are the data from London and Manchenster
comparable?

Solution 13.17

(a) H0: no relation between blood group and disease in London:

Control Peptic Ulcer Total
Group A 4219 (4103.0) 579 (695.0) 4798
Group O 4578 (4694.0) 911 (795.0) 5489
Total 8797 1490 10287

Observed χ2=42.40, df=1, p-value = 0.000. Reject H0. Odds ratio ∆̂ = 1.45.

(b) H0: no relation between blood group and disease in Manchester:

Control Peptic Ulcer Total
Group A 3775 (3747.2) 246 (273.8) 4021
Group O 4532 (4559.8) 361 (333.2) 4893
Total 8307 607 8914
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Observed χ2=5.52, df=1, p-value = 0.019. Reject H0. Odds ratio ∆̂ = 1.22.

(c) H0: London Group A and Manchester Group A have the same propensity to Peptic Ulcer:

C and A PU and A Total
London 4219 (4349.2) 579 (448.8) 4798
Manchester 3775 (3644.8) 246 (376.2) 4021
Total 7994 825 8819

Observed χ2=91.3, df=1, p-value = 0.000. Reject H0.

H0: London Group O and Manchester Group O have the same propensity to Peptic Ulcer:

C and O PU and O Total
London 4578 (4816.5) 911 (672.5) 5489
Manchester 4532 (4293.5) 361 (599.5) 4893
Total 9110 1272 10382

Observed χ2=204.5, df=1, p-value = 0.000. Reject H0.

Problem 13.18

Record of 317 patients at least 48 years old who were diagnosed as having endometrial carcinoma were
obtained from two hospitals (Smith et al. 1975). Matched controls for each case were obtained from
the two institutions: the controls had cervical cancer, ovarian cancer, or carcinoma of the vulva. Each
control was matched by age at diagnosis (within four years) and year of diagnosis (within two years) to
a corresponding case of endometrial carcinoma.

The following table gives the number of cases and controls who had taken estrogen for at least 6
months prior to the diagnosis of cancer.

Controls: estrogen used Controls: estrogen not used Total
Cases: estrogen used 39 113 152
Cases: estrogen not used 15 150 165
Total 54 263 317

(a) Is there a significant relationship between estrogen use and endometrial cancer?
(b) This sort of of design, called a retrospective case-control study, is frequently used in medical

investigations where a randomised experiment is not possible. Do you see any possible weak points in a
retrospective case-control design?

Solution 13.18

D = endometrical carcinoma, X = estrogen taken at least 6 months prior to the diagnosis of cancer.

(a) Matched controls, retrospective case-control study

D̄X D̄X̄ Total
DX 39 113 152

DX̄ 15 150 165
Total 54 263 317

Apply McNemar test for
H0 : π1· = π·1 vs H1 : π1· 6= π·1.

Observed value of the test statistic
χ2 = (113−15)2

113+15 = 75
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is highly significant as
√

75 = 8.7 and the corresponding two-sided P-value obtained from N(0,1) table
is very small.

(b) Possible weak points in a retrospective case-control design

- selection bias: some patients have died prior the study,
- information bias: have to rely on other sources of information.

Problem 13.19

A psychological experiment was done to investigate the effect of anxiety on a person’s desire to be alone
or in company (Lehman 1975). A group of 30 subjects was randomly divided into two groups of sizes
13 and 17. The subjects were told that they would be subjected to some electric shocks, but one group
(high-anxiety) was told that the shocks would be quite painful and the other group (low-anxiety) was
told that they would be mild and painless. Both groups were told that there would be a 10-min wait
before the experiment began, and each subject was given the choice of waiting alone or with the other
subjects. The following are the results:

Wait Together Wait Alone Total
High-Anxiety 12 5 17
Low-Anxiety 4 9 13
Total 16 14 30

Use Fisher’s exact test to test whether there is a significant difference between the high- and low-anxiety
groups. What is a reasonable one-sided alternative?

Solution 13.19

(a) The exact Fisher test uses Hg(30,17, 16
30 ) as the null distribution of the test statistic n11 = 12. It

gives

one-sided P-value: 1-hygecdf(11, 30, 16, 17) = 0.036,
two-sided P-value P = 0.071.

(b) Using normal approximation

Hg(30, 17, 16
30 ) ≈ N(9.1, (1.4)2)

and continuity correction, we find the one-sided p-value to be

P(N11 ≥ 12|H0) = P(N11 > 11|H0) ≈ 1− Φ( 11.5−9.1
1.4 ) = 1− Φ(1.71) = 0.044.

(c) Approximate chi-square test yields: observed χ2=4.69, df=1, two-sided p-value

2(1− Φ(
√

4.69)) = 2(1− Φ(2.16)) = 0.03.

Problem 13.24

Hill and Barton (2005): red against blue outfits - does it matter in combat sports? Although other colors
are also present in animal displays, it is specifically the presence and intensity of red coloration that
correlates with male dominance and testosterone levels. Increased redness during aggressive interactions
may reflect relative dominance.

In the 2004 Olympic Games, contestants in four combat sports were randomly assigned red and blue
outfits. The winner counts in different sports

Red Biue Total
Boxing 148 120 268
Freestyle wrestling 27 24 51
Greco-Roman wrestling 25 23 48
Tae Kwon Do 45 35 80
Total 245 202 447
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(a) Let πR denote the probability that the contestant wearing red wins. Test the null hypothesis that
πR = 0.5 versus the alternative hypothesis that πR is the same in each sport, but πR 6= 0.5.

(b) Test the null hypothesis that πR = 0.5 versus the alternative hypothesis that allows πR to be
different in different sports, but not equal to 0.5.

(c) Are these hypothesis tests equivalent to that which would test the null hypothesis πR = 0.5 versus
the alternative hypothesis πR 6= 0.5, using as data the total numbers of wins summed over all the sports?

(d) Is there any evidence that wearing red is more favourable in some of the sports than others?

Solution 13.24

Denote

π1 = probability that red wins in boxing,
π2 = probability that red wins in freestyle wrestling,
π3 = probability that red wins in Greco-Roman wrestling,
π4 = probability that red wins in Tae Kwon Do.

(a, c) Assuming
Heq : π1 = π2 = π3 = π4 = π,

we test
H0 : π = 1

2 vs H1 : π 6= 1
2 .

We use the large sample test for proportion based on the statistic X = 245 whose null distribution is
Bin(n, 1

2 ), n = 447. The two-sided P-value is approximated by

2(1− Φ(
245− 447

2√
447· 12

) = 2(1− Φ(2.034) = 0.042.

At 5% level we reject the H0 : π = 1
2 . The maximum likelihood estimate is π̂ = 245

447 = 0.55.

(d) Is there evidence that wearing red is more favourable in some of the sports than others? We test

Heq : π1 = π2 = π3 = π4 vs Hineq : πi 6= πj for some i 6= j

using the chi-square test of homogeneity. From

Red Biue Total
Boxing 148 (147) 120 (121) 268
Freestyle wrestling 27 (28) 24 (23) 51
Greco-Roman wrestling 25 (26) 23 (22) 48
Tae Kwon Do 45 (44) 35 (36) 80
Total 245 202 447
Marginal proportions 0.55 0.45 1.00

we find that the test statistic χ2 = 0.3 is not significant. We can not reject Heq, which according to (a)
leads to π̂ = 0.55.

(b) Now we state the hypotheses of interest directly: consider

H0 : π1 = π2 = π3 = π4 = 1
2 vs H1 : (π1, π2, π3, π4) 6= ( 1

2 ,
1
2 ,

1
2 ,

1
2 ).

Here we need a new chi-square test, a chi-square test for k proportions with k = 4 (see below). Given
four observed counts x1 = 148, x2 = 27, x3 = 25, x4 = 45, we obtain

Red Biue Total
Boxing 148 (134) 120 (134) 268
Freestyle wrestling 27 (25.5) 24 (25.5) 51
Greco-Roman wrestling 25 (24) 23 (24) 48
Tae Kwon Do 45 (40) 35 (40) 80
H0 proportions 0.5 0.5 1.00

we find χ2
obs = 4.4. Since χ2

4(0.1) = 7.8, we do not reject H0 : π1 = π2 = π3 = π4 = 1
2 .
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Chi-square test for k proportions

We derive it using the likelihood ratio approach.
the likelihood function based on the binomial model has the form

L(π1, π2, π3, π4) =

4∏
i=1

(
ni
xi

)
πxii (1− πi)ni−xi .

Using π̂i = xi
ni

, we compute the likelihood ratio as

Λ =
L( 1

2 ,
1
2 ,

1
2 ,

1
2 )

L(π̂1, π̂2, π̂3, π̂4)
=

( 1
2 )n∏4

i=1( xini )
xi(ni−xini

)ni−xi
.

Turning to the logarithms,

∆ = − ln Λ =

4∑
i=1

xi ln 2xi
ni

+ (ni − xi) ln 2(ni−xi)
ni

,

we take 2∆ as the test statistic.
Next we show that the null distribution of 2∆ is approximately χ2

4. Under H0 we have 2xi
ni
≈ 1, and

using a Taylor expansion we find that

2∆ ≈ χ2 =

4∑
i=1

(xi−
ni
2 )2

ni/4
,

where Zi =
Xi−

ni
2√

ni/4
are independent and approximately N(0,1) distributed, provided Xi ∼ Bin(ni,

1
2 ).

9 Multiple regression

Problem 14.2

Ten pairs

x 0.34 1.38 -0.65 0.68 1.40 -0.88 -0.30 -1.18 0.50 -1.75
y 0.27 1.34 -0.53 0.35 1.28 -0.98 -0.72 -0.81 0.64 -1.59

Draw a scatter plot.
(a) Fit a straight line y = a+ bx by the method of least squares, and sketch it on the plot.
(b) Fit a straight line x = c+ dy by the method of least squares, and sketch it on the plot.
(c) Are the lines on (a) and (b) the same? If not, why not?

Solution 14.2

We have after ordering

x -1.75 -1.18 -0.88 -0.65 -0.30 0.34 0.50 0.68 1.38 1.40
y -1.59 -0.81 -0.98 -0.53 -0.72 0.27 0.64 0.35 1.34 1.28

and
x̄ = −0.046, ȳ = −0.075, sx = 1.076, sy = 0.996, r = 0.98.

(a) Simple linear regression model

Y = β0 + β1X + ε, ε ∼ N(0, σ2).

Fitting a straight line using
y − ȳ = r · sysx (x− x̄)
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we get the predicted response
ŷ = −0.033 + 0.904 · x.

Estimated σ2

s2 = n−1
n−2s

2
y(1− r2) = 0.05.

(b) Simple linear regression model

X = β0 + β1y + ε, ε ∼ N(0, σ2).

Fitting a straight line using
x− x̄ = r · sxsy (y − ȳ)

we get the predicted response
x̂ = 0.033 + 1.055 · y.

Estimated σ2

s2 = n−1
n−2s

2
x(1− r2) = 0.06.

(c) First fitted line
y = −0.033 + 0.904 · x

is different from the second
y = −0.031 + 0.948 · x.

They are different since in (a) we minimise the vertical residuals while in (b) - horizontal.

Problem 14.4

Two consecutive grades

X = the high school GPA (grade point average),
Y = the freshman GPA.

Allow two different intercepts for females

Y = βF + β1X + ε, ε ∼ N(0, σ2)

and for males

Y = βM + β1X + ε, ε ∼ N(0, σ2).

Give the form of the design matrix for such a model.

Solution 14.4

Using an extra explanatory variable f which equal 1 for females and 0 for males, we rewrite this model
in the form of a multiple regression

Y = fβF + (1− f)βF + β1X + ε = β0 + β1X + β2f + ε,

where
β0 = βM , β2 = βF − βM .

Here p = 3 and the design matrix is

X =

 1 x1 f1

...
...

...
1 xn fn

 .

After β0, β1, β2 are estimated, we compute

βM = β0, βF = β0 + β2.

A null hypothesis of interest β2 = 0.
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Problem 14.14

Simple linear regression model

Y = β0 + β1X + ε, ε ∼ N(0, σ2).

Using n pairs of (xi, yi) we fit a regression line by

y = b0 + b1x, Var(b0) = σ2x2

(n−1)s2x
, Var(b1) = σ2

(n−1)s2x
, Cov(b0, b1) = − σ2x̄

(n−1)s2x
.

For a given x = x0, we wish to predict the value of a new observation

y0 = β0 + β1x0 + e0

by
ŷ0 = b0 + b1x0.

(a) Find an expression for the variance of Ŷ0 − Y0, and compare it to the variance of Ŷ0. Find Cn,

the standard deviation of Ŷ0−Y0

σ .
(b) Derive the formula for 95% prediction interval such that

P(Y0 ∈ I) = 0.95

using
Y0 − Ŷ0

sCn
∼ tn−2.

Solution 14.14

(a) The predicted value ŷ0 and actual observation Y0 are independent random variables, therefore

Var(Y0 − Ŷ0) = Var(Y0) + Var(ŷ0) = σ2 + Var(b0 + b1x0) = σ2C2
n,

where

C2
n = 1 +

Var(b0)+Var(b1)x2
0−2x0Cov(b0,b1)

σ2 = 1 +
x2+x2

0−2x̄x0

(n−1)s2x
= 1 + x2−x̄2+(x0−x̄)2

(n−1)s2x
= 1 + 1

n + (x0−x̄)2

(n−1)s2x
.

(b) A 95% prediction interval I for the new observation Y0 is obtained from

Y0−Ŷ0

sCn
∼ tn−2.

Since
0.95 = P(|Y0 − Ŷ0| ≤ tn−2(0.025) · sCn) = P(Y0 ∈ Ŷ0 ± tn−2(0.025) · sCn),

we conclude that a 95% prediction interval for the new observation Y0 is given by

I = b0 + b1x0 ± tn−2(0.025) · s
√

1 + 1
n + (x0−x̄)2

(n−1)s2x
.

The further from x̄ lies x0, the more uncertain becomes the prediction.

Problem 14.23

Data collected for

x = midterm grade,
y = final grade,

gave
r = 0.5, x̄ = ȳ = 75, sx = sy = 10.

(a) Given x = 95, predict the final score.
(b) Given y = 85 and not knowing the midterm score, predict the midterm score.
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Solution 14.23

(a) Given x = 95, we predict the final score by

ŷ = 75 + 0.5(95− 75) = 85.

Regression to mediocracy.

(b) Given y = 85 and we do not know the midterm score, we predict the midterm score by

x̂ = 75 + 0.5(85− 75) = 80.

Problem 14.33

Let
Y = X + βZ,

where X ∈ N(0, 1) and Z ∈ N(0, 1) are independent.

(a) Show that the correlation coefficient for X and Y is

ρ = 1√
1+β2

.

(b) Use the result of part (a) to generate bivariate samples (xi, yi) of size 20 with population corre-
lation coefficients −0.9, −0.5, 0, 0.5, and 0.9. Compute the sample correlation coefficients.

Solution 14.33

(a) Find the correlation coefficient ρ for (X,Y ). Since EX = 0, we have

Cov(X,Y ) = E(XY ) = E(X2 + βXZ) = 1, VarY = VarX + VarZ = 1 + β2,

and we see that the correlation coefficient is always positive

ρ = 1√
1+β2

.

(b) Use (a) to generate five samples

(x1, y1), . . . , (x20, y20)

with different
ρ = −0.9, −0.5, 0, 0.5, 0.9,

and compute the sample correlation coefficients.
From ρ = 1√

1+β2
, we get β =

√
ρ−2 − 1 so that

ρ = 0.5⇒ β = 1.73, ρ = 0.9⇒ β = 0.48.

How to generate a sample with ρ = −0.9 using Matlab:

X=randn(20,1);
Z=randn(20,1);
Y=-X+0.48*Z;
r=corrcoeff(X,Y)

How to generate a sample with ρ = 0 using Matlab:

X=randn(20,1);
Y=randn(20,1);
r=corrcoeff(X,Y)

Simulation results

ρ -0.9 -0.5 0 0.5 0.9
r -0.92 -0.45 -0.20 0.32 0.92

54



Problem 14.42

The stopping distance of an automobile on a certain road was studied as a function of velocity (Brownee
1960)

velocity of a car x (mi/h) 20.5 20.5 30.5 40.5 48.8 57.8
stopping distance y (ft) 15.4 13.3 33.9 73.1 113.0 142.6

Fit y and
√
y as linear functions of velocity, and examine the residuals in each case. Which fit is better?

Can you suggest any physical reason that explains why?

Solution 14.42

Matlab commands (x and y are columns)

[b,bint,res,rint,stats]=regress(y,[ones(6,1),x])

[b,bint,res,rint,stats]=regress(sqrt(y),[ones(6,1),x])

give two sets of residuals - see the plot. Two simple linear regression models

y = −62.05 + 3.49 · x, r2 = 0.984,
√
y = −0.88 + 0.2 · x, r2 = 0.993.

Kinetic energy formula explains why the second model is better.

Problem A.1

Suppose we agiven a two-dimensional iid-sample

(x1, y1), . . . , (xn, yn).

Verify that the sample covariance is an unbiased estimate of the population covariance.

Solution A.1

Recall that the sample covariance and the population covariance are

sxy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ), Cov(X,Y ) = E(XY )− E(X)E(Y ).
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It is enough to check that

E

(
n∑
i=1

(Xi − X̄)(Yi − Ȳ )

)
= (n− 1)E(XY )− (n− 1)E(X)E(Y ).

To do this, observe that

n∑
i=1

(xi − x̄)(yi − ȳ) =

n∑
i=1

xiyi − x̄
n∑
i=1

yi − ȳ
n∑
i=1

xi + nx̄ȳ =

n∑
i=1

xiyi − nx̄ȳ,

and

n2x̄ȳ =

n∑
i=1

xi

n∑
i=1

yi =

n∑
i=1

xiyi +
∑
i6=j

n∑
j=1

xiyj ,

so that

n∑
i=1

(xi − x̄)(yi − ȳ) =
n− 1

n

n∑
i=1

xiyi −
1

n

∑
i 6=j

n∑
j=1

xiyj .

It remains to see that

E

(
n∑
i=1

XiYi

)
= nE(XY ), E

∑
i 6=j

n∑
j=1

XiYj

 = n(n− 1)E(X)E(Y ).
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