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1 Simulation and some new distributions
In Matlab’s Statistics Toolbox, there are ready-made functions for generating ran-
dom numbers of most probability distributions that we have encountered. There-
fore the first few of the following exercises may feel a bit superfluous. However,
it is of value, also from a theoretical point of view, to know how to transform
random numbers of one distribution to some other, desired, distribution.

Assume that F1 and F2 are two distributions functions. For simplicity, assume
to begin with that F1 and F2 are both strictly increasing, which in particular entails
that they are invertible.

Proposition 1.1 Assume that X is a random variable with distribution function
F1. Let Y = F−12 (F1(X)). Then Y has distribution function F2.

The truth of the proposition follows from

P(Y ≤ y) = P (F1(X) ≤ F2(y)) = P
(
X ≤ F−11 (F2(y))

)
= F1(F

−1
1 (F2(y))) = F2(y).

A special case of Proposition 1.1 is that if X ∼ unif[0, 1], then F−1(X) has
distribution function F . This is very interesting, since computer generation of
∗Chalmers University of Technology
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random numbers usually starts from the uniform distribution. In Matlab, one gen-
erates a unif[0, 1] distributed random variable by unifrnd(0,1). Now try to
generate a vector x of 1000 such random numbers and visualize the result by
plotting a histogram and the empirical distribution function1

Now try to simulate the exponential distribution and the normal distribution
for some different parameters. The normal distribution function is nor possible to
invert explicitly, but matlab has the function norminv for this. The also find the
functions that directly generate data according to these distributions, and compare.

Note. Matlab parametrizes the exponential distribution with the expectation,
i.e. 1/λ.

When a distribution function of interest is not invertible, which is the case e.g.
for all discrete distributions, then one can instead use the generalized inverse

F (y) =

∫
{x : F (x) ≥ y}.

Since F is right continuous, F (F (y)) = y for all y, the above proposition holds
with F−1 replaced with F .

Now, the distribution function of a discrete random variable has a staircas
shape, so its generalized inverse has an awkward expression. Luckily, Matlab
has functions for all the common discrete distributions. Your job is now to find
these for the geometric, the Poisson and the binomial distributions. Find also the
functions for directly generate data according to these and compare.

It is now time to learn a few new distributions.

Definition 1.2 A random variableX is said to be gamma distributed with param-
eters α > 0 and λ > 0, written X ∼ Γ(α, λ), if it has the density

f(x) =
1

C
λαxα−1e−αx, x ≥

where C is the normalizing constant Γ(α) :=
∫∞
0
e−ttα−1dt.

If α is an integer, it is fairly easy to compute that Γ(α) = (α − 1)!. Taking
α = 1 gives exactly the density for an exponential random variable, i.e.

X ∼ Γ(1, λ)⇔ X ∼ exp(λ).

1If x1, x2, . . . , xn is a set of numbers, i.e. a sample of some random variable, the empirical
distribution function of the xk:s is given by the distribution function of the random variable Z
such that P(Z = xk) = 1/n for all k = 1, . . . , n
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In fact, if X1,X2, . . . , Xn are independent and exp(λ) distributed, then
n∑
k=1

Xk ∼ Γ(n, λ).

Prove this, using induction. An immediate consequence of this is that the time
up to the n’th point in a Poisson process of intensity λ, is Γ(n, λ) distributed. We
also get the formulas

X ∼ Γ(α, λ)⇒ E[X] =
α

λ
, Var[X] =

α

λ2

for integer α. The formulas are true for general α, which at this point is not hard
to believe. (We will not prova this.) Not also that according to the Central Limit
Theorem, Γ(n, λ) is very close to N(nλ, (

√
n/λ)2) for large integer n. Now gen-

erate vectors of Γ(4, 1) distributed random numbers in three different ways: (i)
transform as above, using gaminv, (ii) sum four independent exponential ran-
dom numbers and (iii) using the function gamrnd. Try also to approximate the
probability that the third point in a Poisson process of intensity 2 arrives after time
2.4.

In the light of the CLT, it is reasonable to assume a normal distribution for
many random and naturally appearing quantities. In some cases, however, such
an assumption is clearly unreasonable. In particular, this is the case for many,
but far from all, situation where the quantity in question is obviously nonnegative.
Since any normal distribution has its support on the entire real line, such a quantity
cannot be exactly normally distributed. Sometimes the error we get from this
is negligible, sometimes not. An example of the former kind is the following.
Consider the height that a son of a mother who is 170 cm tall, will get as an adult.
Say that the son’s expected height is 184 cm with a standard deviation of 6 cm.
The son’s height is obviously positive, so it cannot be exactly normal. However,
zero is more than 28 standard deviations below the expectation, so the error will
be of order e−282/2, a vanishingly small number.

Consider instead the following. A patient takes 75 mg of a drug and two hours
later one measures the patient’s blood concentration of the active substance. It is
well known that the metabolism of drugs may vary very much between different
persons, so we may very well have a situation where the expectation is, say, 120
(ng/ml) and the standard deviation is 80. Here the assumption of a normal distri-
bution will then cause an unacceptable error. In situations like these, one usually
can instead assume that the logarithm of X is normal, i.e. one can write X = eY

where Y is normal.
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Definition 1.3 Let Y ∼ N(µ, σ2) and X = eY . Then X is said to have a lognor-
mal distribution with parameters µ and σ2, X ∼ logN(µ, σ2).

Observe that is not true that X ∼ logN(µ, σ2) ⇒ E[X] = eµ; in fact E[X] >
eµ unless σ = 0. However if σ << µ, then the difference is very small. Shouldn’t
one always assume a lognormal rather than a normal distribution for positive quan-
tities, like e.g. the son’s height above? Sure, but if σ << µ, the difference gets so
small that it is not worth the trouble!2

Exercise: Find the Matlab function the generates lognormal random numbers
and check that you get the same result as when you generate normal Y :s and then
take eY . If X ∼ logN(0, 1), what does E[X] seem to be? More than e0, doesn’t
it?

Another distribution that arises from the normal distribution is the χ2 distribu-
tion.

Definition 1.4 Let Z1, Z2, . . . , Zn be independent and standard normal and let

X =
n∑
k=1

Z2
k .

Then X is said to be χ2-distributed with n degrees of freedom and one writes
X ∼ χ2

n.

It follows immediately that if X1, X2, . . . , Xn are independent and N(µ, σ2)
distributed, then ∑n

k=1(Xk − µ)2

σ2
∼ χ2

n.

If Z is standard normal, then E[Z2] = 1. From this it follows that X ∼ χ2
n ⇒

E[X] = n. One can also (can you?) show that Var[X] = 2n.
In fact, perhaps surprisingly, the χ2 distribution is a special case of the gamma

distribution:
X ∼ χ2

n ⇒ X ∼ Γ(n/2, 1/2).

In particular, if Z1 and Z2 are independent and standard normal, Z2
1 + Z2

2 ∼
exp(1/2). Prove this. Then use this result to simulate standard normal random

2This implies that sometimes X and logX can both be assumed to be normal. Isn’t this a
contradiction? Yes, it is not possible for them both to be exactly normal, but if σ << µ, then they
can both be very close to normal.
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numbers, using the exponential distribution. Hint: Regard Z1 and Z2 as the coor-
dinates of a random vector (Z1, Z2) and consider the polar coordinates R and θ.
What you just showed is that R2 ∼ exp(1/2). One can also show that R and θ are
independent and θ ∼ unif[0, 2π]. Now you can simulate R and θ and express Z1

in terms of these.
Another very important fact is

Proposition 1.5 If X1, . . . , Xn are independent and N(µ, σ2) distributed and s2

is as usual, defined as

s2 =
1

n− 1

n∑
k=1

(Xi −X)2,

then
(n− 1)s2

σ2
∼ χ2

n−1.

We will not prove this. Simulate to convince yourself. Take e.g. n = 10, repeat
1000 times and compare with 1000 observations generated by Matlab’s function
chi2rnd. (To compute the sample variance for a data vector is simple: just use
var.)

2 Failure rates and some more distributions
Let f be the pdf of a continuous random variable X ≥ 0. Recall that one inter-
pretation of the pdf is that if h > 0 is a small number, then P(X ∈ (x, x + h)) ≈
hf(x). Let G(x) = 1− F (x) = P(X > x). We then get

P(X ∈ (x, x+ h)|X > x) =
P(X ∈ (x, x+ h))

G(x)
≈ h

f(x)

G(x)
.

If X is interpreted as the life length of something, then this can be loosely spelled
out at as the ”probability to fail in the next moment given survival up to now”. It
is therefore logical to define the ration on the right hand side as the failure rate or
death rate of X .

Definition 2.1 The failure rate of X is given by

r(x) =
f(x)

G(x)
, x ≥ 0.
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Observe that if one knows r, then one can compute G (and hence the distribution
of X); since r(x) = −G′(x)/G(x) = −(d/dx) logG(x), we get

G(x) = exp

(
−
∫ x

0

r(t)dt

)
.

Suppose that X has a constant failure rate, λ. Then we get G(x) = e−λx, i.e.
X is exponential with parameter λ. This should come as no surprise, since we
know the exponential distribution as the life length of something that does not age
with time. This is often a reasonable assumption when dealing e.g. with electri-
cal components, but unreasonable for many mechanical components and clearly
unreasonable for the life length of animals or humans. It also turns out to be un-
realistic in most situations when one is dealing with data that are extreme values
of some kind, e.g. the highest sea level of the month or the strongest wind of the
decade. We will now encounter two sets of data where the exponential distribution
is not a realistic model.

Download the file atlantic.dat. It contains real data in the form of 582
so called significant wave heights, measure in the Atlantic. The significant wave
height is defined as the average of the highest third of the waves during the period
allotted for that measurement. Data are registered 14 times per month. You can
download the file e.g. by typing y=load(’atlantic.dat’) and will then
get the observations in the vector y. Use the data to estimate the failure rate, using
the following two lines

for i=1:100, G(i)=length(y(y>0.12*i))/582;, end

for i=1:99, r(i)=(G(i)-G(i+1))/(0.12*G(i));, end

Here we have partitioned the interval [0, 12] into one hundred subintervals and
first estimated G(x) = 1 − F (x) and then f(x)/G(x). Plot this and see how it
looks. Does the failure rate seem to be increasing or decreasing or neither?

Definition 2.2 The random variable X ≥ 0 is said to be Weibull distributed, with
shape parameter k and scale parameter λ if its distribution function F is given by

F (x) = 1− e(λx)k , x ≥ 0.

By differentiating, we find that the pdf is given by

f(x) = kλ(λx)k−1 exp(−(λx)k).
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Now compare you estimated failure rates with the failure rates for the Weibull
distribution for the parameters that fit best with the data. You can find these pa-
rameters by using the function wblfit. Observe that Matlab has a parametriza-
tion of the Weibull distribution that differs from ours; our (k, λ) corresponds to
(1/λ, k) in Matlab.

What you get shouldn’t look too bad, apart from the fact that the estimated
failure rate is so erratic, that it is hard to judge how good the fit really is. This is
typical for estimated failure rates, so, to be true, comparing failure rates is not a
very good way to compare distributions.

A more efficient way is to compare the empirical distribution functions of the
data with the empirical distribution function for a set of data generated according
to distribution you want to compare with (in this case the Weibull distribution
with the best parameters). Do this for the wave data and plot in the figure with
cdfplot. A much clearer picture, right?

Even better is of course to compare data with the exact distribution function
of the distribution you compare with. This can be done with a probability plot. A
probability plot is a plot of the data in a coordinate system where the axes have
been re-scaled, so that if data fits well with the distribution you compare with, then
data will be close to a straight line. Such ready-made probability plot functions are
installed in Matlab for a few standard distributions, the normal distribution and the
Weibull distribution among them. The function for a Weibull plot is wblplot.
Do a Weibull plot. The fit should look reasonable, but not perfect. In particular
you should see that the fit is rather poor in the tails.

Definition 2.3 The random variableX is said to be Gumbel distributed with scale
parameter a and location parameter b, X ∼ Gumb(a, b), if

F (x) = exp(−e−(x−b)/a), x ∈ R.

Compare the wave data with a Gumbel distribution in the same way as for
Weibull; by comparing with simulated data from Gumbel and by making a Gum-
bel probability plot. Matlab does not have ready-made functions for the Gumbel
distribution, but you can download the files gumbfit, gumbcdf and gumbplot
from the course url. Hopefully you will find that wave data fit better with a Gum-
bel distribution than with Weibull.3

3Here again we have data that are necessarily positive, but the Gumbel distribution has its
support in the entire real line. Again, this can be OK if the standard deviation is much smaller than
the expectation.
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An important property of the Gumbel distribution is that it is max stable, which
is to say that if X1 and X2 are independent and Gumbel with the same scale
parameter, then max(X1, X2) is also Gumbel. Prove this. (What is the location
parameter of the maximum?) This is one reason why the Gumbel distribution
tends to fit well with some extreme value data.

Let us now look at failure rates for a different collection of data, concern-
ing life length of humans. Download data from the file norway.mat by typ-
ing load ’norway.mat’. You will get the data in the form of the matrix
norway. In the second column of this matrix, one finds estimated life lengths of
Norwegian females and in the third column one finds the corresponding figures
for Norwegian males. These data are to be interpreted that if the number in in the
n’th entry is x, then, out of 100000 hypothetical (fe)males born in the year 2000,
x of them survive the their n−1’th birthday. Use these data to estimate the failure
rates for Norwegian women/men. Plot them both in the same figure. Do you see
a difference? (Since the data concerns hypothetical persons, the estimated failure
rates will be nowhere near as erratic as in the example above.)

Now check if data fits with a normal, Weibull or Gumbel distribution. No
good, right? In fact, data fits much better with a model that is actually used by life
insurance companies, namely with a failure rate given by

r(t) = a+ be−ct.

In the present case, one has a ≈ 9 · 10−4, c ≈ 10.3 and b = 3.3 · 10−5 for females
and b = 4.4 · 10−5 for males. Compute, for this model with these a, b and c, the
conditional probability that a Norwegian man born in 2000, becomes at least 80
years, given that he becomes at least 30 years.

3 The Poisson process
The Poisson process consists of a set of occurrences in time, such that the time
gaps between consecutive occurrences (including the time from the start to the
first occurrence) are independent and exponentially distributed with a common
parameter λ. The parameter λ is then called the intensity of the Poisson process. It
is straightforward to simulate a Poisson process; just let T1, T2, . . . be independent
exp(λ) random variables and let Sn, the time for the n’th occurence, be Sn =
T1 + . . . + Tn. Write X(s, t) for the number of occurrences in the time interval
(s, t) and writeX(t) forX(0, t). We have seen (or will see) thatX(s, t) is Poisson
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distributed with parameter λ(t − s). Try this out by simulating as described
above and check how many occurrences you get in [2, 5]. Use λ = 2. Repeat for
1000 times and compare to what you get if you simulate directly according to the
expected Poisson distribution.

Two important properties of the Poisson process are the superposition property
and the thinning property. The superposition property says that if X(t) and Y (t)
are two independent Poisson processes with intensities λx and λy respectively,
then X(t) + Y (t) is a Poisson process of intensity λx + λy. We call X(t) + Y (t)
for the superimposed Poisson process and it is the process that takes the union of
occurrences in X(t) and Y (t) as occurrences. Try this out by simulating a su-
perimposed Poisson process, register the times between occurrences and compare
with the expected exponential distribution.

Observe that the superposition property is equivalent to the that if Z1 and Z2

are independent and exp(λx) and exp(λy) respectively, then min(Z1, Z2) is expo-
nential with parameter λx + λy.

The thinning property says that if X(t) is a Poisson process with intensity λ
and Y (t) is the process that takes for occurrences each occurrence of X(t) but
only with probability p independently. Then Y (t) is a Poisson process of intensity
λp. Try this out too as for the superposition property.

The Poisson process for all types of processes where it seems reasonable to
assume that, at all times, neither time since the last occurrence nor the time in
itself, affects the distribution of the time to the next occurrence. Examples of pro-
cesses of occurrences of this kind are road accidents, storms, earth quakes, goals
in a football game, groups of people you meet on your evening walk, radioac-
tive decay, etc. Let us take a look at an example of real data. Download the file
coal.dat. The file contains information about fatal accidents in British coal
mines from 1851 to 1918, in the form of a matrix with six columns, where the
columns contain the following information about the accidents.

1. Day of month.

2. Month.

3. Year.

4. Number of the day of that year.

5. Number of day since the last fatal accident.
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6. Number of fatal accidents.

Have the fatal accidents arrived as a Poisson process? Test this by comparing the
times between consecutive accidents with a sample of the exponential distribution.
You should expect to get a fairly good fit, but a closer look should also reveal that
there seem to be ”too many” very short and very long times between occurrences.
One can then suspect that what we have really observed is a time inhomogeneous
Poisson process, i.e. a Poisson process where the intensity changes over time. (In
such a process, at a given time, the distribution of the time to next occurrence is
not affected by the time since the last occurrence, but it is affected by the time
itself.) We will not be going into more detail about Poisson processes in this more
generals sense, more than just stating that the time homogeneous case (i.e. what
we have studied so far in this course) is a convenient special case. Most of the
processes that one models as a Poisson process will be time inhomogeneous if
studied over a long enough time span, but it is often reasonable to assume time
homogeneity over shorter time scales.

Looking more closely at the coal mine data, one can see a change in intensity
around accident no. 127. Study data before and after this separately to see if
these fit better with a homogeneous Poisson process and if there indeed seems to
be an essential difference in intensity. (Around 1880, there was a legislation effort
to improve safety in British coal mines. Does it seem that this had an effect?)

4 Tests for normally distributed data
A ”standard situation” is to make confidence intervals and tests under the assump-
tion that the observations are distributed according to a normal distribution. We
have seen this be done for one sample as well as two samples. In the one sam-
ple case, one assumes that one has access to a sample X1, . . . , Xn with Xk ∼
N(µ, σ2), where µ is unknown and σ may be known or unknown. Let us assume
here the most common case that σ is unknown. We want to make a confidence
interval for µ os test the null hypothesis H0 : µ = µ0 against the alternative hy-
pothesis HA : µ 6= µ0 or HA : µ > µ0 or HA : µ < µ0. Recall the correspondence
between confidence intervals and tests: H0 is rejected at significance level α if
and only if the corresponding confidence interval for µ at confidence level 1 − α
does not contain µ0. Here the confidence interval

µ = X ± F−1tn−1
(1− α/2)

s√
n
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corresponds to the alternative hypothesis HA : µ 6= µ0, whereas HA : µ > µ0

corresponds to the lower bounded confidence interval

µ ≥ X − F−1tn−1
(1− α)

s√
n
.

Here too, we will work with real data. Download the file birth.dat: in the
Matlab window, click in ”Import data”, choose ”birth” and then download. Data
consists of a 747 × 26-matrix containing lots information about newborn babies
of mothers that at four maternity clinics in Malmö during the years 1991-1992.
You will find information about the content in the different columns of birth by
reading the file �birth.txt. (Note that I have replaced the original ”.” for ”missing
data” with ”99” in order to make Matlab accept the data.)

We will be mostly interested in making inference about the weight of the chil-
dren at birth. Create a vector fv=birth(:,3) containing the weights at birth.
We want to assume that these are normal. Make a normal distribution plot.
Does it look OK? It should look pretty good, but not perfect. In particular it
should be evident from the plot that we have ”too many” very low weights than
expected from the normal distribution. In any case, it does not look too bad, so let
us assume that data are indeed normal.

As a rule of the thumb, one usually says that the weight of of a newborn
Swedish infant has an expectation of 3500 g, with a standard deviation of around
500 g. Make a test on 5% significance level of H0 : µ = 3500 against HA :
µ 6= 3500 and give a 95% confidence interval for µ. There are a few different
ways to do this with Matlab. One way is to use the function normfit. The
most convenient way, however, is to use the function tt ttest, which can answer all
questions simultaneously. Type

[h, p, ki] = ttest(fv, 3500, a)

and Matlab will give you

h: rejection indicator, i.e. h = 1 means that the null hypothesis is rejected in
favor of HA : µ 6= 3500 at the significance level a and h = 0 means that H0

is accepted.

p: The p-value of the test, i.e. the lowest possible significance level for which
H0 could have been rejected with this data set.

ki: Upper and lower bounds for the symmetric confidence interval for µ with
confidence level 1− α.
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You should arrive at a significance level of ca 2.2 · 10−6, so the test is strongly
significant, and a confidence interval of µ = 3400 ± 41. So the rule µ = 3500
does not seem to be quite correct and the expectation rather seems to be close to
3400 g.

OK, but in this data set, one has recorded all the birth weights, including the
children that were born early. One classes a child as born early if the length of the
pregnancy was less than 266 days. Now try to test the same null hypothesis on the
data set that excludes those early. Information about the length of the pregnancy
is found in column 1 of birth. You will see that the result is quite different. If
you also make a normal distribution probability plot of this data set, you will also
see a better fit. Can you explain why this is the case?

Next, we move to the two sample case. Here we have two independent samples
X1, . . . , Xn and Y1, . . . , Ym where Xk ∼ N(µx, σ

2
x) and Yk ∼ N(µy, σ

2
y) and we

are usually interested in testing H0 : µx = µy against HA : µx 6= µy. For an exact
analysis, one usually has to assume that σ2

x = σ2
y = σ2. In that case

X̄ − Ȳ − (µx − µy)
sP
√

1/n+ 1/m
∼ tn+m−2,

where s2P is the pooled sample variance given by

s2P =
(n− 1)s2x + (m− 1)s2y

n+m− 2
.

From this one infers e.g. the symmetric confidence interval

µx − µy = X̄ − Ȳ ± F−1tn+m−2
(1− α/2)sP

√
1

n
+

1

m

with confidence level 1− α and H0 is tested correspondingly.
Matlab has the function ttest2 to handle this situation. As for ttest, this

function can answer all the interesting questions simultaneously. Use Matlab’s
help to find out how the functions works. (As you will see, the function can even
handle the situation with σ2

x 6= σ2
y (numerically). Now test if there is any differ-

ence between expected birth weight between boys and girls. Do the same thing
for children of smoking mothers versus non-smoking mothers and for mothers
that live together with the father versus those that don’t. Try some more hypothe-
ses if you have the time. (Information about the infants gender, mother’s smoking
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habits and if the mother lives together with the father can be found in columns 2,
20 and 18 respectively.)

Remark. Recall the multiple testing problem: ”in any data set there is always
something that is significant”. This is something we would have had to take into
serious consideration if this had been a sharp situation. Let us therefore regard
this exercise as a hypothesis generating pilot study.

Now turn back to the one sample case and consider the power of the test of
H0 : µ 6= µ0 against HA : µ 6= µ0. Recall that test is based on the fact that if H0

is true, then
X − µ0

s/
√
n
∼ tn−1.

The test rejects H0 at level α if

|X − µ0|
s/
√
n

> F−1tn−1
(1− α/2).

For µ1 6= µ0, the power of the test at µ1, g(µ1), is the probability that the test
rejects H0 if the true value of µ is µ1. To compute this, we need to know the
distribution of the test statistic T :=

√
n(X − µ0)/s when µ = µ1. If µ = µ0,

this was no problem, but if µ = µ1 we get a so called non-central t-distribution.
This is in itself not a big problem, since there are tables for this distribution and
it is of course programmed into any decent statistical software. A more pressing
problem is that the non-central t-distribution, apart from the number of degrees
of freedom, also has the unknown variance σ2 as a parameter. Hence, to apply it,
one needs a good guess of what the variance is. Since power computations are
usually needed before a study is conducted, in order to determine how large the
study needs to be in order to have a good chance of detecting a certain effect, one
cannot wait for the data to use that to estimate σ2. Hence, one really cannot do
anything better than to settle for a qualified guess of σ2. Sometimes one is lucky
enough that there have been earlier but similar studies made, from which one can
make some conclusions. Otherwise an uninformed guess is necessary.

Remark. Apparently is is often hard to make power computations objective.
Nevertheless, they are sometimes of utmost importance. Consider for example
a medical company that wants to test a new drug to see if it has an effect that is
better than placebo (or sometimes better than some other drug on the market). Say
that we are about to make the Phase 3 study, where our drug is finally going to be
tested for its effect on humans. First we decide on how large an effect needs to
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be to be worth-wile to detect, the so called smallest effect of clinical significance.
Then we want to make a power computation in order to find out how large the
study needs to be in order to give us a, say, 90% chance of detecting an effect of
this size (of course, if the true effect is larger than that, our chances will be even
bigger). Since studies of this kind are extremely expensive, we definitely do not
want to oversize the study. On the other hand, undersizing is not a good option
either, since that would increase the risk that the study becomes just a big waste
of money.

Now use the study of weights at birth for an example. If the true expected
weight is 3450 g, then how many births would have had to be studied in order to
get a 75% probability of rejecting H0 : µ = 3500 at the 5% significance level.
As a guess of σ2, use the rule of thumb that σ = 500 g. The Matlab function
sampsizepwr will help you out. It can also be used to compute the power for
given n (and µ1, µ0 and σ2).

5 Linear regression
Recall that the setting where we used linear regression is when we have data in
pairs, (xk, Yk), k = 1, . . . , n, where the Xk:s are known quantities and the Yk are
assumed to depend linearly on the xk:s, but with a normally distributed deviation,
independent for different k but all with the same variance. In other words, there
are constants a and b (and σ2) such that Y1, . . . , Yn are independent and

Yk ∼ N(a+ bxk, σ
2).

An equivalent way of writing this is that Yk = a + bxk + εk, where ε1, . . . , εn
are independent and N(0, σ2) distributed. From the observations, one wants to
estimate the unknown parameters a and b (and σ2). Using the ML method, it turns
out that one finds the point estimators â and b̂ of a and b, by minimizing

n∑
k=1

(Yk − (a+ bxk))
2,

over a and b. In other words, the ML method coincides with the method of least
squares for approximating the over-determined system of equations Yk = a+bxk,
k = 1, . . . , n (regarding a and b as the variables and the xk:s and Yk:s as known
coefficients). One also gets that â and b̂ get normal distributions whose variances
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depend on σ2, which in turn leads to that one can make tests and confidence in-
tervals for a and b, using the t-distribution (or the normal distribution if σ2 is
known).

The easiest way to get â and b̂ from Matlab is to use polyfit(x,Y,1),
where of course x and Y are the vectors of the xk:s and the Yk:s respectively. To
visualize this, use scatter(x,Y) or plot(x,Y,’.’) (which I think looks
better) and give the command lsline to plot the regression line through the
data points. To get confidence intervals for a and b is not as straightforward.
The function to use is regress. This function is based on the general linear
model (GLM), which we have not been treating in this course. What we need
to know here, is that linear can be seen as a special case of GLM, by writing
Yk = a+ bxk + εk, k = 1, . . . , n, on matrix form as

Y = Cβ + ε

where Y = [Y1 . . . Yn]T , β = [a b]T and C is the n× 2 matrix whose columns are
[1 . . . 1]T and [x1 . . . xn]T . The function regress has Y and C as its input and
you create C by typing C=[ones(n,1) x]. Now use this to make a linear
regression of the weights at birth as a function of length of pregnancy (which you
find in the first column of birth). What is the 99% confidence interval for b?
You should get b̂ ≈ 28. How do you interpret this?

6 Analysis of Variance
Analysis of Variance, ANOVA for short, is a generalization of the usual two sam-
ple situation to a situation with more than two samples. The model is the follow-
ing. We have k independent samples

X11, X12, . . . , X1n1 ,

X21, X22, . . . , X2n2 ,

...

Xk1, Xk2, . . . , Xknk

where sample no. i, i.e.Xi1, . . . , Xini
, is taken from a N(µi, σ

2)-distribution. Thus
we assume that the variance is the same for all the samples. We want to test
H0 : µ1 = µ2 = . . . = µn against HA : not all µi equal.
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Example. Consider an apartment building where one wants to investigate the
radon level in the apartments, to see if there is an effect on the radon level from
what floor the apartments are on; such an effect would indicate that one sours of
radon is from the ground. On each level, one places a number of detectors to
measure the radon levels and use the data to do an ANOVA.

One could of course use the two sample methodology for each pair of samples,
but the one would then encounter the problem of multiple testing. Properly taking
care of that problem would give a very inefficient test if k is large. In the present
situation, we have a fairly weak alternative hypothesis, which only claims that
some µi is different from the others. As we will see, this can be tested in a far
more efficient way. The commonly used test statistic builds on the idea that if
observed values varies more between the samples than within the samples, then
this indicates that H0 is false.

Let n =
∑k

i=1 ni be the total number of observations. Write

X i. =
1

ni

ni∑
j=1

Xij

for the mean of the i’th sample and X for the mean of all observations, i.e.

X =
1

n

k∑
i=1

ni∑
j=1

Xij =
1

n

k∑
i=1

niX i.

Write also

s2i =
1

ni − 1

ni∑
j=1

(Xij −X i.)
2

for the sample variance of the i’th sample. By Proposition 1.5, (ni−1)s2i ∼ χ2
n−1,

so by summing
n∑
k=1

(ni − 1)s2i
σ2

∼ χ2
n−k.

By writing

s2W =
1

n− k

k∑
i=1

(ni − 1)s2i =
1

n− k

k∑
i=1

ni∑
j=1

(Xij −X i.)
2

this transforms into
(n− k)s2W

σ2
∼ χ2

n−k.

16



Here the index W stands for ”within samples” to signify that s2W is to be thought
of as the in-sample variation of data.

Moving on, we have that X i. ∼ N(µi, σ
2/ni). To make things easier for a

while, assume that all the samples are of equal size, i.e. there is an m so that ni =
m for all i. If the null hypothesis is true, then there is also a µ such that µi = µ
for all i. Hence X1., X2., . . . , Xk. is a sample from the N(µ, σ2/m) distribution.
Therefore ∑k

i=1m(X i. −X)2

σ2
∼ χ2

k−1.

Writing

s2B =
1

k − 1

k∑
i=1

m(X i. −X)2,

this becomes
(k − 1)s2B

σ2
∼ χ2

k−1.

The index B stands for ”between samples” to signify that s2B is thought of as
the between-sample variation of data. Returning to the general case of (possibly)
different ni:s, we take

s2B =
1

k − 1

k∑
i=1

ni(X̄i. − X̄)2.

Again it can be shown (but we will not do that here) that (k − 1)s2B/σ
2 ∼ χ2

k−1.
One can also show that s2W and s2B are independent. This means that the ratio
T := s2B/s

2
W has an F -distribution.

Definition 6.1 Let Y1 and Y2 be two independent random variables with χ2
m1

and
χ2
m2

distributions respectively. Then the ratio

Y1/m1

Y2/m2

is said to have an F -distribution with m1 and m2 degrees of freedom. One writes
for short

Y1/m1

Y2/m2

∼ Fm1,m2 .
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It follows immediately from the definition that if H0 is true, then

T =
s2B
s2W
∼ Fk−1,n−k.

If T becomes large, then this speaks in favor of HA over H0. Hence the test for
testing H0: ”all µi equal” against HA : ”not all µi equal” is given by rejecting H0

on the significance level α if

T ≥ F−1Fk−1,n−k
(1− α).

Exercise: A small bus company has only five buses, all of the same type. The
company wants to try out four different types of tires with respect to wear. An
experiment is conducted, where one tyre of each type is put on each of the five
buses. After 20000 km of use, the wear of each tyre is measured (in mm) and
recorded. This gives a sample Xi1, . . . , Xi5 for each tyre type i, i = 1, 2, 3, 4. The
data is given by

Tire type 1: 9.1 13.4 15.6 11.0 17.1

Tire type 2: 20.3 20.3 24.6 18.2 19.8

Tire type 3 3: 20.8 28.3 23.7 21.4 25.1

Tire type 4: 11.8 16.0 16.2 14.1 15.8

May we assume that data is normal? Making a normal probability plot for each
sample looks OK, so let assume that we can. Do the samples have the same
variance? Computing the sample variances, this also looks reasonable. Are the
samples independent? This also seems reasonable since the different buses are of
the same type. Then it is at least not too unreasonable to assume the the variation
in wear depends on the tires themselves rather than a variation between different
buses. Hence it seems to be OK to do an ANOVA (but we should be aware that
the samples are small, so it hard to check our assumptions, which of course makes
them quite uncertain).

The purpose of the experiment seems to be to test H0 : µ1 = . . . = µ5 against
HA : ”not all µi equal. We have a balanced experiment, i.e. all ni are equal. In
such a case the Matlab function anova1 is very convenient. Matlab will answer
with the p-value of the test (and a figure and a table that you don’t need to con-
sider). If you want, you can compare p-values with p-values for the corresponding
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pairwise two sample t-tests (without thinking too deeply about what the compari-
son means).

Remark. The ”1” in anova1 stands for that we are making a one-way ANOVA.
There is also two-way (and n-way) ANOVA, a slightly different model that we
will not be concerned with here.

Exercise: In the matrix birth with birth weight observations, there is infor-
mation about the age of the mother at the time of birth. This is in the form of ”1”
if the mother was 15-24 years, ”2” if she was 25-29 years and ”3” if she was at
least 30 years. This information is found in the eighth column. Now partition the
observations into three groups based on the age of the mother and do an ANOVA
to test if there is an age effect on the birth weights.

You will find that this is an unbalanced experiment. Matlab does not have any
good function for this, so you have to compute the value of the F -distributed test
statistic T and insert into the distribution function for the correct F -distribution.
The distribution function is implemented in Matlab: fcdf.

7 Non-parametric methods
In some situations one cannot defend any assumption on the distribution of data.
There are still things that one can do. We will see a few examples of this here.
Assume that X1, . . . , Xn is a sample from a distribution about which we know
nothing more than that it is continuous.

Definition 7.1 Let X be random variable with distribution function F . Then the
number m is called a median for X (or for F ) if F (m) = 1/2.

The definition applies to any random variable, but if F is not continuous, then
there may be no median. Since our X under consideration is assumed to be con-
tinuous, we have that F is continuous and hence a median must exist (by the
Intermediate Value Theorem). The median may not be unique, but if F is strictly
increasing uniqueness always holds. Note that the median is not the same thing as
the expectation, even if it exists and is unique. If the distribution ofX is symmetric
around m, i.e. f(m+x) = f(m−x) for all x, then m = E[X], but not in general.
Consider for example X ∼ exp(1). Then E[X] = 1, but P (X > x) = e−x which
is 1/2 for x = ln 2, so m = ln 2.

For simplicity, assume that X has a unique median (even though everything
we will do works without this assumption). The median m is thus a number such
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that P(X < m) = P(X > m) = 1/2. Fix a number m0. Let N+ be the number
of observations Xk such that Xk > m0. Now if m = m0, then N+ has a binomial
distribution with parameters n and 1/2 and we should get N+ close to n/2 and a
large deviation will indicate that m 6= 1/2. The stage is set for a test. Let c be
such that

FBin(n,1/2)(n/2 + c) ≥ 1− α/2

and reject H0 : m = m0 in favor of HA : m 6= m0 at significance level at most α
if

|N+ − n/2| > c.

(That we typically cannot get exactly significance level α is because the binomial
distribution is discrete.) The test is called a sign test of the median. The corre-
sponding Matlab function is signtest. Try this on the birth data to test if the
median is 3400 g.

The fact that N+ ∼ Bin(n, 1/2) if m = m0 (or if we replace m0 with m in the
definition of N+) can of course also be used to make confidence intervals for m.

Remark. The vector fv of birth weights, has a sample mean of 3400 g and a
sample median of 3430 g. We have assumed that data are normal and since the
normal distribution is symmetric about its mean, the mean and the median coin-
cide. Hence we should expect the sampled quantities to be very close. However,
we did observe that that there are to many very low weights for a really good fit
with the normal distribution. In the light of this, it is not surprising that the sample
median is a bit larger than the sample mean. If we instead restrict to birth weights
for children not born early, we have a much better fit with normality and in this
case the sample median is 3480 g and the mean 3496 g, i.e. much closer.

Observe that the sign test only takes into consideration the number of observa-
tions above m0 and not how far above m0 they are compared to how far below the
other observations are. This is as it should be, since the median m itself does only
take into consideration the amount of probability mass to the left/right of m and
not where it is. However, suppose that we have good reason to believe that data
comes from a symmetric distribution. Then the mean and the median coincide, so
testing H0 : m = m0 is the same as testing µ = µ0. The mean however, does very
much depend on where the probability mass is. Hence it does in this situation
make good sense to take the position of the observations into account. We do this
in the following way. Rank the numbers |Xk−µ0| from the smallest to the largest.
For each k, let Rk = j if |Xk − µ0| is the j:th smallest of these numbers. In this
way every observation Xk gets its rank Rk in terms of how much it deviates from
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µ0. Next, define the test statistic

W :=
∑

k:Xk>µ0

Rk

i.e. the rank sum of the observations that exceed µ0. This test statistic will detect
if the observations on one side of µ0 deviate more from µ0 than the ones on the
other side.

The range of W is 0, 1, . . . , n(n+ 1)/2. If µ0 is the true expectation, then it is
fairly easy to see that E[W ] = n(n + 1)/4 and that W :s pdf is symmetric around
this value. More precisely, one can show that if µ0 is the true mean, then

P(W = r) =
a(n)

2r
,

where a(r) is the coefficient for sr in the expansion of
∏n

j=1(1 + sj). Let F be the
distribution function for a random variable with this distribution. Find c so that
F (n(n+ 1)/4 + c) ≥ 1− α/2 and reject H0 : µ = µ0 in favor of HA : µ 6= µ0 at
level at most α if ∣∣∣∣W − n(n+ 1)

4

∣∣∣∣ > c.

This test is called the Wilcoxon signed rank test (WSignrank). The coefficients
a(r) are difficult to express explicitly. For n large, this is is largely overcome by
the fact that, if H0 is true, then

W − n(n+ 1)/4√
n(n+ 1)(2n+ 1)/24

≈ N(0, 1).

In any case, with access to Matlab, computing the a(r):s is not a problem. The
Matlab function for WSignrank is signrank. Check out how it works and try it
on the same birth weight data that you did with the sign test. You should find that
corresponding p-values are smaller for WSignrank than for the sign test. Hence
WSignrank is more efficient. On the other hand it requires a symmetry assumption
that the sign test does not need. Compare also WSignrank with the corresponding
t-test under the assumption that data are normal. Here you should find that the
t-test is usually, but not always, more efficient.

Next we consider non-parametric comparison of two samples. We will as-
sume a translation model. We have the two independent samples X1, . . . , Xm and
Y1, . . . , Yn and assume that they come from distributions with distribution func-
tions F1 and F2 respectively, where these have the same form but may differ in
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that one is a translate of the other, i.e. there exists t such that F1(x + t) = F2(x)
for all x.

We wish to test H0 : F1 = F2 (which by assumption is the same as testing
H0 : µ1 = µ2 or H0 : t = 0) against HA : F1 6= F2. Assume without loss of
generality that m ≤ n. If the null hypothesis holds, then we may regard the whole
collection of data,X1, X2, . . . , Xm, Y1, Y2, . . . , Yn as a single sample of sizem+n
from the common distribution. Consequently, if one ranks the m+n observations
by size, all (m + n)! possible rankings are equally probable. Now let the test
statistic be given by

W :=
m∑
k=1

r(Xk),

where r(Xk) is the rank of Xk in the unified sample. If H0 is true, then the
expected rank of one observation os (m + n + 1)/2, so E[W ] = m(m + n +
1)/2 and the distribution of W is symmetric around this number. Let F be the
distribution function of W under H0. In analogy with the above, choose c so
that F (m(m + n + 1)/2 + c) ≥ 1 − α/2 and reject H0 : F1 = F2 in favor of
HA : F1 6= F2 at significance level at most α if∣∣∣∣W − m(m+ n+ 1)

2

∣∣∣∣ > c.

This test is called the Wilcoxon rank sum test (WRanksum). To compute F ex-
plicitly is difficult, but not a problem for Matlab. There is a central limit theorem
here too, see the book at page 373. The Matlab function for the test is ranksum.
Now make a rank sum test to see if birth weights differ between children of smok-
ing mothers and children of non-smoking mothers. Compare with the two sample
t-test you did before.

Discussion. Generally speaking, non-parametric models are better than para-
metric models (e.g. models based on the normal distribution) in that they make
very few assumptions on the distribution of data. On the other hand, the paramet-
ric models are usually stronger, i.e. they have a greater chance of detecting a given
deviation from the null hypothesis. Thus they both have essential advantages and
they both have a central rôle in applied statistics.
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