Balls in a box

September 11, 2009

Introduction

The object-oriented programming (OOP) approach will be further explored in
this project. An object-oriented program is made up of a set of cooperating ob-
jects. The objects are abstract models of the “real” objects we wish to simulate.
Each object has the capability of processing data as well as communicating and
interacting with other objects.

The purpose of this project is to explore and extend a set of Java classes. The
program that we will work with simulates balls in a box. The box consists of
a window on the screen in which balls of various colors live and can be moved,
resized and recolored. A snapshot of a box with three balls can look like this:

[®][E][2] Untitled H=]EE




The program consists of three classes. The balls are instances of class Ball
while the box is an instance of the class Box. The main program is a class called
BallsinBoxViewer.

Explore the Classes

Look at the code in the class Ball. java. Try to find the answers to the following
questions.

- The class has several instance fields. What are their names and types and
what do they do?

- In what method does the actual drawing of the balls take place?
- Which objects do we wish to model with the different classes?
- Does the class have a constructor?

- How many methods does the class have (name them)?

Answer the same questions for the Box class.

Run the Program

Compile all three files in turn with the javac command. Run the viewer pro-
gram by the command java BallsinBoxViewer. You should get a similar result
as given in the figure above.

The execution of a java program always starts in the main method, which is
required for the java interpreter to be able to run. The first thing that happens
in the program is that we create a JFrame object, and we set a size for the
object. The command

Box box = new Box();

creates a Box object called box. As you probably already know, you create an
object from a class by calling a constructor defined in the class. In a similar
way we create black, red and cyan colored balls by the following commands.

Box box = new Box();
Ball blackBall = new Ball(box,100,90);

Ball redBall = new Ball(box,270,200);
redBall.setColor(Color.RED);
redBall.setRadius(100);

Ball cyanBall = new Ball(box,50,350);
cyanBall.setColor(Color.CYAN);
cyanBall.setRadius(10);



Take a look again at the constructor for the Ball class. Describe the parameters
as used above. Why will the black ball be black (we didn’t state the color)?
What radius will the black ball have?

Create two more balls in the box. Try to make one of them into a non-standard
color (look in the API at the different constructors in the Color class). Place
one of the balls in the corner of the box, what happens? What will happen if
you place two balls in the same place? Try to place a ball outside the box (what
is the size of the box?)

Move the Balls

To move a Ball object we can use a method called step. Take a look at the
method implemented in the Ball class. A call to the method moves the ball on
the x and y axes by given step sizes, as given in the method setStepSizes.

Set different step sizes for all the balls in the program (also try negative step
sizes). When using the step function the balls are moved very quickly, so in
order to see the balls move me must use a delay. This is implemented in the
method moveAllBalls. Look up the parameters for the method and apply it to
the balls in the box. For example, what happens if you at the end of the viewer
class put the following line (don’t forget to set the step size first!)?

box.moveAllBalls(5,30);

Improve the program

We will continue to work with the three classes Ball, Box and BallsinBoxViewer
during the coming weeks. Can you think of something to improve the perfor-
mance of the program?



