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Preface

These lecture notes are based on 5 lectures within the framework of a course at Chalmers
University of Technology and the University of Gothenburg in the autumn term 2015.

This is only a draft version. It will be updated over the course.

This course is mainly based on [MFE05], but this monograph covers much more material

than this course. Further useful lecture notes available online are [Kall4] and [HLOT].
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Chapter 1

Introduction and Basic Notations

1.1 Motivation and Aims

Uncertainty is everywhere: all financial institutions are subjected to risks and losses.
In most situations, this is not alarming at all. However, large losses may prevent an
institution from reaching its goals or even lead to bankruptcy. Therefore, the institutions,
on the one hand, try to manage these risks for their own self-interest.On the other hand,
extreme losses may also effect third parties and the whole system. To prevent these risks,

a buffer capital is required from these institutions, often by law.

Here, risk means an event or action which prevents an institution from meeting its obli-

gations or reaching its goals.

Many sorts of financial risks can be categorized into one of the following three groups:

o Market risk: risk that the value of a portfolio changes due to changes of market

prices, commodity prices, exchange rates etc.

o (C'redit risk: risk that the value of a portfolio changes because a debtor cannot meet

his obligations.

e Operational risk: risk caused by problems in internal processes, people, systems.

There are further risks, e.g., liquidity risk, legal risk, ... . In this first part of this course,
we primarily concentrate on market risk from a quantitative viewpoint. A second part is

mainly on credit risk.

The main aims of this course are to develop tools to

e quantify risk,
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e measure risk,

e find a suitable capital buffer that is needed to to cover unexpected losses.
Although important in risk management, this course does not cover

e time-series models (see course on financial time series),
e option pricing (see course on options and mathematics),

e multivariate models (only very basic, perhaps).

1.2 The Turkey-Example

The following parable from Nassim Taleb’s book The Black Swan ([Tall0]) illustrates one

main problem in (quantitative) risk management:

Consider a turkey that is fed every day. Every single feeding will firm up
the bird’s belief that it is the general rule of life to be fed every day by friendly
members of the human race ’looking out for its best interests,” as a politician
would say.

On the afternoon of the Wednesday before Thanksgiving, something unex-

pected will happen to the turkey. It will incur a revision of belief.

1000 and 1 Days in the Life of a
Thanksgiving Turkey

250
200
150

100 Surprise

The Turkey's Well Being

S0

0
1 101 201 301 401 501 601 701 801 901 1001

Days

In the quantitative language, the turkey sets up a model for its well being and uses
observations to estimate the parameters to forecast its future well being. The turkey

comes to the conclusion that his well being will always increase.
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The statistics was fine, BUT his model ignored an important risk factor (Thanksgiving).

Please, keep this example in mind over all the course (and beyond).

If one does not understand the real-world situation well enough, the best quantitative

tools will not help.

1.3 Quantitative risk management from a bird’s eye

view

1.3.1 Main steps

In order to apply quantitative risk management, several steps have to be takenE] They

can often be summarized as follows (we will give more details in the following).

1. Exploratory data analysis and modeling. Since risk management concerns the un-
known future, it is typically based on a mathematical model for the loss. The first
step is to determine the structure of this model. More specifically, one needs to

identify the relevant risk factors
Zn - (Zn,la ceey Zn,d)v

set up a stochastic model for the distribution of the risk factors (more precisely, for
their changes), and identify the functional dependence of the asset value V,, on these

factors
Vn = f(tna Zn)a

see for Section for details. These choices are typically based on an exploratory

analysis of comparable data from the past as well as on theoretical considerations.

2. Data collection and parameter estimation. The model from Step 1 — in particular
the one for the risk factor changes — is typically specified only up to some yet unkown
parameters. For concrete applications, these must be estimated. To this end, one

needs to dispose of reliable data in the first place.

3. Stochastic forecast. Based on the now completely specified stochastic model, one
can compute an estimate of the conditional law of the future loss L, ; given the
data (71, ..., Z,) up to the present. Possibly, only a quantile, moment etc. is needed
instead of the whole law. For steps 2 and 3 see Chapters [3| and [4

I This subsection is based on ...
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4. Backtesting. Before these predictions are used in real risk management systems,
they should be validated. This is usually done by reviewing whether they would

have performed reasonably well in the past.

5. Draw practical conclusions. Finally, the prediction or assessment from the model
needs to be translated into concrete actions, e.g., concerning buffer capital require-

ments, see the following Chapter.

1.3.2 Sources of error

In practice, many issues can cause the ultimate assessment of the risk to be faulty.

1. In the modeling step important risk factors may have been overlooked, e.g. coun-
terparty risk, interest rate risk, liquidity risk etc. (Recall the Turkey-Example!)
On top, the functional dependence linking risk factors and portfolio value may not
always hold. Finally, the stochastic model for the risk factor changes may not be

appropriate to describe real data sufficiently well.

2. Some parametric models require an enormous amount of data for reliable estimation,
which may not be available in practice. And even if a long history of data is available,
it is not clear whether the model from Step 1 is valid with fixed parameters for such
a long time. Structural breaks e.g. after crises may lead to changing parameters

and hence error-prone estimates.
3. The forecast may be biased due to numerical errors in the computation.

4. Backtesting may suffer from the fact that the model is built and tested with the
same data. Events that have not occured in the past and are not allowed for in the

model either, may still do so in the future.

5. In most cases the buffer capital will not be enough to cover extreme losses. Therefore
it should be taken into account how severe consequences turn out to be if things go

wrong.



Chapter 2
Risk Measures

One major question for financial institutions and regulators is:

How can one determine a suitable capital buffer that is needed to cover unex-

pected losses?

Here, the aim is to quantify the risk of a (possibly highly complex) portfolio by a single

number.

In this chapter, we consider a static setup. This means, we are at time point 0 and fix time
horizon T' (T time units ahead into the future) and a random variable L and interpret L
as the loss of the specific portfolio at time 7. Here L > 0 are losses, L < 0 are gains.

This is a special case of the more general setup introduced in Section [3.1]]

2.1 Popular risk measures based on the loss distribu-

tion

It seems to be reasonable to use a stochastic model for L and to use this to define a
corresponding risk measure. Such measures are presented in this section.

Using such measures, two major points have to be kept in mind:

e There is no guarantee that the model for L is well specified.

'In this abstract probabilistic setup it is tempting to think of the situation as having a game-like
character. However, I would like to encourage you to also think about the real-world consequences of

your models and the related ethical issues.
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e For the most important risk measures, the tail of the distribution of L (the large
losses) plays an important role. Even if the model for L is fine, it is not straightfor-

ward to do statistics for these extreme events, see Chapter [4]

But we ignore these points in this chapter and assume to have a fixed random variable L

with known distribution.

2.1.1 Trivial risk measures: Expectation and Standard devia-

tion

Two real numbers associated to each random variable are already well-known from el-
ementary statistics: expectation and variance/standard deviation. The first reason not
to consider just the expectation of a random variable as a risk measure is that it only

describes an average loss, but gives no information on potential big losses.

Historically, one of the first risk measures used was the standard deviation

p(L) = ey/Var(L),

sometimes with some adjustments. One immediately sees that it treats profits and losses
the same way (Var(L) = Var(—L)). Furthermore, the variance gives only little infor-
mation about the occurrence of extremely large lossef]. Furthermore, this risk measure
is not monotone: If L < L' are loss variables, it can happen that Var(L) > Var(L')
(for example take L’ constant), which is obviously not desirable for a risk measure. The

standard deviation is not used as a risk measure in practice nowadays.

2.1.2 Value at Risk (VaR)

Widely used and prescribed in regulations is the value at risk — VaR or V@R — which
depends on a parameter p € (0,1). For a loss variable L the p-value at risk VaR,(L)
denotes the amount of buffer capital ¢* such that the probability of a loss exceeding c* is

at most 1 — p. More formally:

Definition 2.1. Forp € (0,1) and a random variable L we write

VaR,(L) = inf{c: P(L >¢) <1-—p}.

2the best that can be said in general is Chebyshev’s inequality
< Var(L).

- 2

P(|L—E(L)| > 2) .
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This quantity is called the Value at Risk.

Using the distribution function
Fr(c)=P(L<¢)=1—-P(L>c)
we may write equivalently
VaR,(L) =inf{c:1— Fp(c) <1—p} =inf{c: F(c) > p}.
Remark 2.1. 1. If Fy, is continuous then P(L > VaR,(L)) =1—p.

2. In practice, the risk measure VaR depends both on the parameter p and the time
horizon. Typical time horizons are 1 or 10 days for market risk and 1 year for
credit risk. Typical values for p are 0.95,0.99,0.999. In the Basel-guidelines for
market risk, 10 days and p = 0.99 is often used.

3. The VaR can be described very well using the quantile function / generalized inverse
F'=Ff:(0,1) =R, F(p)=inf{c: Fr(c) > p},

which is well-known in statistics. In this notation: VaR,(L) = F} (p).

1 //
08 — :

0.6 - :

0.4 :

Figure 2.1: For continuous strictly increasing F', the generalized inverse is the usual inverse

function

4. It is easily checked that VaR is translation invariant, that is for b € R
VaR,(L+b) = VaR,(L) + b.
Furthermore, it is positively homogenous, i.e. for a > 0

VaR,(aL) = aVaR,(L).
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0.8 :

0.6 :

0.2 :

Figure 2.2: For a discrete distribution F' the general definition has to be used.

Example 2.2. Recall that for a standard normal variable Y it holds that L = aY + b is

N (b, a®)—distributed. Using this and the previous remark, one obtains
VaR,(L) = a®(p) + b,

where ® denotes the distribution function of the standard normal.
We will see later that normal variables are often not appropriate to model loss distribu-

tions.

The following example, taken from [MFEQ5], illustrates that the VaR has some non-

desirable properties.

Example 2.3. Consider d = 100 corporate bonds with current price 100 for each; default
probability is 2% for each bond and the defaults are independent. Each bond pays 105 if
no default takes place and no repayment in the case of a default. Fach bond ¢ has an

associated loss variable L with
P(L'=100) = 2%, P(L'= —5) = 98%.

Consider two portfolios. Portfolio A consists of 100 units of bond 1 (completely con-
centrated) and Portfolio B is completely diversified: it consists of 1 unit of each bond
1,...,100. From a risk management point of view, it seems to be obvious that one should
prefer Portfolio B. But this is not reflected in the VaR:

VaRygs(L*) = VaRggs(100L') = 100V aRyg5(L") = 100(—5) = —500.

This means that even after a withdrawal of 500 units risk capital is acceptable under the

VaRy.g5-risk measure. On the other hand we may write

Y =100D; + (—5)(1 — D;) = 105D; — 5,
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where D; is Bernoulli-distributed with parameter 0.02. Therefore,

100 100 100
VCZRQ_95(LB) = VQR0_95 <z YZ> = VaR0.95 (105 Z Dz — 500) = 105VQRO.95 <Z Dl> —500

=1 =1 =1

and Y; D; is Bin(100,0.02)-distributed. It holds that

P(>"D; <4)=0.949..., P(3.D;<5)=0.984.

which yields that VaRg. g5 (Z}g{ D,-) =5 and therefore
VaRygs(LP) =105 -5 — 500 = 25 > VaRgg5(L?). (2.1)
This example illustrates that VaR is not a subadditive in the sense described in Section

2.9 below.

However, in many important subclasses of loss distributions, VaR turns out to be subad-

ditive (at least approzimately in an appropriate sense).

2.1.3 Expected Shortfall (ES)

To motivate the next measure, let us return to Example 2.3] One main reason for the
observation in ([2.1]) is that the actual size of large losses was not taken into account. This

is circumvented by the expected shortfall:

The expected shortfall at level p stands for the average loss given that the loss exceeds

the VaR at the same level p. Formally:

Definition 2.2. For any random variable L with E|L| < oo and any p € (0,1) we define
the expected shortfall as

ES,(L) = E(L|L > VaR,(L)) (: E(Ll{LZV‘LRP(L)})> .

P(L>VaR,(L))

Lemma 2.4. If L has a density fr, and distribution function FJ, EL then

1 o)
BS,(L) = 1— /F )

- 11}9 /p "VaR,(L)dy. (2.2)

Proof. The first equality directly follows from the definition of the density. For the second

one: See project 1. O

3The representation (2.2 for the expected shortfall holds under the more general assumption that

the distribution function of L is continuous.
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Remark 2.5. 1. One immediately sees

ES,(L) = E(LIL > VaR,(L)) > E(VaR,(L)|L > VaR,(L))) = VaR,(L).

2. For random variables with continuous distributions, the expected shortfall is mono-
tone, that is, for L, L' with densities it holds that if L < L', then ES,(L) < ES,(L').
This follows from Lemma as

1o -
BSy(L) = 1— | VaRy(L)dy < 1_p/p VaR,(L')dy = ES,(L).

3. It is easily seen that the expected shortfall is translation invariant and positive ho-

mogenous (use the properties of VaR).

4. In many references, formula (2.2)) is used as a definition for the expected shortfall
for all underlying distributions. This is perhaps less intuitive than our definition,
but the theory for non-continuous distributions can be developed easier. We keep our

definition but only concentrate on continuous distributions in the following.

2.2 Axiomatic approach to risk measures based on

the loss distribution

Rather than considering concrete risk measures, one may also start with desirable prop-

erties and investigate their implications.

We consider a general class of loss variables £ and a mapping
p: L— R

So, what properties should p have to be a good risk measure?

1. Translation invariance:
p(L+b)=p(L)+bforall Le L, beR.

If the loss for any position increases by a fixed amount b, we have to alter the

required capital by the same amount.

2. Monotonicity:
L < L' implies p(L) < p(L') for all L, L’ € L.

Positions with highr losses need more buffer capital.
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3. Positive homogenicity:
plal) =ap(L) forall L € L, a > 0.

Positions in different currencies need the same buffer capital calculated in those

currencies.

4. Subadditivity:
p(L+ L") < p(L)+ p(L') for all L, L' € L.

This, in a mathematical formulation, reflects the accepted idea that diversification
reduces risk and corresponds to a basic principle of portfolio management. (Never

put all your eggs in one basket.)

The following definition comes from [ADEH99].

Definition 2.3. A risk measure p satisfying axioms 1.—4. above is called a coherent risk

measure.

How do the risk measures above relate to these axioms? Standard deviation fails to
be monotone, so it is not a convex risk measure. VaR and ES satisfy the axoims 1.-3.
However, subadditivity does not hold for VaR as we observed in Example 2.3] We will
study this property for the ES below.

Before coming to this we first show that coherent risk measures can be obtained by using

the idea of scenarios.

2.2.1 Scenario-based risk measures and coherency

As before, we consider losses as random variables L : 0 — R. In practice, we of course

have only imperfect knowledge about the underlying real-world probability measure P.

A scenario is another probability measure () which represents possible outcomes against
which we want to precautions (e.g., what happens if Greece defaults, if the Yen goes down
by 20% against the Euro,...), and we assume that @ is absolutely continuous w.r.t. P, i.e.
for all events A € A it holds that if P(A) = 0, then Q(A) = 0. This means that what is

impossible in the real world is also impossible under the scenario risk measure.

Our construction for a risk measure is now the following: We consider a set of scenarios,
calculate the expected loss under all scenarios, and take the maximum of these losses as

the buffer capital. Formally:
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Definition 2.4. For some set C of scenarios, we define the corresponding scenario risk

measure pe by

pC<L) = Sup EQ(L)v
QeC

where Eq(L) is the expectation under Q).

This approach indeed leads to coherent risk measure:

Proposition 2.6. Fach scenario risk measure pc a coherent risk measure.

Proof. o pe(L+c) =supgec Eq(L + ¢) = supgee Eq(L) + ¢ = pe(L) + c.

o If L < L' then
pc(L) =sup Eg(L) < Zug Eq(L) = pe(L)).
€

QeC
o forc>0
pc(cL) =sup Eq(cL) = sup cEqg(L) = cpe(L').
QeC QecC
o

pc(L+ L") =sup(Eq(L) + Eg(L")) < sup Eg(L) +sup+Eq(L") = pc(L) + pe(L)).

QeC QeC QecC

]

A mathematical result (using classical functional analysis; Riesz representation) states

that — under suitable technical assumptions — also the converse is true: Any coherent risk

measure is a scenario risk measure for some suitable set of scenarios. More details are

discussed in the following section, see als [ADEH99]. Unfortunately, for general coherent

risk measures, this is only an existence result, but there is no algorithm how to find the

set of scenarios explicitly.

2.2.2 ES is a coherent risk measure

Now, we will prove that — at least for continuous distributions — the expected shortfall is

a coherent risk measure. To this end, we will show that it can be represented explicitly

as a scenario risk measure.

Proposition 2.7. Let p € (0,1) and

C={P?: Be A with P(B)=1—p},
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where PB = P(:|B) denotes the conditional probability given B. Then
ES,(L) = pc(L) = sup Eg(L)
QeC

for all random variables L with a continuous distribution.

In particular, ES, is a coherent risk measure.

Proof. 1. We first prove that

(1-p)ES,(L)= sup E(1gL).
BR(B)<1-p

So, let B be an event with P(B) < 1—p. By a case analysis, one immediately checks
that [
(L = VaR,(L))(Lr>var, )y — 1) 20,

hence
E(LY1>var,wyy) — E(L1p) 2 VaR,(L)(P({L = VaR,(L)}) — P(B)) > 0,
where the last inequality holds as P({L > VaR,(L)}) =1 —p > P(B). This proves

E(Ll{LZVaRP(L)}) > sup E(].BL)
BB(B)<1-p

with = for B={L > VaR,(L)}.

2. Now, the claim follows from the definition of the (elementary) conditional probabil-

ity.

2.3 More on the theory of coherent risk measure*

The aim of this section is to make the statement Any coherent risk measure is a scenario

risk measure for some suitable set of scenarios precise. To this end, we consider the space
M = L

of all a.s. bounded random variables as our space of loss variables. It is well known from
functional analysis that the topological dual space of M is the space b, of all finitely addi-
tive, finite, signed measures, which are absolutely continuous with respect to P. Together
with the Hahn-Banach theorem, we obtain the following Lemma (if you do not know
about functional analysis, just accept the result; I will give a geometric interpretation in

the lecture):

4Note that the following argument is very similar to the one in the Neyman-Pearson-Lemma in

mathematical statistics.
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Lemma 2.8. Let U C M = Lo, be convex and open, and Lo & U. Then, there exists
Q € b, such that
Eq(L) < Eg(Lo) for all L € U,

where Eg denotes the integral w.r.t. the finitely additive measure Qﬂ

Proof. This follows from standard facts in functional analysis, see, for example, Dunford-

Schwartz, Linear Operators I, page p. 214 and page 296. n

This abstract mathematical result now leads to the representation result for all coherent

risk measures on M as scenario risk measures:

Theorem 2.1. Let p be any coherent risk measure on M. Then there exists a set C C b,
of finitely additive probability measuresﬂ (scenarios) such that for all L € M

p(L) = sup Eq(L).
QeC

Proof. 1. It is enough to prove the following: For all Ly € M exists a finitely additive
probability measure ) € b, such that

Eq(L) < p(L) for all L, Eq(Lo) < p(Lo),
because then the choice
C={Q:Eg(L) <p(L) for all L}
is as desired.

2. So let Ly € M be arbitrary. By considering Ly — p(Lg) + 1 instead of Ly, we can

assume w.l.o.g. that p(Lg) = 1. Now write
U={LeM:p(L)<1}.

As p is a convex function (by positive homogenicity and subadditivity), the set U
is convex. It is furthermore open. For a proof of this fact, let L € U and choose
e:=1—p(L) and let Z € M be such that ||Z — L||oo < €. Then,

p(Z) =p(Z =L+ L) <p(|Z =Ll + L) = |12 = Ll + p(L) <1,

ie. Ze€lU.

50ne can define the expectation for these finitely-additive measures in the usual way
bi.e. each Q € C fulfills: Q@ >0, Q) =1
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3. Now, we can apply Lemma and obtain @) € b, such that Eg(L) < Eg(Lo) for
all L € U. We show now, that this is as desired in 1:

4. First, note that as 0 € U, we obtain that 0 = Eg(0) < Eg(Lo). By considering
Q/Q(Ly) instead, we can assume w.l.o.g. that Eg(Ly) = 1. This already shows that

Eq(Lo) = p(Lo).

5. We now prove that Eg(L) < p(L) for arbitrary L. Let ¢ be such that p(L) < c.
Then

p(L—c+1)<p(L)—c+1<1,

ie. L—c+1€U. By 3., weobtain Eg(L) —c+ 1= Eg(L—c+1) < Eg(Ly) =1,
i.e. Eg(L) < c. As ¢ was arbitrary, this shows Eg(L) < p(L).

6. It remains to be proved that () is a non negative probability measure. We first show
that @ is nonnegative by showing that for each L > 0 it holds that Eg(L) > 0. So,
let L > 0 and ¢ > 0. Then p(—cL) < p(0) = 0 < 1, hence as above —cEg(L) =
Eg(—cL) < 1, so that Eg(L) > —1/c. As ¢ was arbitrary, we get the positivity of
Q.

It remains to be proved that Fg(1) = 1. Let ¢ > 0. If ¢ < 1, then p(c) = ¢ < 1 and
therefore cEq(1) = Eg(c) < 1. As ¢ was arbitrary, Eg(1) < 1. On the other hand,
if ¢ > 1, then

p(2Lo —¢) =2p(Ly) —c=2—c< 1,

hence 2—cEg(1) = Eg(2—cLy) < 1,i.e. Eg(1) > 1/c. As above, as ¢ was arbitrary,
Eg(1) > 1, and we have equality as claimed.

]



Chapter 3
Data-driven Risk Management

In the previous chapter, we have studied risk measures basically from a purely probabilistic
point of view. To use risk measures in practice, it is of course essential to know the
distribution of the loss variable L in our model explicitly, or at least to know relevant
quantities that are necessary to calculate the risk measure. Here, statistics comes into
play.

Our main examples of risk measures — VaR, and ES, — are by definition based on the
large losses (typically, p close to 1), i.e. on extremal events. As such events are rare we
have little data material on them, so estimation will only have limited accuracy. This is
the major challenge in this field of statistics, Extreme-Value (EV) statistic. The aim of
this field is to develop a theory to make best possible use of the available data to provide
estimates for VaR, and ES,.

But first, we will introduce the general notational framework and summarize some general

statistical background:

3.1 Notations and Framework

We start with a portfolio value V' (t) at time ¢. Looking At time units into the future, the
value is V(¢ + At), so the loss from ¢ to t + At is

L(t’tJrAt] - V(t) - V(t + At)

We consider a discrete time model with equidistant time points starting in 0, we have

time points t,, = mAt (At could be one day, 10 days, a month,...). Then we have losses

Limy1 = Linatmenag = V(mAL) — V((m + 1)At).



CHAPTER 3. DATA-DRIVEN RISK MANAGEMENT 17

3.1.1 Functional modeling

We model the portfolio value as a function of time and the risk factors

Vi :=V(tm) = f(tm, Zm)

with random risk factors Z,, = (Zn 1, ..., Zm.a). Here, Z,, is a random variable with values

in RY. Writing X,,41 = Zm41 — Zm for the risk factor changes, we have

Lm+1 = f(tm7 Zm) - f(tm—i—la Zm + Xm—‘rl)'
It is often convenient to introduce the so-called loss operator]l]

l[m] : Rd+1 — Ra l[m} (.Z') = f(tma Zm) - f(tm+17 Zm + CL')

3.1.2 Interpretation

If m is the current time point and m + 1 is the next time point of interest in the future,
then the risk factors Z,,, at time m are know, so [}, is totally determined by the (random)

risk factor changes X, 1.

3.1.3 Linearization

The loss operator is often a hard to deal with as it is a complex function of the risk factors.
One way out is an approximation:

Using Taylor expansion of order 1, one can write
f(tmars Zm + ) = f(tm, Zm) + [i(tm, Zm) At + Zd: filtm, Zm)x; + higher order terms.
i=1
This motivates to consider the 1st order approximate operator
Ly, = — <ft(tm> Zm)At + i filtm, Zm)XM—I—l,i)

with corresponding loss operator l[ﬁl].

3.1.4 Example (for those who is familiar with option pricing)

Assume that the portfolio consists of a European call option on a stock S with maturity

T, strike K, i.e. at time T you get the payoff

max(Sr — K, 0).

Inote that the loss operator is formally a random operator as it depends on Z,,
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Assuming a Black-Scholes model, the fair price at time ¢ can written in the form
C(t, St, 1, 00),
where r; is the interest rate at t and o, the volatility. Hence, using the risk factors
Zy = (log Sy, 14, 0¢)
we have

Xm+1 = (log(Sm+1/Sm>a "m+1 = T"m; Om+1 — Um)7

Vin = [ty Zim) = Ctim, Sy Tms Om)-

The function C' here is a function involving the Gaussian cdf ®. Appliying the linearization

as described before, the corresponding coefficients are known as the Greeks of the option.

3.1.5 The statistical problem

Consider a portfolio with value V,, = f(t,,, Z,,), where f is assumed to be a known

function and the future losses
Lm+1 = l[m] (Xm+1>-

We furthermore assume the availability of historical data

Zms Fm—1y +-+y Fm—n-

The statistical question we are faced with is: How do we use these data to find reliable
estimators for VaR, ES,... .

3.2 Empirical distribution function and empirical
VaR, ES

As it is difficult to specify a suitable parametric family of distributions in risk modeling,

one often uses methods from nonparametric statistics.
Let Xy,---, X, be iid real valued random variables and let F' denote their distribution

function.

1. The standard nonparametric estimator for the distribution function is the empirical

distribution function F,

1
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Gp(Fn) = Fy (p) = inf{t : Fy,(t) > p}
is called empirical quantile function and is the standard estimator for the quantile

function.

3. A reason for using F), and F as standard estimators is that they are consistent in

an appropriate sense. Indeed, the Glivenko-Cantelli Theorem states that

sup |F,(x) — F(z)] — 0 a.s. as n — oo.
zeR

4. VaR,(F,), also called empirical VaR, and ES,(F},), the empirical ES, are estimators
for the VaR and the ES. But these estimators have certain drawbacks. For example,
both empirical VaR and ES are bounded above by max; X;. So, you never expect
higher losses than the highest loss in the past. The other estimators discussed below

do not have this property.

5. The empirical VaR and ES can be expressed using order statistics. Considering
observation z; = Xj(w),...,z, = X,(w) (where we assume for simplicity that

x; # x; for i # j) we can order them in increasing order:
T < 0 < Ty
Then F,,(zg.n) = % and
F(xgy) = inf{z : F,(x) > p}

k
= inf{xg., : — >
inf{xy - > p}
= inf{xy., : k > pn}
= Lpn]mn;

where [y] =inf{k € Z : k > y}. So
VaR,(F.) = Trpn)n,

and similarly
_ 2k—[pn] Thn

ESy(Fn) = n—[pn]+1

3.3 Historical simulation

Assume now that the present time point is ¢,, and we have the data of the risk factors in

the past till t,,_,:

Bm—ny oy Zms  Tm—ntl = Zm—n+1 — Lm—ny -y Lm = Zm — Zm—1-
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Using this data, we want to approximate the distribution of

Lm+1 = l[m] (Xm-‘,-l)a

where l[,,) = ljm)(Xim41) is the loss operator depending on the unknown future risk factor
changes X,,,11.

We now obtain the historical losses by applying the loss operator to the known historical
risk factor changes

by = lp)(zr), E=m—-n+1,...,m.

We use these data to get estimators for the empirical distribution function and corre-

sponding

VaR, = lipin
__ o ton Len
ESp _ Zk,[pﬂ k:
n—[pn]+1
This method is called historical simulation. It is simple, but needs sufficient quantities of

historical data for all risk factors.

3.4 Variance-Covariance method

The Variance-Covariance method is (among others) based on the assumption that the
changes of the risk factors have a multivariate normal distribution. I will (perhaps) come
back to this in Chapter [f

3.5 Monte Carlo Simulation

The general idea can be described as follows: First, take a parametric model for the
distribution Wjy of the risk factor change X,,, 1 depending on a certain unknown parameter
6. Use the historical data z,,_,.1, ..., T, to estimate 6 by 6. In many cases, we will not
be able to explicitly compute our risk measure with regard to the distribution I, (Xom+1)
(w.r.t Wy). This problem is now circumvented using Monte Carlo simulation:

Use a computer to obtain realizations Z1,...Zy of a sequence Xl,Xg, ... of iid random

variables w.r.t. Wj. This given values

b= U (81), o In = U (EN).
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Then we can compute risk measures with respect to the empirical distribution for [y, .., [y;
e.g.
VaRa = l~ [an]

__ n ol
ESa _ Ek—[an‘\ k:
n—[an] +1



Chapter 4
Tools from Extreme Value Statistics

Now, we go deeper into the statistics for risk measures. But in this chapter, the distri-
bution of extreme events plays a crucial role, as most risk measures used in practice are

based on these.

4.1 Regular variation

When dealing with rare events based on the tails of the distribution, it is important to
study distributions where such events are not too unlikely to occur in practice. This is
often made precise by considering laws with heavy tails, which are laws that assign more
mass to extreme events than any exponential distribution, i.e.

lim F(:z:)

T—00 e*)\ﬂﬁ

= oo for all A > 0,

where F(z) = 1 — F(z) = P(L > z) denotes the so-called survival function of L. The
heaviness of the tails can be quantified by a number « such that F(t) ~ ¢t~ for t large.

More precisely:

Definition 4.1. A function L : (0,00) — (0,00) s called slowly varying (L € RVy) if

L(t
tlirgolf(lf;)—lforallx>0.

A random variable with cdf F is called regularly varying with index « if

for some slowly varying function L.



CHAPTER 4. TOOLS FROM EXTREME VALUE STATISTICS 23

Remark 4.1. 1. A natural example of a random variable that is reqularly varying with
index « is given by the distribution function F(t) =1 —1¢" fort > 1 (L(t) = 1);
see also Subsection [{.3.1]

Another important example is the Student-t-distribution with parameter v, i.e. with

_v+1

density of the form f,(t) = const,(1 + %) 2 . It can be shown (using Karamata’s

theorem below) that the tail index of this distribution is v.

2. If X is reqularly varying with index o then E((X+)?) = oo for f > a and < oo for
b < a.

4.2 Hill estimator

One approach for to obtain estimators for VaR, and ES, is to assume that the loss
variable L is regularly varying with (unknown) index «. If one has a good estimator &
for a, then (when p is large enough) one can assume that the tails of F nearly coincide
t=%. This then leads to good estimators for VaR, and ES,. One such method is based

on Karamata’s Theorem for slowly varying functions L, which states that for g < —1

[ L(x)xPdx 1

- t — oc.
L{t)tFHT Gy et

(You can immediately check this formula for constant L).

The important observation is that the RHS is independent of the function L. This is the

main ingredient for constructing an estimator for a:

1. Using partial integration for the Stieltjes Integrals [

| (og(u) ~ log(t))dF () = = [ (tog(u) — log(t)d(~F)(w)

1
F(t)

F(t)

U e . [P F(u)
5@ ([(log(u)—log(t))(—F(u>>]t + /t u d“)
1 o L(u)u~!

ol A
RS




CHAPTER 4. TOOLS FROM EXTREME VALUE STATISTICS 24

2. From this, we can obtain an estimator for a: Replace F by the empirical distribution
function Fn and t by some large observed value xj., in the formula above. Then, to
find the estimator, we use the (obviously somewhat unclear) notation ~. to denote
steps where we hope that the expressions are close in some reasonable sense (htc:
hopefully close to). This is used only to find a candidate for a good estimator, but
is of course no proof for anything. This can than be carried out in a second step

(but not in this course).

1 1 * 7
S o~opg ——————— log(u) — log(zgn))dF, (u
07 et 1— Fn<xkn) ‘/m”’( g( ) g( ' )) ( )

=1fM%§f%ww—mmmﬁ
=T X (los(ry) ~ loglae)

This yields the Hill estimator for a:

~1

. 1 S

O = (n — > (log(zjn) — log(:vk:n))) .
Jj=k+1

One can indeed prove that this estimator is consistent. More precisely, if & = k(n)

is such that
n—k(n)

n

n—k(n) — oo, — 0, (4.1)
then &y ), — « in probability, see ... .

Note that the Hill estimator does not make sense for negative values of x as one
has to take the logarithm. However, note that we are only interested in the tail

behavior, so that the Hill estimator is not needed at all for these values.

3. As we assume that our loss variable is regularly varying of some (unknown) para-

meter o, we have that

as t — oo, we have

k:n k:n
t _dk,n ~
ha (=) (1= Buonn)
L:n
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From this we obtain an estimator for the VaR as follows:
VaR,(L) =inf{t: F(t) <1-p}

. 76‘k,n
thtinf{t:n k(t> <1-p}

n Tk:n
:| 71/6‘%,77,

- {nikﬂ_p) Thin:

Note that this estimator can also be applied to levels p where no empirical data is

available. Similarly, an estimator for ES can be found (see Excercises).

4. For using the Hill estimator, the choice of the parameter k is crucial. (4.1) gives
some insight, but it does not really lead to a concrete choice. The general problem
is that if k is too large we are left with too little observations, if k£ is too small we

are using observations which are too far away from the tails.

A practical answer is the following: Look at the Hill plot
{(k,&gn), k=1,2,...,n—1}
and choose k£ such that the plot stabilizes.

Remark 4.2. Although the method described in this subsection has a good theoretical
foundation, one often has problems with it in practice: there are several examples of very

unstable plots (— Hill horror plot), see also the technical project.

t-distr. with 3 df

Hill-estimator

T T T T T T
o a0 100 150 200 250 300 350 400 450 500

t-distr. with & df
%5
E
k]
b
=
o—-
L T T —T T R T T T
o a0 100 150 200 250 300 350 400 450 500

Exp{1}djstribution

Hill-estimatar

o T T T T T T T T T
o a0 100 150 200 2580 300 350 400 450 500
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4.3 Peak-Over-Threshold (POT) and Pareto distri-
butions

As before, we have data zq, ..., x, from random variables X, ..., X,, which are regularly

varying with some (unknown) parameter .

4.3.1 Motivation

For a fixed v € R and a random variable X the overshoot distribution for X over u is

given as
F,z)=P(X —u<z|X >u), z >0,

with a clear probabilistic interpretation. In the case that X is regularly varying with some

parameter o we have for large u

— F(u+ o) _ F(u(l+z/u))

)= "5 o
({1 + o) L(a(l + 3/u)
(e L(u)
~ (14 afu)

More precisely, one can prove that

lim sup [F,(z) — (1 4+ x/u)~ = 0.

U—00 >0

That is, for large u the overshoot distribution of an arbitrary regularly varying random

variable with parameter « is close to a distribution with cdf
1—(1+x/u)~

This class of distributions is known in probability as the (generalized) Pareto distribution.

More precisely, the Pareto distribution with parameters v, 5 > 0 has distribution function
YT,
Gpla) =1 = (1+ )0

which coincides with the parametrization above for v = 1/a, = u/a.

As « is unknown in our setting, so are v, 8. But we are faced with a parametric problem

that can be tackled using standard methods. The plan is now the following:

1. Find a method for choosing a sufficiently large threshold u (Subsection [4.3.2)



CHAPTER 4. TOOLS FROM EXTREME VALUE STATISTICS 27

2. Use the excesses over u Y1, ..., Yy, given by Y; = X; —u to estimate the parameters
7, 5 of the corresponding Pareto distribution (Subsection [4.3.3)). Here and in the
following

N, =|{i: X; > u}|
denotes the number of exceedences of u.

3. Use these to come to estimators for VaR and ES (Subsection [4.3.4]).

4.3.2 Mean-Excess plot

Similar to the situation for the Hill estimator, one main problem in the program outlines

above is a suitable choice of wu:

e If u is chosen too large, one does not take enough observations into account,

e if u is too small, the approximation F', &~ G s is questionable.

Often, the following graphical method is useful. The basic quantity here is mean excess

function, which is for a random variable X defined as
e(u) := BE(X —u|X > u).

In the case that X has a Pareto distribution with parameters v < 1,[, it is an easy

excercise to see that

e(u) = 514;7:

Here, the important observation is that this is a (affine) linear function. The Mean-Excess

plot is now used as follows:
1. Use the natural estimator
5 L ¢ + P
en(u) == —> (zp —u)
Nu o
for e(u) to build up the Mean-Excess plot

{(l’k;n, én(.%kn)) k= 1, = 1}

2. Choose u in such a way that for xy., > u the plot is approximately linear and there

are enough data points left (if possible).

22+ := max(z,0)
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4.3.3 Estimation of the parameters for the Pareto distribution

Let us assume that X7, ..., X,, are iid with cdf F' such that

Fuw é%ﬁ

for some unknown parameters «, 3 for u sufficiently large as it is the case for regularly
varying variables with parameter > 0. Then the excesses Y7, ..., Yy, are also iid and their
distribution is approximately G. 3. Taking the derivative one immediately obtains that

the pdfs are equal

! 1 - -
) = 50+ )7

Therefore, the joint likelihood function of Y7, ..., Yy, is (approximately) given by

) _ el VYiy—1/y—1
L(7, B;y1s -, Yn,) _HE(1+?) :
=1

(After taking logarithm) this quantity can be maximized numerically in v, #, which yields
the MLE 4, /.

4.3.4 Estimation of VaR and ES

Using 4, 3 we can now define corresponding estimators for VaR and ES. We start with a

estimator for F. We have N
F(u) ~ Fy(u) = =
n

and
Fo(z) ~ner Gy p(x) ~onet Gy glx) = (1+4a/B) 717,

To estimate F'(u + x) we use

to obtain the estimator

A

Ny, A 1/4
F(u+ )= —=(1+%z/b) v,
Interpretation: From the threshold u on, we are confident that the data are represented
by a Pareto distribution, so we use the estimators available for this distribution. This
leads to a reasonable estimate for F(u+x) even if all observations are smaller than u+ z,

ie. ﬁn(u + ) =0.
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This immediately leads to an estimator for the VaR:

VaR, = inf{y : F(y) <1-p}
=inf{lu+z:Flu+z)<1-—p}
~net Inf{u + z : f(u—i—x) <1-—p}

N A
=+ inf{z: —2(1+42/8)"7 <1 -p}

n
yielding
— 5 n —4
VaR, =u+ 5 (((1 —p)) — 1> :

Similarly, the ES can be estimated as

ES, =VaR, +



Chapter 5

Short Introduction to Multivariate

Distributions and Copulas®

Although the loss of a portfolio is a one-dimensional quantity, the underlying risk factors
are typically multidimensional (including, e.g., interest rates, prices of different stocks,
macroeconomic factors,...). So, we have to consider d-dimensional, d > 2, random vari-

ables. The distribution of such variables is often called multivariate distribution.

So, let X = (X,...,X4)" be a d-dimensional random variable. In Risk Management,
the variables X1, ..., X are typically not independent as the different components of risk

factor changes are interacting.

5.1 Reminder: Multivariate distributions

The distribution function F' of X is given by

F(z)=F(x1,...,2q) = P(X1 < 21,..., X4 < z4).
The corresponding marginal cdf of X; can be calculated as

Fi(x;) = P(X; < x;) = F(00,...,00,x;,00,...,00).

Using the fundamental theorem of calculus, one gets the corresponding identities for
densities, whenever they exist. If the components X; are independent, then F(z) =

Fi(x1) - ... - Fy(xq), but this is not the interesting case for us.
The characteristic function ¢x of X is given by
ox R C, t s B(e"X) = B(e! 2itr)

and it also characterizes the distribution of X uniquely.
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5.2 Some classes of distributions important in Risk

Management

One well-known multivariate distribution is the d-dimensional normal distribution. But
for many problems in risk management, more general distributions are needed. One reason
is that the normal distribution does not have heavy tails. Elliptical distributions form a

suitable class.

5.2.1 Reminder: d-dimensional normal distribution

X is a multivariate normal distribution with mean pu € R? and (positive semidefinite) co-
variance matrix ¥ = (0; ;)i j=1,..4, X ~ Na(p, £) = N(u, X), if the characteristic function
is given by

bx(t) = exp <z’tTu — ;tTZt> , teRY

If ¥ is non-singular, the density fx is given by

1 Ty —1(y _
x(t) = s (5 - S - )

Some important properties are the following:

1. p is the expectation of X and X is the covariance matrix.
2. f X ~N(u,¥), b€ R¥, B e R4 then BX +b~ N(Bu+b, BYBT).

3. If u =0 and ¥ is the unit matrix, i.e. X is standard normal, then Xy,..., X, are

independent (1-dim.) standard normals.

4. Properties 2 and 3 above lead to a method for simulating the N (u, ¥)-distribution:
find A € R* such that ATA = ¥ (Cholesky decomposition), simulate k indepen-

dent standard normal variables Y7, ...,Y,, and define

X =AY + .

5. If X is standard normal and V' is an orthogonal matrix (V7V = I), then the rotated

random variable V' X is also standard normal.
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5.2.2 Spherical distribution

We use observation [§ on rotation invariance of the standard normal distribution above
for the first generalization. We call a general random variable X spherical distributed if
for each orthogonal matrix V' (i.e. VIV = I) X has the same law as V X.

Each spherical distributed random variable X can be decomposed as
X = RS in distribution,

where S has a uniform distribution on the sphere, R > 0, and R, S are independent.
Therefore, simulating X is easy: Simulate S by simulating a multidimensional standard

normal variable Y and define S = Y/||Y|| and simulate R independently.

One important example is the multivariate t-distribution, which is given as follows: Let
Y be a multidimensional standard normal random variable and S ~ x? be independentfl]
Then S := \/m% is called standard t-distribution with m degrees of freedom, denoted by

ta.,(0,1). This is an example of a spherical distribution with heavy tails.

5.2.3 Elliptical distribution

As in the case of multivariate normal distributions, one can generalize spherical distribu-

tions as follows:

Start with a random variable Y with a spherical distribution on R* and let b € R?, A4 a
d x k-matrix, then the distribution of

X =b+AY

on R? is called elliptical. If Y ~ t,(0,I;), then the distribution of X is called ¢-
distribution with k degrees of freedom, mean b and dispersion matriz ¥ = AAT, denoted

by t4,(b,¥). In some literature, the parameter ¥ is substituted by -5, as this matrix

contains the covariances.

5.3 Copulas

In risk management, one often has better knowledge on the marginal distributions of the

individual risk factors than on their dependence structure. The aim of this section is to

Lrecall that the x?2 distribution is the distribution of G% + ... + G2, where G; are iid standard normal

random variables
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develop a tool that makes it possible to first model the marginal distributions and, in
a second step, take care of the dependence structure. This approach plays a major role
whenever the dependence of different variables is of importance (which is the case very
often).

5.3.1 Definition and properties

The right notion for describing general dependence structures is the distribution function

of a uniform variable on a cube:

Definition 5.1. Let X = (Xy,...,Xq)T be a random variable such that the components
X; are all uniformly distributed on [0,1]. The distribution function

C:[0,1]* — [0,1]
is called a copula.

In more analytical terms, a copula is a distribution function with the additional property

C(1,...,Lu;1,...,1)=wu; foralli=1,....d, u; € [0,1].

The basic result that links general multidimensional distributions and copulas is Sklar’s

Theorem:

Theorem 5.1. Let X be a d-dimensional random vector with distribution function F and

marginal distribution functions F;, i = 1,...,d. Then there exists a copula C' such that
F(zy,...,xq) = C(Fi(x1), ..., Fy(xa)) for all zq, ..., x4 (5.1)

If all F; are continuous, the C' is unique and is then called the copula of X.

Sklar’s Theorem gives rise to a method to model the marginal distributions and, in a

second step, take care of the dependence structure as follows:

Start with suitable marginal distribution functions F;, ¢ = 1, ...,d. Then specify a copula
C' describing the dependence structure and define F' by (5.1). One can generate a ran-
dom variable X with this distribution by first generating (Uy, ..., U;), U; uniform, with

distribution function C' and then set
X = (F(Uy), ..., Fy (Ug)).

One important property is that the copula is invariant under increasing transformations

in the coordinates. More precisely:
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Proposition 5.2. Let X have continuous marginal distributions and copula C. Let

Ty, ..., Ty : R = R be strictly increasing functions. Then
T(X) = (T1(Xy), ..., Ty(Xa))
also has copula C'.

Proof. The random variable X; := T;(X;) has distribution function
Fi(r) = P(Ti(X;) <) = P(X; <T; ().
Therefore,

O(Ul, ..,ud) = P(Fl(Xl) S Uty ooy Fd(Xd) S ud)
(F(Ty H(T1(X4))) < s Fa(T(Ta(Xa))) < ua)
( 1(X1) é Uy, ...,Fd(Xd) S Ud)

and this is the copula associated with 7'(X). O

5.3.2 Gaussian and t-copula

Let X be Ny(u, X)-distributed. By considering the strictly increasing transforms T;(X;) =

(X; — pi)/\/Var(X;) ~ N(0,1), one obtains that
T(X) ~ Ng(0, R), where R is the correlation matrix of X.

By the previous proposition, the copulas of X and T'(X) coincide. This shows that the
copula is fully described by the correlation matrix R. This copula is called Gaussian
copula C§ for R:

CH(uy, ..., uq) = Pr(®(uy), .., D Hug)). (5.2)

There is no simple explicit expression for C§ in general, but it is easy to simulate from

C¢ following the steps:

e Compute the Cholesky decomposition R = AAT.
e Simulate Z1,...,Z4 ~ N(0, 1), independent.
e Set X = AZ.

e Set U, = ®(Xy), then U = (Uy,. .., Uy) has distribution C§.
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However, note that the dependence structure is fully determined by the correlations. In
practice, this is often not appropriate as the real dependence structure is much more

complex.

Roughly speaking all elliptical copulas share the structure of (5.2). In particular, the

t-copula is given by

Cﬁ7y(u1, e Ug) = tV7R(t;1(u1), b (ug)),
where t,  is the distribution function of the multivariate ¢-distribution with parameters
v, R.

There are further important classes of copulas that are defined in a different way. Here,
Archimedean copulas are of major importance, but we do not go into the details here and
refer to [MEEQD, Section 5.4].



Appendix A

Toolbox

This is a list of facts and techniques from the elementary courses in mathematics which
are needed during the lecture. If something is not known to you, please tell me.

e clementary calculus (differentiation and integration),

e random variables and their distributions,

e conditional probabilities,

e moments of random variables (expectation, variance...)

e distribution functions,

e densities,

e normal distribution, exponential distribution,

e basics about (maximum likelihood-)estimators and statistical tests,

e (characteristic function/Fourier transform),

e basic knowledge in matlab, R, scilab, or similar



Appendix B

On the Reading Projects

B.1 Projects

Here is a list of possible reading projects. They are divided into more mathematical topics
and more practical, but this no clear distinction. You can set priorities as you like. You

are also highly encouraged to find your own project.

Part of the task is to find suitable literature. Even if articles or books are mentioned,

there typically exists better and more recent literature.

B.1.1 With a practical orientation

P1 More on the turkey example
[Tal10]

P2 History of financial risk
L.P. Bernstein. Against the gods. Wiley, New York (1996)
A. Steinherr. Derivatives, the wild beast of finance. Wiley, New York (1998)

P3 Long-Term Capital Management (LTCM)

P4 Finance and ethics

P5 ENRON

P6 Should banks be allowed to go into bankrupcy?

P7 Model Risk
R. Gibson (ed.) Model risk, concepts, calibration and pricing. Risk Publications
London (2000)
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P8 The Basel Committee and Basel III
P9 Solvency II
P10 The Swedish 1993 banking crisis
P11 The Worldcom bankruptcy
P12 The subprime crisis
P13 Jerome Kerviel, and the 5 bilion euro loss he caused Societe Generale
P14 The Madoff fraud
P15 The Lehman brothers bankruptcy
P16 The AIG near bankruptcy
P17 Were big bonuses one of the causes of the recent financial crisis?
P18 Risk connected to high frequency trading
P19 Kweku Adoboli and the $2bn UBS loss
P20 The Libor fixing scandal

P21 Insider trading

B.1.2 With a mathematical orientation

M1 More on the axiomatic theory of risk measures

H.Follmer and A.Schied, Convex and coherent risk measures, Working paper,
www.math.hu-berlin.de/ foellmer/papers/CCRM.pdf

M2 Markowitz portfolio theory
H. Markowitz. Portfolio selection. Journal of Finance , 7, 77 — 91 (1952)

M3 Normal mixture distributions and copulas

IMEEQS]

M4 Fitting copulas to data
[IMEFEO05]

M5 Further standard methods for market risk
IMEFEO05]
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M6 The greeks in Risk management
J.C. Hull. Options, futures, and other derivatives. Prentice - Hall, Upper Saddle
River, N.J. (1989)
Y.K. Kwok. Mathematical models of financial derivatives. Springer, New York (1998)

M7 Dynamic credit risk
[MEFEO05]

M8 More on the model by Li

M9 On the (approximate) subadditivity of VaR.

B.2 Project report

Each group writes an approximately 5 - page summary of the project. The aim should be
to teach the other course participant about the area. The summaries will be an important
part of the course literature, and the final version should incorporate important comments

from the discussion, if any. They should contain

(a) some of the main facts, problems and results on the subject,
(b) a carefully selected, short, list of references,
(c) a reading guide for those who want to learn more about the subject,

(d) the groups personal conclusions about what could be done to make such risks smaller

in the future.
A draft version of the summary should be made available to the discussants at least 3

days before the presentation. Please, try to contact each other before that.

B.3 Oral presentation

Each group gives a 15-20 min oral presentation of their reading project, which will be
followed by a 5 — 10 min discussion, so that we can see 2 presentations within 45 minutes.

The dates for the presentations are listed at the course homepage.
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B.4 Discussion

Each group acts as discussants for one other project. However, everyone is encouraged
to participate in all the discussions. The main part of the discussion should concern
substantive issues. Only brief comments, which are of general interest, about the form of
the presentation or the written report should be made. Further such comments are also

useful, but should be given in private.

B.5 Individual comments

Every group should hand in individual comments on 4 of the remaining reading projects
(i.e, not ones own project and not the project one has been discussant on, but the other

projects). This could contain new facts, questions, criticisms, ...

B.6 Format for handins

The project report should be sent to me electronically. The file name should include the
group number, the names of the group members, and the title of the project, abbreviated
as much as possible. The front page of the report should include the full title of the
project, full names of the group members, and a brief summary of who has done what.
Pdf files are much preferred to other formats. A signed paper copy of the front page
should be given to me. The individual comments should be sent to me as one file (if you
send comments in separate files, they will not be graded). The filename should be your
name. The front page should also include your name. Again, Pdf files are much preferred

to other formats and you should also give me a signed paper copy of the front page.
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Exercise 1 (C), for grades 3,4,5,G and VG
Denote by S,, the price of a stock at day t,,, n € N, and by X,, = log (Ss—'il

of the stock. Assume that the conditional distribution of X,,,;, given the stock prices up

) the log return

to time t,, is a N (u,, 02)-distribution with

1 n 1 n 9
foy = — Z X, and Ui = Z (Xk — pin)”,
251 k=n—250 251 —1 k=n—250

i.e. the conditional distribution of the log return at time ¢,,,; is normal with empirical
mean and empirical variance of the log returns from the past trading year. (We ignore

the days of the first trading year.)

(a) Assume that the DAX time series data on the webpage of this course follow this
model. Compute for each day after the first 252 days the VaR,, p = 98%, of the
DAX time series and visualize the violations, i.e. the days when the actual loss lies

above the computed VaR.
(b) How many violations do you expect theoretically, how many do you observe?

(c) Compute for each trading day n = 253, ...,5814, the expected shortfall £Syos(Ly,)
of a DAX-portfolio. For the days k € {253,...,5814} where the realized loss [ is
greater than VaRyes(Ly), calculate the difference between realized loss and expected
shortfall:

I — ESo.98(Ly).

What is the expected value of this quantity if the model assumption would be correct,

what is the realized empirical mean?


http://www.math.chalmers.se/Stat/Grundutb/CTH/mve220/1516/
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Hint: Note that the VaR of the loss L, 1 at time ¢, is given by

VaRp(-Ln—H) - Sn(l - exp(ﬂn - 0'an)),

where z, = ®(p) is the p-quantile of N(0,1). (Do you see why?)

You may furthermore use (without a proof)

1
Esp<Ln+1) = Sn <1 - 1 —p

e“”%”?@(—zp _ Un)) 7

where z, = ®“(p) is as above.

Exercise 2 (C), For grades 4,5 and VG
We go on with the DAX-data and the model from Excercise 1.

(a) Investigate the findings obtained in (b) further using a statistical test.
You can invent a test yourself or you can base your test on the following observation:

you can consider the indicator functions

Iy = Y1, >var, (L)}

ie. Iy =1if L, > VaR,(Ly) and 0 else. One can prove that they are i.i.d. under our
model assumptions. (You do not have to do that). So, under the model assumptions,
the number of violations follows a Bin(m, 1 — p)-distribution, where m is the number

of considered trading days. Now, you can run a binomial test.

(b) Do you think the model is a good basis for risk management for the DAX? Give

reasons for your opinion based on the results obtained in both exercises above.

Exercise 3 (C), For grades 3,4,5,G and VG

We go on with the DAX-data from Exercise 1 and 2, but do not use the model considered
there anymore. Compute for each trading day of DAX-data the logarithmic returns
X, ..., Tyoo4, Which we use as risk factor changes. Compute for each trading day m =
254, ...,5294 the estimates for value at risk and expected shortfall for p = 0.98 for the
DAX, using the method of historical simulation based on the last n = 252 risk factor

changes x,,, Tyi1, - Tm—ni1. Plot your results.

Exercise 4 (T), For grades 4,5 and VG
Prove the second equality in Lemma [2.4] (in the lecture notes).
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Hint: You can substitute y = Fp(z), i.e. x = F; (y) in the integral and use that

W — f(x), Fi(o0) = 1.

Exercise 5 (C), For grades 4,5 and VG

(a) Generate n = 500 simulations for

e the t-distribution with v = 3 degrees of freedom,
e the t-distribution with v = 6 degrees of freedom,

e the exponential distribution with parameter A = 1,
and draw the corresponding Hill plot.

(b) On the webpage of this course you can find three data sets with iid simulations of
three different distributions. Examine whether these data sets have a regularly varying

distribution and, if appropriate, estimate the index.

Exercise 6 (T), For grades 5 and VG;
Find an estimator for 'S, based on the Hill-estimator for continuous underlying dis-

tributions analogously to the derivation of the estimator for VaR, in the lecture notes.

Hint: Exercise 4 may be useful.

Exercise 7 (C), For grades 4,5 and VG
On the webpage of this course you find a data set with n = 500 iid observations of
a random variable X with cdf F. Draw the corresponding mean excess plot and find a

preferably small u > 0, such that the excess cdf F,, of X is approximately G g-distributed.

Exercise 8* (C), Bonus points!

Consider the following two (exchangeable threshold) models:

We have m = 1,000 (homogenous, interdependent) companies with some critical values
modeled by X' = (X}, ..., X)) in model 1 and X? = (X?,..., X2) in model 2. Our model
is build up so that company ¢ bankrupts if the corresponding critical value X; is below a
threshold d. The aim of this exercise is to study the effect of the choice the copula on the

total number of bankruptcies.


http://www.math.chalmers.se/Stat/Grundutb/CTH/mve220/1516/
http://www.math.chalmers.se/Stat/Grundutb/CTH/mve220/1516/
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Our model assumptions are X' ~ N,,(0, R) and X? ~ t,, (0, =2 R), where R = (r;;) is
the correlation matrix with r; = 1 and r; ; = 0.04 for ¢ # j, m = 1,000 is the number of
companies. Furthermore, we assume that company i defaults if the corresponding critical
value Xg falls below a threshold @/, j = 1,2. These thresholds are chosen such that
the marginal default probability is 0.05. (So, in both models, the correlations and the

marginal probabilities of default are the same). Furthermore, in model 2, let v = 10.

(a) Find &/, j =1,2.

(b) Use a simulation study to compare the VaR,(L) for suitable values of p in these
models, where L denotes the number of defaults. Also compare the maximal number

of defaults in your simulations.
(c¢) Explain your findings in your own words for someone who is not familiar with risk

management (but who has some knowledge in basic statistics).

Hint: You can, of course, use standard procedures in your software-packages to simulate

the multivariate distributions.
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