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Preface

These lecture notes provide additional material to the lecture “Financial Time Series”
(TMS087/MSA410) at Chalmers University of Technology and University of Gothenburg. The
course is the fourth in a series of four financial courses (Options and Mathematics, Financial Risk,
Stochastic Calculus) and assumes the student to be familiar with the mathematical content of the
lectures as well as with basic statistical methods. It is to be seen as an early master level course.
The intention of the course is to provide a mathematical framework for financial time series rather
than to introduce as many available methods as possible. The student should understand the
mathematical background of easy linear models, should be able to implement these from scratch,
and should learn to transfer the knowledge to more advanced models.

First simulation examples have been added this year, more are planned in future years. Fur-
thermore an introductory chapter to probability theory was included and the last chapter about
extreme value theory was omitted. Since the notes are still under construction, we are thankful
for any comments that help to improve them.

Göteborg, May 2016, Annika Lang & Andreas Petersson

Preface to v2015

These lecture notes were written in parallel to the lecture “Financial Time Series”
(TMS087/MSA410) held by the author at Chalmers University of Technology and University
of Gothenburg in Spring 2015. They are based on [4, 3, 10, 17].

The lecture notes are no more than a first draft, where examples, especially financial applica-
tions, as well as graphs and plots are still missing. They are first just exclusively handed to the
students of the class.

Please help to improve the notes for future students and send any typos, problems, and remarks
to the author (annika.lang@chalmers.se).

Göteborg, May 2015, Annika Lang
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CHAPTER 1
Prerequisites

The intention of this chapter is to provide all readers with the necessary prerequisites in probability
theory, mathematical statistics, and financial mathematics. In the lecture it is assumed that this
content is already known and it is the personal responsibility of every student to be familiar with
the introduced definitions, notations, and results included in this chapter.

1.1 Review on probability theory

The attempt of this section is to give an introduction to probability theory that is as short as
possible but provides the reader with all basics that are required throughout the lecture. The
presentation of results is highly inspired by [14]. For a more extended but still easy introduction
to probability theory in English than that given below the reader is referred for example to [16].
We start with the very basic concept of a probability space.

Let Ω be a nonempty set. A system A of subsets A ⊆ Ω is called a σ-algebra on Ω if Ω ∈ A, it
is closed under complements, i.e., A ∈ A implies Ac = Ω\A ∈ A, and it is closed under countable
unions, i.e., for all sequences (An, n ∈ N), An ∈ A for all n ∈ N, it holds that

⋃
n∈NAn ∈ A. The

pair (Ω,A) is called a measurable space and elements of A are called measurable sets. A subset
G ⊂ A is a sub-σ-algebra of the σ-algebra A if G is a σ-algebra itself.

There exist many different σ-algebras. The simplest (and most boring) σ-algebra just consists
of the empty set ∅ and Ω. It is an easy exercise to show that this is actually a σ-algebra. More
interesting and frequently used σ-algebras include the power set P(Ω) of Ω, which is the set of
all subsets of Ω, the σ-algebra generated by a subset E of the power set, which is the smallest
σ-algebra that contains E , and the Borel σ-algebra over Ω = R, which is the σ-algebra generated
by all half-open intervals of R. This latter σ-algebra is denoted by B(R).

To “measure sizes” on a measurable space (Ω,A), let µ : A → R+ be a mapping that satisfies
µ(∅) = 0 as well as being σ-additive, i.e., for all sequences (An, n ∈ N) of pairwise disjoint sets
being elements of A, it holds that

µ
(⊎
n∈N

An
)

=
∑
n∈N

µ(An).

Then µ is called a measure on (Ω,A) and the triple (Ω,A, µ) is called a measure space. If further-
more µ(Ω) = 1, µ is called a probability measure and usually denoted by P : A → [0, 1]. The triple
(Ω,A, P ) is then called a probability space.

A well-known measure is the Lebesgue measure λ which is defined on (R,B(R)) by

λ([a, b)) := b− a

1



2 CHAPTER 1. PREREQUISITES

for all half-open intervals [a, b) ⊂ R.

Next, let f : Ω→ R be a function and set for B ∈ B(R)

f−1(B) := {ω ∈ Ω, f(ω) ∈ B}.

If f−1(B) ∈ A for all B ∈ B(R), f is called measurable. When Ω = R in this definition, A is
taken to be B(R). The σ−algebra σ(f) is generated by {f−1(B), B ∈ B(R)} ⊆ P(Ω) and it is the
smallest σ-algebra on Ω with respect to which f is measurable. It is an easy exercise to show that
{f−1(B), B ∈ B(R)} is a σ-algebra so that in fact σ(f) = {f−1(B) : B ∈ B(R)}.

In the following lemma, it is shown that measurability is preserved under the composition of
measurable functions.

Lemma 1.1.1. Let g : Ω → R and f : R → R be measurable functions, then f ◦ g : Ω → R is
measurable.

Proof. Observe that for any B ∈ B(R)

(f ◦ g)−1(B) = {ω ∈ Ω, f(g(ω)) ∈ B} = {ω ∈ Ω, g(ω) ∈ f−1(B)} = g−1(f−1(B)).

Since f−1(B) ∈ B(R) due to the measurability of f , g−1(f−1(B)) ∈ A by the measurability of g
and the claim is proven.

In the context of a probability space (Ω,A, P ), a measurable mapping X : Ω → R is called a
(real-valued) random variable and the lemma implies that for any measurable function f : R→ R
the function f ◦X is also a random variable.

Let X be a random variable and consider for B ∈ B(R)

PX(B) := P (X−1(B)) = P ({ω ∈ Ω, X(ω) ∈ B}) = P (X ∈ B),

where we use all notations as synonyms. Then it can be shown that PX : B(R) → [0, 1] is a
probability measure on (R,B(R)) called the image measure of P under X. It is also called the
distribution of X. The cumulative distribution function FX : R→ [0, 1] is then defined by

FX(x) := PX((−∞, x]) = P (X ≤ x), x ∈ R.

To omit the introduction of Lebesgue integration in what follows, we have to distinguish
between continuous and discrete random variables and use Riemann integration and summation
rules to define expectations of random variables.

A random variable X is called discretely distributed if it takes values in a countable subset
of R with probability 1, i.e., there exists a real-valued (and possibly finite—but we use the infinite
notation for simplicity) sequence (xi, i ∈ N) with xi 6= xj for all i, j ∈ N such that

P (X = xi) = pX(xi) > 0

for all i ∈ N and

P (X = xi, i ∈ N) = P
(⊎
i∈N
{X = xi}

)
=
∑
i∈N

pX(xi) = 1.

Then with

εx(A) :=
{

1 if x ∈ A,
0 else
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for all A ∈ B(R) one obtains with the properties of a probability measure that the distribution
of X can be expressed by

PX(A) =
∞∑
i=1

pX(xi)εxi(A).

While the cumulative distribution function of a discrete random variable is a stepfunction, a
random variable X is called continuously distributed if its cumulative distribution function FX is
continuous. In what follows let us take the stronger assumption that FX is differentiable with
derivative fX . Then it holds that

FX(x) =
∫ x

−∞
fX(x) dx

and fX is called the density of X. This implies that for all intervals (a, b] we are able to compute
the probability that X is in (a, b] by

P (X ∈ (a, b]) = PX((a, b]) = PX((−∞, b])− PX((−∞, a]) = FX(b)− FX(a) =
∫ b

a

fX(x) dx.

We should remark that not all random variables follow either a continuous or a discrete distri-
bution but that there exist mixtures of both.

An important quantity of interest is the “average” or “mean” of a random variable. What can
we expect to be its value when observing it? Put into a mathematical framework, the average is
described by the expectation of a random variable which is formally (or if Lebesgue integration
is known and X is integrable with respect to P ) given by the integration of the random variable
with respect to the probability measure P

E(X) :=
∫

Ω
X(ω) dP (ω).

By the transformation theorem this rather abstract expression can be simplified for continuous
random variables to

E(X) =
∫
R
xfX(x) dx

and for discrete random variables to

E(X) =
∞∑
i=1

pX(xi)xi.

We have already learned that g ◦ X is a random variable if g is measurable. Frequently we
will compute expectations of more general expressions than E(X) which are of the form g(X) =
g ◦ X. Therefore we include the computing rules for expectations of these random variables for
the convenience of the reader. For continuous random variables we obtain

E(g(X)) =
∫
R
g(x)fX(x) dx,

while for discrete ones we compute

E(g(X)) =
∞∑
i=1

pX(xi)g(xi).

An important inequality that relates probabilities and expectations is Chebyshev’s inequality which
states that for any α > 0 and any strictly increasing function g on R+ it holds that

P (|X| > α) ≤ g(α)−1 E(g(|X|)). (1.1)
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If g is the identity, the inequality is known as Markov’s inequality. Another frequently used
function is g(x) = x2 which has the desired properties.

The definition of the expectation enables us to define the variance of a random variable X,
which is given by

Var(X) := E((X − E(X))2).

In an easy exercise one shows that the variance is equal to

Var(X) = E(X2)− (E(X))2.

From this expression it is clear that a finite variance requires besides a finite expectation that the
second moment exists, i.e., E(X2) < +∞.

If X and Y are two random variables, then a “generalization” of the variance is the so-called
covariance of X and Y which is defined by

Cov(X,Y ) := E((X − E(X))(Y − E(Y ))).

It can be scaled to a quantity taking values in [−1, 1] by

Cor(X,Y ) := Cov(X,Y )√
Var(X) Var(Y )

and is called the correlation of X and Y .

If Cov(X,Y ) = 0 and therefore also Cor(X,Y ) = 0 (under the assumption of the non-trivial
case that neither Var(X) nor Var(Y ) is equal to zero), X and Y are said to be uncorrelated or
orthogonal (in the sense of L2(Ω;R)).

While the expectation is linear, i.e., for random variables X, Y and constants α, β ∈ R

E(αX + βY ) = αE(X) + β E(Y ),

which is due to the linearity of the integral and of sums, respectively, this does not hold for the
variance and covariance. Nevertheless, under the assumption of uncorrelated random variables we
obtain the following formula for the variance of sums of random variables.

Theorem 1.1.2 (Bienaymé). Let X1, . . . , Xn be pairwise uncorrelated random variables and
α1, . . . , αn ∈ R, then

Var
(

n∑
i=1

αiXi

)
=

n∑
i=1

α2
i Var(Xi).

Proof. Let us divide the proofs into two steps. We first observe that for α ∈ R and a random
variable X is holds that

Var(αX) = E((αX − E(αX))2) = α2 E((X − E(X))2) = α2 Var(X).

Therefore it is sufficient to prove the claim for α1 = · · · = αn = 1. Furthermore we can assume
without loss of generality that E(X1) = · · · = E(Xn) = 0. We compute

Var
(

n∑
i=1

Xi

)
= E((X1 + · · ·+Xn)2) =

n∑
i=1

E(X2
i )+

∑
i6=j

E(XiXj) =
n∑
i=1

Var(Xi)+
∑
i 6=j

Cov(Xi, Xj).

Since the random variables are pairwise uncorrelated, it holds that Cov(Xi, Xj) = 0 for all i 6= j
by definition and the claim follows.
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Let us next consider a stronger assumption on sequences of random variables than was assumed
in the theorem of Bienaymé. Therefore let (Xn, n ∈ N) be a sequence of random variables. The
sequence is called independent if for all n ∈ N, all positive integers k1 < · · · < kn, and all choices
xk1 , . . . , xkn ∈ R it holds that

P (Xk1 < xk1 , . . . , Xkn < xkn) =
n∏
i=1

P (Xki < xki) = P (Xk1 < xk1) · · ·P (Xkn < xkn).

One can prove that this definition is actually sufficient for independence and implies the “usual”
condition that for all Bk1 , . . . , Bkn ∈ B(R)

P (Xk1 ∈ Bk1 , . . . , Xkn ∈ Bkn) =
n∏
i=1

P (Xki ∈ Bki).

In order to show that the independence of random variables is stronger than the requirement that
they are uncorrelated, we need the following result first.

Theorem 1.1.3. Let X1, . . . , Xn be independent random variables and g1, . . . , gn measurable func-
tions such that

E(g1(X1) · · · gn(Xn)) < +∞
exists, then

E(g1(X1) · · · gn(Xn)) = E(g1(X1)) · · ·E(gn(Xn)).

We remark for the interested reader that the theorem is proven by the observation that the
product measure of the random variables is equal to the product of the image measures, i.e.,

PX1,...,Xn = PX1 ⊗ · · · ⊗ PXn
and Fubini’s theorem.

Coming back to the comparison of independent and uncorrelated random variables, let us set
for two independent random variables X and Y

g1(X) := g2(X) := X − E(X),

which is a measurable function under the assumption that E(X) < +∞ and E(Y ) < +∞. Then
the theorem implies that

Cov(X,Y ) = E(g1(X)g2(Y )) = E(g1(X))E(g2(Y )) = (E(X)− E(X))(E(Y )− E(Y )) = 0,

i.e., we have shown that the independence of two random variables implies that they are uncor-
related. Nevertheless, the reader should be aware that uncorrelated random variables are usually
not independent.

Product measures were already mentioned in the remark on the proof of Theorem 1.1.3 but
were not discussed so far. The product measure PX,Y of two random variables X and Y is defined
by the completion of

PX,Y (A×B) := P (X ∈ A, Y ∈ B), A,B ∈ B(R).

The conditional probability of X given Y is defined by

P (X ∈ A|Y ∈ B) := P (X ∈ A, Y ∈ B)
P (Y ∈ B)

for A,B ∈ B(R) with P (Y ∈ B) 6= 0, which leads for continuously distributed random variables
with joint density fX,Y to the conditional density given by

f(x|y) =
{
fX,Y (x,y)
fY (y) if fY (y) 6= 0,

0 else
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for x, y ∈ R. Here fY is the (marginal) density of Y which can be derived by

fY (y) =
∫
R
fX,Y (x, y) dx.

For discrete random variables we obtain

p(x|y) =
{
pX,Y (x,y)
pY (y) if pY (y) 6= 0,

0 else,

where the weights are given by pX,Y (x, y) = P (X = x, Y = y) and the (marginal) weights pY (y)
can be computed by

pY (y) =
∞∑
i=1

pX,Y (xi, y) = P (Y = y),

where (xi, i ∈ N) denotes the values in R with strictly positive probability.

In what follows next, we use this concept to define conditional expectations. The reader
should be aware that we are doing this introduction for a very specific case. Usually conditional
expectations are considered in the more general setting with respect to σ-algebras instead of
random variables. The experienced reader will observe quite easily that using the σ-algebra σ(Y )
generated by the random variable Y instead of Y leads to the same conditional expectations as
those introduced in what follows.

Let X and Y be two random variables and assume that X is integrable or positive. Then, by
the theorem of Radon–Nikodym, there exists a P -almost surely unique random variable Z with
the properties that there exists a measurable function g : R→ R such that

Z(ω) = g(Y (ω))

for all ω ∈ Ω and for all B ∈ B(R)∫
{Y ∈B}

Z(ω) dP (ω) =
∫
{Y ∈B}

X(ω) dP (ω).

The random variable Z is called the conditional expectation of X given Y and denoted by E(X|Y ).
Observe that in contrast to E(X), the conditional expectation E(X|Y ) is a random variable which
could be interpreted as the best approximation of X given just Y . In this context P -almost
surely means that for all random variables Z ′ that also satisfy the two properties it holds that
P (Z = Z ′) = 1.

For practical purposes and a more specific and concrete form of the conditional expectation
we add that the abstract condition of integration with respect to the probability measure implies
for continuous random variables that the conditional expectation is given by

E(X|Y ) =
∫
R
xf(x|Y ) dx.

For discrete random variables one obtains that

E(X|Y ) =
∞∑
i=1

p(xi|Y )xi,

where one should be aware that the result is a random variable which could be characterized by
computing E(X|Y = yj) for all yj ∈ R, j ∈ N, with P (Y = yj) > 0.

In what follows we give a selection of properties of the conditional expectation, where the
reader is referred to the literature for the proofs or derives the results in easy computations. The
conditional expectation has the following properties:
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(i) The conditional expectation is linear, i.e., for a1, a2 ∈ R and random variables X1, X2, and
Y it holds that

E(a1X1 + a2X2|Y ) = a1 E(X1|Y ) + a2 E(X2|Y ).

(ii) The expectation of the conditional expectation E(X|Y ) is equal to the expectation of the
random variable X, i.e.,

E(E(X|Y )) = E(X).

(iii) If X is independent of Y , the conditional expectation satisfies

E(X|Y ) = E(X),

i.e., the best approximation of X given Y is the expectation of X.

(iv) For every constant a ∈ R it holds that

E(a|Y ) = a.

(v) For any measurable function g : R→ R and random variables X and Y it holds that

E(g(Y )X|Y ) = g(Y )E(X|Y ).

We will need conditional expectations given a whole family of random variables in the lecture
to obtain the best forecast using the past observations of a time series. Therefore we have to
generalize the conditional expectation to E(X|Y1, . . . , Yn) for random variables X and Y1, . . . , Yn.
This is easily be done by finding a measurable function g : Rn → R such that Z = g(Y1, . . . , Yn).
All presented results stay the same under this generalization (and instead of σ(Y ) one considers
σ(Y1, . . . , Yn) to consider it in the “usual approach” of conditional expectations).

We continue this very short introduction to probability theory with a collection of examples of
frequently used distributions.

Example 1.1.4 (Bernoulli distribution). The Bernoulli distribution is a discrete distribution
that takes values in {0, 1} and that models a coin flipping experiment. It is characterized by the
parameter p ∈ (0, 1). A Bernoulli distributed random variable X has the distribution

P (X = 1) := p, P (X = 0) := 1− p.

In an easy computation one obtains that

E(X) = p, Var(X) = p(1− p).

Example 1.1.5 (Uniform distribution). A random variable X is uniformly distributed on the
interval [a, b] denoted by X ∼ U([a, b]) if it is continuous with density given by

fX(x) :=
{

(b− a)−1 if x ∈ [a, b],
0 else.

It is an easy exercise to compute that

E(X) = a+ b

2 , Var(X) = (b− a)2

12 .

A useful observation especially for simulations is that if X ∼ U([0, 1]), then

a+ (b− a)X ∼ U([a, b])

for real numbers a < b.
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Example 1.1.6 (Normal distribution). One of the most famous and most frequently used dis-
tributions is the normal distribution. A random variable X is normally distributed or Gaussian
with expectation µ and variance σ2 denoted by X ∼ N (µ, σ2) if it is continuously distributed with
density given by

fX(x) := 1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
.

The cumulative distribution function of this distribution is usually denoted by

Φ(x) := 1√
2πσ2

∫ x

−∞
exp

(
− (y − µ)2

2σ2

)
dy.

The expectation and the variance fully characterize the distribution and a family of normally
distributed random variables is independent if it is jointly normally distributed and uncorrelated.

A central property of the normal distribution is the simple but remarkable fact that the sample
or empirical mean X̄n of a large number of random variables of any distribution will be approx-
imately normally distributed under some simple conditions. This is not proven in these lecture
notes but merely stated below. For a proof the reader is referred for example to [16]. The reader
should be aware that there exist many versions of this theorem with different assumptions on
the underlying random variables. The following is one of the most common with the strongest
assumptions.

Theorem 1.1.7 (Central Limit Theorem (CLT)). Let (Xn, n ∈ N) be a sequence of independent
and identically distributed random variables, each having finite mean µ and finite non-zero variance
σ2 and let X̄n = n−1∑n

i=1Xi. Then the distribution of the standardized sample mean tends to
the standard normal distribution, i.e. for all x ∈ R

P

(√
n(X̄n − µ)

σ
≤ x

)
→ Φ(x).

1.2 Review on mathematical statistics

A hypothesis is a statement about a parameter. We have two complementary hypotheses in a
hypothesis testing problem which are called the null hypothesis H0 and the alternative hypothe-
sis H1. Finally a hypothesis testing procedure or hypothesis test is a rule that specifies for which
sample values the decision is made to accept H0 as true and for which H0 is rejected and H1 is
accepted as true.



CHAPTER 2
Stationary time series and seasonality

This chapter is based on Brockwell and Davis’ book “Introduction to Time Series and Forecast-
ing” [4] as well as Grandell’s lecture notes “Time series analysis” [10], which are based on [4]
and [3].

We start with an introduction to times series in general before focusing on stationary time
series. We discuss especially the testing and forecasting of stationary times series. Finally we
introduce methods to remove trend and seasonal components from observed data in order to
obtain a stationary time series. Let us from here on in all of what follows consider random
variables with respect to a fixed probability space (Ω,A, P ).

2.1 Introduction to time series

The goal of this section is to set up a mathematical framework that describes the behavior of
observed data which might come from the stock market but many other sources in engineering,
ecology, and finance can be treated in a similar way. We consider special types of stochastic
processes which we are observing and trying to estimate, fit, and forecast. Therefore we first recall
that a stochastic process X := (Xt, t ∈ T) is a collection of random variables with respect to an
index set T. In the context of these lecture notes let T ⊂ R. We call X a stochastic process in
continuous time if T is a (possibly unbounded) interval while it is called a stochastic process in
discrete time if T is countable, i.e., T = {tn, n ∈ N} with tn ∈ R for all n ∈ N. While a stochastic
process is the mathematical construction of some random behavior over time, we are interested
in the observation of this process, e.g., of the evolution of a stock price. This will be done in the
following framework:

Definition 2.1.1. A time series is a real-valued sequence of observations (xt, t ∈ T) with respect
to an index set T ⊂ R. A time series model for the observed data (xt, t ∈ T) is a specification
of the joint distributions (or possibly only the means and covariances) of a sequence of random
variables (Xt, t ∈ T) of which (xt, t ∈ T) postulates to be a realization.

The definition implies that a time series model is a stochastic process, but it might happen that
we do not know all of its properties explicitly but just some specific quantities like the expectation
or the covariances. We remark that we use the term time series to mean both the data and the
underlying stochastic process if there is no danger of confusion.

Example 2.1.2. An example of a time series in the sense of a realization of a stochastic process is
the set of quarterly earnings (xt)42

t=1 for the Swedish clothing company H&M. Figure 2.1.2 shows
these earnings in million SEK from January 2006 through April 2016.

9
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Figure 2.1: Quarterly earnings of H&M from January 2006 through April 2016.

Let us observe that in reality we are just able to observe the stochastic process at finitely many
times. Therefore, we focus in these lecture notes on discrete-time time series, i.e., T = {tn, n ∈
N}, and allow also for infinitely many observations, because the number of observations is not
necessarily bounded (from the beginning). Let us assume from now on that T is a discrete set
{tn, n ∈ N} and let us abbreviate (Xtn , n ∈ N) by (Xn, n ∈ N). Equivalently we write (xn, n ∈ N)
and for finite observations and models (x1, . . . , xn) and (X1, . . . , Xn), resp., for some finite and
fixed n ∈ N.

For a discrete time series, the specification of the joint distributions in Definition 2.1.1 simplifies
to the knowledge of all probabilities

PXi1 ,...,Xim ((−∞, y1], . . . , (−∞, ym]) = P (Xi1 ≤ y1, . . . , Xim ≤ ym)

for all finite random vectors (Xi1 , . . . , Xim) of any {i1, . . . , im} ⊂ N with finite m ∈ N and all
yj ∈ R, j = 1, . . . ,m.

Although we claimed that the characterization of the joint distribution of a discrete time
series is already simpler, it is still not convenient and in general not easy to derive results in this
framework. To keep the technicalities in these lecture notes as low as possible, we will therefore
introduce in what follows so-called iid noise.

Definition 2.1.3. A stochastic process X = (Xt, t ∈ T) is called iid noise with mean zero
and variance σ2 if the sequence of random variables (Xt, t ∈ T) is independent and identically
distributed (abbreviated by iid) with E(Xt) = 0 and Var(Xt) = σ2 for all t ∈ T. An iid noise is
denoted by X ∼ IID(0, σ2).
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Please note that iid noise is sometimes called white noise in the literature (e.g., in [17]). We
will use the terminology white noise for a more general process that satisfies weaker assumptions
than iid noise.

In what follows we treat two simple examples of time series models.

Example 2.1.4 (Binary process). A simple stochastic process and an example of an iid noise is
the binary process which describes the flipping of a fair coin. In this case (Xn, n ∈ N) is a sequence
of iid random variables characterized by

P (X1 = 1) = P (X1 = −1) = 1
2 .

It is easy to see that it has mean zero, i.e.,

E(X1) = (−1) · 1
2 + 1 · 1

2 = 0,

and variance 1, i.e.,

Var(X1) = E((X1 − E(X1))2) = E(X2
1 ) = (−1)2 · 1

2 + 12 · 1
2 = 1.

Example 2.1.5 (Random walk). A random walk (Sn, n ∈ N0) is obtained by the cumulative
summing of iid random variables, i.e., for a given iid noise (Xn, n ∈ N), it is defined by S0 := 0
and for n ∈ N by

Sn :=
n∑
i=1

Xi = Sn−1 +Xn.

If the sequence of random variables is given by the binary process in Example 2.1.4, the corre-
sponding random walk is called a simple symmetric random walk.

We finish this section by introducing the important example of a Gaussian time series.

Definition 2.1.6. A time series X is said to be a Gaussian time series if all finite-dimensional
distributions are normal.

2.2 Characterization of stationary time series

Having seen time series models in general in the previous section, let us focus on the specific class
of stationary times series and its properties in what follows.

Definition 2.2.1. Let X = (Xt, t ∈ T) be a stochastic process with Var(Xt) < +∞ for all t ∈ T.
The mean function µX : T→ R of X is given by

µX(t) := E(Xt)

for all t ∈ T and the covariance function γX : T× T→ R is defined by

γX(r, s) := Cov(Xr, Xs) = E ((Xr − µX(r))(Xs − µX(s)))

for all r, s ∈ T.

In order to avoid problems with the index set of the stochastic process especially when summing
indices, let us consider for simplicity T = Z in what follows, where we allow for negative times
keeping in mind historical data.



12 CHAPTER 2. STATIONARY TIME SERIES AND SEASONALITY

Definition 2.2.2. Let X = (Xt, t ∈ Z) be a time series with Var(Xt) < +∞ for all t ∈ Z. The
time series X is called (weakly) stationary if

(i) there exists µ ∈ R such that µX(t) = µ for all t ∈ Z and

(ii) γX(r, s) = γX(r + h, s+ h) for all r, s, h ∈ Z.

Further, a time series X is said to be strictly stationary if the random variables (X1, . . . , Xn) and
(X1+h, . . . , Xn+h) have the same joint distributions for all h ∈ Z and n ∈ N.

It is an easy exercise that a strictly stationary time series with finite variance is also weakly
stationary. Whenever stationary is used in what follows, we shall mean weak stationarity. Fur-
thermore observe that the converse is just true in very special cases. The typical example is that
a weakly stationary Gaussian time series is also strictly stationary since the normal distribution
is completely determined by its mean and covariance.

Furthermore, we observe that Condition (ii) in Definition 2.2.2 implies that γX(r, s) with
r, s ∈ Z is actually a function of the distance |r − s| and therefore it is convenient and sufficient
to write

γX(h) := γX(h, 0) = γX(s+ h, s)

for h, s ∈ Z for stationary time series. In this context h is called the lag.

Definition 2.2.3. Let X be a stationary time series. The autocovariance function (ACVF)
γX : Z→ R of X is defined by

γX(h) := Cov(Xt+h, Xt)

for h ∈ Z and t ∈ Z. The autocorrelation function (ACF) ρX : Z→ [−1, 1] of X is defined by

ρX(h) := γX(h)
γX(0)

for h ∈ Z.

Note that γX is well-defined due to the stationarity of X. Furthermore we observe that ρX is
given by the correlations of the time series. It is straightforward to see that

ρX(h) = Cor(Xt+h, Xt) = Cov(Xt+h, Xt)√
Var(Xt+h) Var(Xt)

for all h, t ∈ Z.

Let us introduce next the already announced generalization of iid noise.

Definition 2.2.4. A stochastic process X = (Xt, t ∈ Z) is called a white noise with mean µ and
variance σ2 if it is a stationary process with E(Xt) = µ, t ∈ Z, and for h ∈ Z

γX(h) =
{
σ2 if h = 0,
0 else.

If X is a white noise it is denoted by X ∼WN(µ, σ2).

In other words a white noise is a sequence of uncorrelated random variables with constant mean
and variance. It is clear from the definition that an iid noise is a white noise with mean 0 and
variance σ2. For a white noise to be iid noise on the other hand, it must be centered (i.e. µ = 0) and
the random variables must be independent and identically distributed. For example, a centered
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white noise that is Gaussian is necessarily iid, since random variables that are uncorrelated and
jointly normal are independent.

The mean and the covariance function as well as the autocovariance and the autocorrelation
function of a time series are theoretical properties of the time series model. In practice we observe
data and they are unknown. We assume a certain model that our data follows and try to estimate
the parameters such as the four mentioned functions. In what follows we introduce estimators
for the quantities of interest which is indicated by adding sample to the names. Observe that
the introduced estimators are random variables while the quantities of interest themselves are
deterministic.

Definition 2.2.5. Let X = (Xt, t ∈ N) be a time series. The sample mean X̄n of X is given by

X̄n := n−1
n∑
t=1

Xt.

The sample autocovariance function γ̂ is defined by

γ̂(h) := n−1
n−h∑
t=1

(Xt+h − X̄)(Xt − X̄)

for h = 0, . . . , n− 1. Furthermore the sample autocorrelation function ρ̂ is given by

ρ̂(h) := γ̂(h)
γ̂(0)

for h = 0, . . . , n− 1.

We remark that the definitions of the sample autocovariance and autocorrelation function can
be extended to h = −n, . . . ,−1 by setting for h < 0

γ̂(h) := γ̂(|h|),

which makes them symmetric functions around zero.

In an exercise one shows the well-known facts that X̄n is an unbiased estimator for the mean
if X is stationary, i.e., E(X̄n) = E(X1), while γ̂ and ρ̂ are not. We observe that the sample
autocovariance and autocorrelation functions even stay biased if the factor n−1 is replaced by
(n− h)−1. Nevertheless, for large sample sizes they will nearly be unbiased.

Furthermore, we observe the convergence of the sample mean to the mean in the sense of the
mean squared error in the following proposition.

Proposition 2.2.6. Let X be a stationary time series with mean µ and autocovariance γX . Then

lim
n→∞

Var(X̄n) = lim
n→∞

E
(
(X̄n − µ)2) = 0

if
∑
|h|<∞ |γX(|h|)| < +∞.

Proof. Let n ∈ N be fixed. Since the sample mean is an unbiased estimator of µ, we observe that

Var(X̄n) = 1
n2

n∑
i,j=1

E ((Xi − µ)(Xj − µ)) = 1
n2

n∑
i,j=1

Cov(Xi, Xj) = 1
n2

n∑
i,j=1

γX(|i− j|).

Let us simplify the sum next. It holds that
n∑

i,j=1
γX(|i− j|) = 2

n∑
i=1

i−1∑
j=1

γX(i− j) +
n∑
i=1

γX(0) = 2
n∑
h=1

(n− h)γX(h) + nγX(0).
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Coming back to our original computation we obtain that

Var(X̄n) = 2
n

n∑
h=1

(
1− h

n

)
γX(h) + 1

n
γX(0) = 1

n

∑
|h|<n

(
1− |h|

n

)
γX(|h|) ≤ 1

n

∑
|h|<n

|γX(|h|)|.

The assumption that C :=
∑
|h|<∞ |γX(|h|)| < +∞ yields that

lim
n→∞

Var(X̄n) ≤ lim
n→∞

C

n
= 0,

which finishes the proof.

From the last line of the proof we obtain especially that the rate of convergence of the mean
squared error in the size of the sample is one, i.e., for all n ∈ N

E
(
(X̄n − µ)2) ≤ C · 1

n
.

We remark that the sample mean of a Gaussian time series X is Gaussian since sums of
Gaussian random variables are Gaussian. More specifically, one computes in an exercise that

n1/2(X̄n − µ) ∼ N

0,
∑
|h|<n

(1− n−1|h|)γ(h)

 .

Let us next have a look at the estimation of the autocovariance and autocorrelation function.
First of all, it is evident that it is impossible to give reasonable estimates for γX(h) and ρX(h) for
h ≥ n, and even for h near to n the results are not reliable due to few samples. A useful guide
can be found in [2], which says that one should take n ≥ 50 and h ≤ n/4.

For a compact notation and an efficient representation in a computer we denote by

Γ̂k :=


γ̂(0) γ̂(1) · · · γ̂(k − 1)
γ̂(1) γ̂(0) · · · γ̂(k − 2)
...

...
. . .

...
γ̂(k − 1) γ̂(k − 2) · · · γ̂(0)


the k-dimensional sample covariance matrix. It is nonnegative definite, which is shown in [4,
Section 2.4.2]. The same holds true for the sample autocorrelation matrix R̂k defined by

R̂k := γ̂(0)−1Γ̂k.

The matrices are nonsingular if γ̂(0) > 0.
Observe that these functions can be defined for all observed time series. It has to be treated

in what follows if this makes sense, i.e., if it is likely that the underlying stochastic process is
stationary.

Example 2.2.7. Let us revisit the data from Example 2.1.2, i.e., the set (xt)42
t=1 of quarterly

earnings of H&M. The sample mean is found to be x̄ ≈ 4007. For the sample autocorrelation
function, we compute ρ̂(h) for h = 0, 1, . . . , 10 in MATLAB with the following code:

n=length ( data ) ;
mx=mean( data ) ;
l a g s =10;
gamma=ze ro s (1 , l a g s+1) ;
f o r h=0: l a g s

gamma(h+1)=(data(1+h : end )−mx) ∗( data ( 1 : end−h)−mx) ’/n ;
end
ac f=gamma/gamma(1) ;
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The result is shown in Figure 2.2.7. We see that ρ̂(h) displays a periodic behaviour - the peaks
at lag h are similar to the peaks at lag h− 4. This is often evidence of the presence of a so-called
seasonal component, something that will be discussed in Section 2.4. We also note that the bounds
±1.96/

√
n have been included in the figure, something that is explained in Method 2.2.8 below.

0 1 2 3 4 5 6 7 8 9 10

Lag

-0.5

0

0.5

1

A
C

F

Figure 2.2: Sample autocorrelation function for the H&M data of Example 2.1.2.

In what follows we introduce several methods to test for stationarity or more specifically for
independence of the observed data by using the properties of the (sample) autocorrelation. If we
obtain that the observations are not iid random variables, we have to choose time series models
that are more complicated than just the generation of iid random variables, where the knowledge
of the distribution is sufficient. More details on the concept of hypothesis testing can be found in
Section 1.2 if the reader is not familiar with these basic ideas of statistics.

Method 2.2.8 (Normality). If (Y1, . . . , Yn) is a sequence of iid random variables with finite vari-
ance, then the sample autocorrelation is for sufficiently large n by the Central Limit Theorem 1.1.7
approximately N (0, n−1) distributed. Hence 95% should fall between the bounds ±1.96/

√
n. Use

this for hypothesis testing at lag h with

H0 :ρY (h) = 0,
H1 :ρY (h) 6= 0,

and the test statistic

λ := ρ̂(h)
((

1 + 2
h−1∑
i=1

ρ̂(i)2
)
/n

)−1/2

.
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If (Y1, . . . , Yn) is additionally Gaussian with ρY (j) = 0 for j > h, the test statistic λ is asymp-
totically standard normally distributed. Hence H0 is rejected if |λ| > Zα/2, where Zα/2 is the
100(1− α/2)th percentile of the normal distribution, i.e., Zα/2 is chosen such that∫ Zα/2

−∞

1√
2π

exp
(
−x

2

2

)
dx = 1− α/2.

Standard values for α include 0.05, 0.01, and 0.005, i.e., 5%, 1%, and 0.5%.

Method 2.2.9 (Portmanteau test, Box–Pierce test). If (Y1, . . . , Yn) is a sequence of iid random
variables with finite variance, then one can show that n

∑h
i=1 ρ̂(i)2 is approximately χ2

h distributed,
i.e., chi-squared distributed with h degrees of freedom. Use this for hypothesis testing with

H0 :ρY (1) = · · · = ρY (h) = 0,
H1 :∃ ρY (i) 6= 0, i = 1, . . . , h,

and the test statistic

λ := n

h∑
i=1

ρ̂(i)2.

The null hypothesis is rejected if λ > χ2
1−α,h, where χ2

1−α,h denotes the α-quantile of the χ2

distribution with h degrees of freedom.

This classical test, which originates to Box and Pierce in 1970, has been modified by Ljung
and Box in 1978 and it has been shown that it performs better especially also for small sample
sizes (of less than 100 elements). In what follows the modified test statistic is given.

Method 2.2.10 (Ljung–Box test). This test is a modification of the Portmanteau test. Use
instead the test statistic

n(n+ 2)
h∑
i=1

ρ̂(i)2

n− i
, (2.1)

which is asymptotically χ2
h-distributed for iid random variables. Use the same rejection regions as

in the Portmanteau test 2.2.9.

Example 2.2.11. Let us revisit the data from Example 2.1.2, i.e., the set (xt)42
t=1 of quarterly

earnings of H&M. We apply the Ljung–Box test (Method 2.2.10) with h = 4 and α = 0.05 to
this data set to see whether it is likely that the earnings are a realization of white noise, or more
specifically whether the autocorrelation function satisfies that ρX(i) = 0 for i = 1, 2, 3, 4. Recall
that the sample autocorrelation function was computed in Example 2.1.2. The test statistic (2.1)
is found to be 38.87 which is much greater than the critical value χ2

0.95,4 = 9.49. Therefore we
reject the null hypothesis of no autocorrelation for lags i = 1, 2, 3, 4 at the 5% level, something
that is not surprising given Figure 2.1.2.

More tests like the turning point test, the difference sign test, and the rank test are available
but not treated in these lecture notes. For those the reader is referred to [4, Section 1.6].

2.3 Forecasting stationary time series

The goal of forecasting a stationary time series with known mean µ and autocovariance function γ
is to predict (Xn+h, h > 0) in terms of (Xt, t = 1, . . . , n). We will find best predictors in the sense
of minimal mean squared errors. To that end, let us start with the necessary definitions.
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Definition 2.3.1. Let X and Y be random variables and let Y be an approximation of X. The
mean squared error of Y is defined by

MSE(Y,X) := E((Y −X)2).

Note that the mean squared error is one (very popular) way to measure the error of a prediction
and that one could think of many other “measures”. This choice of error measure influences
essentially the following analysis and definition of best. We will nevertheless restrict the forecasting
to optimization with respect to the mean squared error since it is the usual choice and widely used.

Definition 2.3.2. Let (Xt, t ∈ Z) be a time series and Xn := (Xt1 , . . . , Xtn) a collection of
random variables of the time series at n different times. Then the function of Xn denoted by
bt(Xn) is called a best predictor of Xt for some t 6= tj , j = 1, . . . , n, if it minimizes the mean
squared error, i.e.,

bt(Xn) := arg min
g(Xn)

MSE(g(Xn), Xt) = arg min
g(Xn)

E((g(Xn)−Xt)2),

i.e., g : Rn → R.

In the following proposition we show that a best predictor exists theoretically and that it is
unique.

Proposition 2.3.3. Let (Xt, t ∈ Z) be a time series and Xn := (Xt1 , . . . , Xtn) a collection of
random variables of the time series at n different times. Then the best predictor of Xt for some
t 6= tj, j = 1, . . . , n, is the conditional expectation of Xt given Xn, i.e.,

bt(Xn) = E(Xt|Xn).

Proof. To prove that the conditional expectation is a best predictor of Xt, let us first observe that

E((g(Xn)−Xt)2) = E((g(Xn)− E(Xt|Xn) + E(Xt|Xn)−Xt)2)
= E((g(Xn)− E(Xt|Xn))2) + E(E(Xt|Xn)−Xt)2)

+ 2E((g(Xn)− E(Xt|Xn))(E(Xt|Xn)−Xt)).

We show next that the last term is equal to zero. To do this, we use the properties of the
conditional expectation. We obtain by Property (ii) and since g(Xn) and E(Xt|Xn) are both
measurable functions of Xn with Property (v) that

E((g(Xn)− E(Xt|Xn))(E(Xt|Xn)−Xt)) = E(E((g(Xn)− E(Xt|Xn))(E(Xt|Xn)−Xt)|Xn))
= E((g(Xn)− E(Xt|Xn))E(E(Xt|Xn)−Xt|Xn)).

Next the linearity of the conditional expectation Property (i) implies together with the measura-
bility of E(Xt|Xn) that

E(E(Xt|Xn)−Xt|Xn) = E(E(Xt|Xn)|Xn)− E(Xt|Xn) = E(Xt|Xn)− E(Xt|Xn) = 0.

Putting these results together we have just shown that

E((g(Xn)− E(Xt|Xn))(E(Xt|Xn)−Xt)) = 0.

Therefore we have transformed our minimization problem to

min
g(Xn)

E((g(Xn)−Xt)2) = min
g(Xn)

(
E((g(Xn)− E(Xt|Xn))2) + E(E(Xt|Xn)−Xt)2)

)
= E(E(Xt|Xn)−Xt)2) + min

g(Xn)
E((g(Xn)− E(Xt|Xn))2).
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Due to the positivity of squares, it is clear that

min
g(Xn)

E((g(Xn)−Xt)2) ≥ E(E(Xt|Xn)−Xt)2).

By choosing g(Xn) := E(Xt|Xn) we therefore obtain a minimum, which finishes the proof for the
existence of a minimum.

Uniqueness (in P -a.s. sense) follows since the minimum in the previous computation is just
attained if

E((g(Xn)− E(Xt|Xn))2) = 0,

i.e., if g(Xn) = E(Xt|Xn) in mean square and therefore also P -almost surely by Chebyshev’s
inequality (1.1).

We have just seen that the conditional expectation is the best predictor with respect to the
mean squared error. It remains to see how we compute its value in practice if we are given a
finite set of observations, e.g., of an asset, that we want to use to predict future values as accurate
as possible. Since the conditional expectation is not necessarily linear and computable in closed
form, we restrict ourselves next to linear predictors.

Definition 2.3.4. Let (Xt, t ∈ Z) be a time series and Xn := (Xt1 , . . . , Xtn) a collection of
random variables of the time series at n different times. Then the linear function of 1 and Xn

denoted by blt(Xn) is called a best linear predictor of Xt for some t 6= tj , j = 1, . . . , n, if it
minimizes the mean squared error, i.e.,

blt(Xn) := arg min
g(Xn)

MSE(g(Xn), Xt) = arg min
g(Xn)

E((g(Xn)−Xt)2),

where g is a linear function of 1 and Xn, i.e., there exist a0, . . . , an such that g(Xn) := a0 +
a1Xtn + a2Xtn−1 + · · ·+ anXt1 .

Let us now derive the coefficients (ai, i = 0, . . . , n) explicitly for a stationary time series with
mean µ and autocovariance function γ, which automatically also shows the existence of the mini-
mum. From calculus we know that we obtain an extremum of a (sufficiently smooth) function by
differentiation. Therefore set

S(a) := E((a0 + a1Xtn + · · ·+ anXt1 −Xt)2)

with a = (a0, . . . , an), which is a positive and quadratic function in terms of the coefficients and
bounded from below by zero. Therefore at least one minimum exists. To find it explicitly, we
compute for j = 1, . . . , n

∂S(a)
∂aj

= 2E(Xtn+1−j (a0 + a1Xtn + · · ·+ anXt1 −Xt)) (2.2)

as well as
∂S(a)
∂a0

= 2a0 + 2E(a1Xtn + · · ·+ anXt1 −Xt). (2.3)

By setting the last equation equal to zero and using the stationarity of the time series, we derive
that

a0 = µ

(
1−

n∑
i=1

ai

)
. (2.4)

For j = 1, . . . , n, we obtain with the definition of the autocovariance function and by setting the
derivatives equal to zero that

aj(γ(0)+µ2)+a0µ+a1(γ(tn−tn+1−j)+µ2)+· · ·+an(γ(t1−tn+1−j)+µ2)−(γ(t−tn+1−j)+µ2) = 0,
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which simplifies with (2.4) to

ajγ(0) + a1γ(tn − tn+1−j) + · · ·+ anγ(t1 − tn+1−j) = γ(t− tn+1−j).

Combining all j = 1, . . . , n, we can rewrite the last equation in matrix vector notation as

Γn(a1, . . . , an)′ = (γ(t− tn), . . . , γ(t− t1))′,

where
Γn = (γ(tn+1−j − tn+1−i))ni,j=1.

The solution of this system of equations is a minimum since S is a quadratic function bounded
from below by zero.

To show uniqueness let (a(1)
j , j = 0, . . . , n) and (a(2)

j , j = 0, . . . , n) be two different solutions
and denote by Z the difference between the two resulting predictors, i.e.,

Z := a
(1)
0 − a

(2)
0 + (a(1)

1 − a
(2)
1 )Xtn + (a(1)

2 − a
(2)
2 )Xtn−1 + · · ·+ (a(1)

n − a(2)
n )Xt1 .

Then
E(Z) = 0 + E(Xt)− (0 + E(Xt)) = 0

by (2.3) and
E(ZXtn+1−j ) = 0

for all j = 1, . . . , n by (2.2), which implies that

E(Z2) = E(Z(a(1)
0 − a

(2)
0 + (a(1)

1 − a
(2)
1 )Xtn + (a(1)

2 − a
(2)
2 )Xtn−1 + · · ·+ (a(1)

n − a(2)
n )Xt1))

= (a(1)
0 − a

(2)
0 )E(Z)

= 0.

Therefore the mean squared error of the difference is zero and the predictors are (P -almost surely)
the same.

In conclusion we have shown the following proposition:

Proposition 2.3.5. Let (Xt, t ∈ Z) be a stationary time series with mean µ and autocovariance
function γ and Xn := (Xt1 , . . . , Xtn) a collection of random variables of the time series at n
different times. Then the best linear predictor of Xt is given by

blt(Xn) = a0 + a1Xtn + a2Xtn−1 + · · ·+ anXt1 ,

where the coefficients (ai, i = 0, . . . , n) are determined by the linear equations

a0 = µ

(
1−

n∑
i=1

ai

)
and

Γn(a1, . . . , an)′ = (γ(t− tn), . . . , γ(t− t1))′

with
Γn = (γ(tn+1−j − tn+1−i))ni,j=1.

Let us finally remark that in the case that Xn := (X1, . . . , Xn) the equations to derive the
coefficients (a0, . . . , an) for the prediction of Xn+h simplify to

a0 = µ

(
1−

n∑
i=1

ai

)
and

(γ(i− j))ni,j=1(a1, . . . , an)′ = (γ(h), . . . , γ(h+ n− 1))′.

In the following proposition we collect some properties of the best linear predictor.



20 CHAPTER 2. STATIONARY TIME SERIES AND SEASONALITY

Proposition 2.3.6. Let (Xt, t ∈ Z) be a stationary time series with mean µ and autocovariance
function γ and Xn := (Xt1 , . . . , Xtn) a collection of random variables of the time series at n
different times. Then the best linear predictor blt(Xn) satisfies:

(i) E(Xt − blt(Xn)) = 0, i.e., it is unbiased,

(ii) MSE(blt(Xn), Xt) = E((blt(Xn)−Xt)2) = γ(0)− (a1, . . . , an)(γ(t− tn), . . . , γ(t− t1))′,

(iii) E(Xtj (Xt − blt(Xn))) = 0 for all j = 1, . . . , n.

Proof. The first claim follows by construction from (2.3). To compute the mean squared error in
the second claim we observe that

MSE(blt(Xn), Xt) = 2a0 E(a0 + a1Xtn + · · ·+ anXt1 −Xt)− a2
0

+
n∑
i=1

ai

n∑
j=1

E(Xtn+1−iXtn+1−j )aj − 2
n∑
i=1

ai E(Xtn+1−iXt) + E(X2
t )

= 0− a2
0 + (a1, . . . , an)(Γn(a1, . . . , an)′ − 2(γ(t− tn), . . . , γ(t− t1))′)

+ µ2
n∑

i,j=1
aiaj − 2µ2

n∑
i=1

ai + γ(0) + µ2.

Due to Proposition 2.3.5 we derive that

(a1, . . . , an)(Γn(a1, . . . , an)′−2(γ(t− tn), . . . , γ(t− t1))′) = −(a1, . . . , an)(γ(t− tn), . . . , γ(t− t1))′.

Additionally we obtain with the same proposition—more specifically with (2.4)—that

µ2
n∑

i,j=1
aiaj − 2µ2

n∑
i=1

ai + µ2 = µ2

 n∑
i=1

ai

( n∑
j=1

aj − 1
)

+ 1−
n∑
i=1

ai

 = a0µ

(
−

n∑
i=1

ai + 1
)

= a2
0.

Therefore we conclude that

MSE(blt(Xn), Xt) = γ(0)− (a1, . . . , an)(γ(t− tn), . . . , γ(t− t1))′,

which proves the second claim. The third claim follows by construction from (2.2).

To see an application of the theory, let us treat two examples in what follows.

Example 2.3.7 (AR(1)). Let us assume that the stationary time series model is given by

Xt − φ1Xt−1 = Zt,

where (Zt, t ∈ Z) is a WN(0, σ2) process and |φ1| < 1. This model will be called an AR(1) model
in the framework of Chapter 3. Then we first compute the autocovariance function which is given
by

γX(0) = E(X2
t ) = E((Zt + φ1Xt−1)2) = σ2 + φ2

1γX(0),

since Z is a white noise and therefore Zt and Xt−1 are uncorrelated. This implies that

γX(0) = σ2

1− φ2
1

and
γX(h) = E(XtXt+h) = E(Xt(Zt+h + φ1Xt+h−1)) = φ1γX(h− 1)
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with h > 0 for the same reasons as before. Solving the recursion leads to

γX(h) = σ2φ
|h|
1

1− φ2
1
.

The best linear predictor bln+1(Xn) with respect to Xn := (X1, . . . , Xn) is then (noting that the
process has zero mean which implies a0 = 0) by Proposition 2.3.5

∑n
i=1 aiXn+1−i, where the

coefficients ai are determined by the solution of the system of linear equations
1 φ1 φ2

1 · · · φn−1
1

φ1 1 φ1 · · · φn−2
1

...
...

...
. . .

...
φn−1

1 φn−2
1 φn−3

1 · · · 1



a1
a2
...
an

 =


φ1
φ2

1
...
φn1

 .

It is clear that a1 = φ1 and ai = 0, i = 2, . . . , n, solves the system of linear equations and therefore
that the best linear predictor of Xn+1 is

bln+1(Xn) = φ1Xn

with mean squared error σ2, which should be computed in an exercise.

Example 2.3.8 (MA(1)). Let us assume that the stationary time series model is given by

Xt = Zt + θ1Zt−1,

where (Zt, t ∈ Z) is a WN(0, σ2) process. This model will be called a MA(1) model in the
framework of Chapter 3.

It is clear that the mean of the series is µ = 0. Furthermore we get that

γX(0) = (1 + θ2
1)σ2

and
γX(1) = θ1σ

2

as well as γX(h) = 0 for all |h| > 1 by easy computations.

The best linear predictor bln+1(Xn) with respect to Xn := (X1, . . . , Xn) is again by Proposi-
tion 2.3.5

∑n
i=1 aiXn+1−i. Note that a0 = 0 due to the fact that the series has zero mean. We

find the coefficients ai with Proposition 2.3.6(iii). The equation

E[(Xn+1 −
n∑
i=1

aiXn+1−i)Xn] = 0

simplifies by use of γX to
θ1 = (1 + θ2

1)a1 + θ1a2.

Similarly for 2 ≤ j ≤ n− 1 we obtain

0 = θ1aj−1 + (1 + θ2
1)aj + θ1aj+1

and also
0 = θ1an−1 + (1 + θ2

1)an.

It is clear that these difference equations uniquely defines the coefficients a1, . . . , an and they can
in fact for 1 ≤ j ≤ n− 1 be shown (cf. [4, Problem 3.12]) to be

aj = 1 + θ2
1 + . . .+ θ

2(n−j)
1

(−θ1)(n−j) an
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with
an = −(−θ1)n

1 + θ2
1 + . . .+ θ2n

1
.

Given these coefficients, we can use Proposition 2.3.6(ii) to compute the mean squared error

E((bln+1(Xn)−Xn+1)2) = γ(0)− (a1, . . . , an)(γX(1), . . . , γX(n))′

= (1 + θ2
1)σ2 − a1θ1σ

2,

which finishes this example.

Example 2.3.9 (AR(1) with missing value). Let us consider the AR(1) model from Example 2.3.7
again. Assume that we have observed X1 and X3 but that we are missing X2. Then the best
linear predictor bl2((X1, X3)) of X2 is a1X3 + a2X1 by Proposition 2.3.5, where the coefficients a1
and a2 solve the system of linear equations(

1 φ2
1

φ2
1 1

)(
a1
a2

)
=
(
φ1
φ1

)
.

An easy computation shows that
a1 = a2 = φ1

1 + φ2
1

is a solution and therefore that the best linear predictor is

bl2((X1, X3)) = φ1

1 + φ2
1

(X3 +X1)

with mean squared error σ2/(1 + φ2
1).

We remark that due to the linearity properties of the prediction operator, it is sufficient to
consider just stationary time series with mean zero.

We have stated in Proposition 2.3.5 that there exists a unique solution that is the best linear
predictor, but this involves solving a system of n linear equations. For large n this might be difficult
and especially time consuming. To save computational time, we will introduce two algorithms in
what follows that use a recursive approach, i.e., bln+1(Xn) is used to compute bln+2(Xn+1) in a
cheaper way, where Xn := (X1, . . . , Xn) for all n ∈ N. To turn the algorithms into something
readable we adapt the notation for changing sizes of matrices. In what follows let the best linear
one-step estimator be given by

bln+1(Xn) =
n∑
i=1

aniXn+1−i,

where ani := ai in terms of the previously used notation, i.e., the coefficients are determined by
the solution of the system of linear equations given in Proposition 2.3.5.

One way to compute the estimators more efficiently all at once is the Durbin–Levinson algo-
rithm, which is introduced next. For a proof the reader is referred to [4, Section 2.5.1]. For this
algorithm to work, one needs that the coefficients ani are uniquely determined at each time n,
i.e., that Γn = (γ(i − j))ni,j=1 is non-singular for every n. A sufficient condition for this is the
requirement that γ(0) > 0 and γ(n) → 0 as n → ∞, which holds for many time series used in
applications. For a proof the reader is referred to [3, Proposition 5.1.1].

Method 2.3.10 (Durbin–Levinson algorithm). Compute the coefficients an1, . . . , ann recursively
from the equations

ann :=
(
γ(n)−

n−1∑
i=1

a(n−1)iγ(n− i)
)
v−1
n−1,
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 an1
...

an(n−1)

 :=

 a(n−1)1
...

a(n−1)(n−1)

− ann
a(n−1)(n−1)

...
a(n−1)1

 ,

and
vn := vn−1(1− a2

nn),
where a11 = γ(1)/γ(0) and v0 := γ(0).

Observe that vn computes the mean squared error of bln+1(Xn), which can be seen from the
proof of the algorithm.

A second algorithm is the so-called innovations algorithm, which can be applied to all time
series with finite second moments, i.e., stationarity is not a requirement. Therefore let us consider
the more general framework that (Xt, t ∈ Z) is a time series with mean zero, E(X2

t ) < +∞ for all
t ∈ Z, and covariance

Cov(Xi, Xj) = E(XiXj) = κ(i, j).
For convenience let us use the following notation for the best linear one-step predictors

X̂n :=
{

0 for n = 1,
bln(Xn−1) for n > 1,

and the mean squared errors

vn := MSE(X̂n+1, Xn+1) = E((X̂n+1 −Xn+1)2).

One can show that the best linear predictors satisfy

X̂n+1 =
{

0 for n = 0,∑n
j=1 θnj(Xn+1−j − X̂n+1−j) for n ≥ 1

for some coefficients θij , i, j = 1, . . . , n. The innovations algorithm generates these coefficients
and the mean squared errors vj = MSE(X̂j+1, Xj+1) recursively. For a proof of the method the
reader is referred to [3, Proposition 5.2.2].
Method 2.3.11 (Innovations algorithm). Compute the coefficients θn1, . . . , θnn recursively from
the equations

v0 := κ(1, 1)
and

θn(n−k) := v−1
k

κ(n+ 1, k + 1)−
k−1∑
j=0

θk(k−j)θn(n−j)vj


for 0 ≤ k < n and

vn := κ(n+ 1, n+ 1)−
n−1∑
j=0

θ2
n(n−j)vj .

2.4 Trend and seasonality

One possible treatment of data is to assume that the data set is a realization of the stochastic
process X that can be split into

Xt = mt + st + Yt, (2.5)
i.e., it follows the classical decomposition model. Here m : Z → R is a slowly changing function
called the trend component, s : Z→ R is a function with known period d referred to as the seasonal
component, i.e., st+d = st and

∑d
j=1 sj = 0, and Y = (Yt, t ∈ Z) is a stationary time series.

The aim of this section is to estimate and extract the deterministic functions m and s such
that the remaining stochastic process Y becomes hopefully a stationary time series.
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2.4.1 Trend in absence of seasonality

Assume in this section that the stochastic process X = (Xt, t ∈ Z) is given by

Xt = mt + Yt.

Without loss of generality let E(Yt) = 0 for all t ∈ Z.

In what follows we first introduce a collection of methods for trend estimation before we
give a method that does trend elimination directly without estimation. It should be mentioned
that seasonal components are hard to find in financial data and that it is therefore reasonable
to treat models without seasonal component but an overall trend. In all of the methods let
Xn := (X1, . . . , Xn), n ∈ N, denote the finite number of random variables from the time series
with available observed data.

Method 2.4.1 (Estimation by smoothing with a finite moving average filter). Let q ∈ N with
2q < n be fixed. Compute for all t = q + 1, . . . , n− q the two-sided moving average

Wt := (2q + 1)−1
q∑

j=−q
Xt−j

of X. Then by the definition of X, it holds that

Wt = (2q + 1)−1
q∑

j=−q
mt−j + (2q + 1)−1

q∑
j=−q

Yt−j ≈ mt,

if we assume that q is sufficiently small such that (ms, s = t− q, . . . , t+ q) is approximately linear
and that the average of the error terms (Ys, s = t − q, . . . , t + q) is close to zero. The details for
the validity of the assumptions are left to the reader as an exercise.

The moving average therefore leads to the estimator

m̂t := (2q + 1)−1
q∑

j=−q
Xt−j

for q+1 ≤ t ≤ n−q. Observe that this method does not lead to estimates of mt for all t = 1, . . . , n
but only at the “inner” time points, where the definition of “inner” depends on the choice of q.

Method 2.4.2 (Estimation by exponential smoothing). For any fixed α ∈ [0, 1] define the one-
sided moving averages (m̂t, t = 1, . . . , n) by the recursion

m̂t := αXt + (1− α)m̂t−1

for t = 2, . . . , n and
m̂1 := X1.

The method is referred to as exponential smoothing since the recursion implies for t ≥ 2 that

m̂t =
t−2∑
j=0

α(1− α)jXt−j + (1− α)t−1X1,

which is a weighted moving average of X with exponentially decreasing weights.

Method 2.4.3 (Estimation by polynomial fitting). Assume that the trend m is given by the
polynomial

mt := a0 + a1t+ a2t
2,
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then the coefficients a0, a1, and a2 are obtained by the least square minimization

min
a0,a1,a2

n∑
t=1

(xt −mt)2,

where (xt, t = 1, . . . , n) is the series of observed data.

Similarly one could also use higher-order polynomials for the estimation of the trend, i.e.,

mt :=
q∑
j=0

ajt
j

for some q ∈ N with q < n and do a least square minimization of that.

Method 2.4.4 (Elimination by differencing). Define the difference operator ∇ by

∇Xt := Xt −Xt−1 = (1−B)Xt

for t ≥ 2, where B denotes the backward shift operator given by

BXt := Xt−1.

Powers of B are defined by

BjXt = Bj−1BXt = Bj−1Xt−1 = · · · = Xt−j

for j < t. Similarly we obtain
∇jXt = ∇∇j−1Xt

for j < t, e.g.,

∇2Xt = ∇(Xt −Xt−1) = ∇Xt −∇Xt−1 = Xt − 2Xt−1 +Xt−2.

Assume that the trend m is given by the polynomial

mt :=
q∑
j=0

ajt
j

for some q < n. Then one shows in an exercise that

∇qmt = q! aq.

(Hint: Start with q = 1 and ∇mt.)

Coming back to the stochastic process X, one obtains that

∇qXt = q! aq +∇qYt.

Since Y is assumed to be a stationary process with mean zero, one can show in an exercise that
the same holds for ∇qY . This implies that ∇qX is a mean q! aq, stationary process, which is left
to the reader as an exercise.

In reality it is often sufficient to consider q = 1 or q = 2.
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2.4.2 Trend and seasonality in parallel

Let us come back to the classical decomposition model (2.5). We recall that

Xt = mt + st + Yt,

where E(Yt) = 0 for all t ∈ Z, st+d = st, and
∑d
j=1 sj = 0. Let us assume for simplicity that the

size of the observed data n covers a multiple of the period d, i.e., n/d ∈ N. Typical periods are
24 hours per day, 7 days per week, 12 months per year, or 4 quarters per year.

In what follows we introduce two methods to remove seasonal components in connection with
the estimation of the trend. While the first methods “S1” is in analogy with Method 2.4.1, the
second one called “S2” uses differencing which was already exploited for the trend in Method 2.4.4.

Method 2.4.5 (“S1”: estimation by moving averages). Let us assume that we are given observa-
tions (xt, t = 1, . . . , n) of the stochastic process X. We start with the estimation of the trend by
applying a moving average filter that eliminates the seasonal component and dampens the noise.
For an even period d := 2q we set

m̂t := d−1(2−1xt−q + xt−q+1 + · · ·+ xt+q−1 + 2−1xt+q)

for q < t ≤ n− q. Similarly we set for an odd period d := 2q + 1

m̂t := d−1
q∑

j=−q
xt−j .

To estimate the seasonal component, we average over the trend eliminated series elements with
the same seasonal component, i.e., we set for k = 1, . . . , d and q < k + jd ≤ n− q

wk := |{j ∈ N0, q < k + jd ≤ n− q}|−1
∑

q<k+jd≤n−q
(xk+jd − m̂k+jd),

where |A| denotes the size of a finite set A, i.e., its number of elements. To satisfy the condition of
the model that

∑d
j=1 sj = 0, we have to modify the wk’s to obtain a valid seasonal component ŝ

by setting the components

ŝk := wk − d−1
d∑
j=1

wj

for k = 1, . . . , d and ŝk := ŝk−d for k > d.

Finally, we reestimate the trend by applying one of the methods from Section 2.4.1 to the
deseasonalized series (xt − ŝt, t = 1, . . . , n). The reestimation of the trend is only done to obtain
a trend estimator in parametric form which is convenient for prediction and simulation.

Example 2.4.6. We apply Method 2.4.5 to the data of Example 2.1.2. As we noted in Exam-
ple 2.2.7, there is evidence of a seasonal component with period d = 4. We also choose to fit a
linear trend to the data. The method is applied with the following MATLAB code:

% Input :
% data double vec , data .
% time double vec , time i n d i c e s
% per iod int , l ength o f per iod
%
% Output :
% season double vec , row vecto r o f season , l ength=length (DATA

)



2.4. TREND AND SEASONALITY 27

% trend double vec , row vecto r o f c o e f f i c i e n t s o f trend ,
l ength=2

n=length ( data ) ;
%% Preest imat ion o f trend
q=f l o o r ( per iod /2) ;
p r e l t r end=ze ro s (1 , n−2∗q ) ;
i f ( q==f l o o r ( per iod /2) ) % Even per iod

f o r i =1:n−2∗q
pr e l t r end ( i )=sum ( [ data ( i ) /2 , data ( i +1: i+2∗q−1) , data ( i+2∗q

) / 2 ] ) /2/q ;
end

e l s e % Odd per iod
f o r i =1:n−2∗q

pr e l t r end=mean( data ( i : i +2∗q ) ) ;
end

end

%% Estimation o f s e a s o n a l i t y
season=ze ro s (1 , per iod ) ;
f o r i =1: per iod

i f ( i<=q)
season ( i )=mean( data ( i+per iod : per iod : n−q )−pr e l t r end ( i+

per iod−q : per iod : end ) ) ;
e l s e

season ( i )=mean( data ( i : pe r iod : n−q )−pr e l t r end ( i−q : per iod :
end ) ) ;

end
end
season=season−mean( season ) ; % Sum to zero
season=repmat ( season , 1 , f l o o r (n/ per iod ) ) ;
season (n−mod(n , per iod )+1:n)=season ( 1 :mod(n , per iod ) ) ; % Extend

season to f u l l data s e t

%% Reest imat ion o f l i n e a r trend by l e a s t square
deseasondata=data−season ;
X = ones (n , 2 ) ;
X( : , 2 ) = time ;
trend = X\deseasondata ’ ;

The estimated trend and seasonality m̂t + ŝt are shown along with the original data xt in Fig-
ure 2.4.6.

Method 2.4.7 (“S2”: elimination by differencing). The method of differencing that was intro-
duced in Method 2.4.4 for time series without seasonal component can be adapted to the general
classical decomposition model by introducing the lag-d differencing operator ∇d for a period d. It
is defined by

∇dXt := Xt −Xt−d = (1−Bd)Xt.

Applying this operator to the model, we obtain that

∇dXt = mt −mt−d + st − st−d + Yt − Yt−d = ∇dmt +∇dYt

due to the periodicity of s. One shows in an easy exercise that ∇dY is a stationary time series,
which implies that ∇dX is a stochastic process without seasonal component. The methods intro-
duced in Section 2.4.1 can be applied to estimate or eliminate the differenced trend component
∇dm.
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Figure 2.3: The H&M data of Example 2.1.2 (stars) with an estimated linear trend and seasonal
component with period 4, m̂t + ŝt (line).

Once we have removed the trend and the seasonal components from the time series, we have to
test the remaining sequence for stationarity. We could start with the methods given in Section 2.2.
If we observe that the remaining data is iid, we are completely done. If we do not succeed, we
should test for different stationary models, which will be introduced in the next chapter.

Overall one should remark that we assumed that the period d is known. In practice we have
to guess d, which could for example be done by choosing “reasonable” periods (for example, a
seasonal component with period 12 for monthly sales by a clothing company), by looking at the
plotted graph, or by testing the remaining series for stationarity for different d.



CHAPTER 3
Linear time series models

In this chapter we consider linear time series models, where we focus mainly on ARMA models.
For those we discuss parameter estimation, order selection as well as forecasting methods. The
chapter is finished with an extension of the ARMA model to ARIMA models.

3.1 Linear processes

Before we introduce the specific class of ARMA models, let us consider the more general class of
linear processes and its properties. Let us assume that X = (Xt, t ∈ Z) is a stochastic process
in discrete time in what follows. We recall that we use stochastic process and time series as
synonyms.

Definition 3.1.1. A stochastic process X is called a linear process if it has the representation

Xt =
∑
j∈Z

ψjZt−j

for all t ∈ Z, where Z ∼WN(0, σ2) and (ψj , j ∈ Z) is a sequence of real numbers with
∑
j∈Z |ψj | <

+∞.

A linear process is called a moving average or MA(∞) process if ψj = 0 for all negative j, i.e.,
if X has the representation

Xt =
∞∑
j=0

ψjZt−j .

We remark that the summability condition
∑∞
j=−∞ |ψj | < +∞ ensures that the infinite sum

converges with probability one and in mean square, which is left as an exercise to the interested
reader.

We can rewrite the series in terms of the previously introduced backward shift operator B by

Xt = ψ(B)Zt,

where we define the operator ψ(B) by

ψ(B) :=
∑
j∈Z

ψjB
j .

This is used in the following proposition to characterize the properties of ψ(B)Y , where Y is
assumed to be stationary.

29
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Proposition 3.1.2. Let Y be a stationary time series with mean zero and autocovariance func-
tion γY and let (ψj , j ∈ Z) be a real-valued sequence such that

∑
j∈Z |ψj | < +∞. Then the time

series X defined by
Xt := ψ(B)Yt

for all t ∈ Z is stationary with mean zero and autocovariance function γX given by

γX(h) =
∑
j,k∈Z

ψjψkγY (h+ j − k)

for all h ∈ Z.

In the special case that X is a linear process, it holds that the autocovariance function γX is
given by

γX(h) =
∑
j∈Z

ψjψh+jσ
2

for all h ∈ Z, where σ2 is the variance of the underlying white noise sequence.

Proof. By a limit argument one shows similarly to the proof for linear time series that the sum
converges and the expression is well-defined.

Since
∑
j∈Z |ψj | < +∞ and Y is stationary with finite variance, we are allowed to interchange

the expectation and the sum to obtain for all t ∈ Z

E(Xt) = E(ψ(B)Yt) = E

∑
j∈Z

ψjYt−j

 =
∑
j∈Z

ψj E(Yt−j) = 0,

where we used in the last step that Y is stationary with mean zero.

With a similar argument we are allowed to compute the covariance for t, h ∈ Z

Cov(Xt, Xt+h) = E

∑
j,k∈Z

ψjYt−jψkYt+h−k

 =
∑
j,k∈Z

ψjψk E(Yt−jYt+h−k)

=
∑
j,k∈Z

ψjψkγY ((t+ h− k)− (t− j)) =
∑
j,k∈Z

ψjψkγY (h+ j − k),

which does not depend on t. One shows that X has finite variance by the mean square convergence
of the series, which can be found in [4, Example C.1.1]. Therefore X is stationary.

If X is a linear process, Y is white noise with variance σ2, which simplifies the previous
expression to

γX(h) =
∑
j,k∈Z

ψjψkγY (h+ j − k) =
∑
j∈Z

ψjψh+jσ
2,

since γY (h+ j − k) is just unequal to zero if k = h+ j. This finishes the proof.

3.2 ARMA models

An important class of linear processes is the one given by ARMA models. To understand the
notation and the background, we first define autoregressive and moving average processes.
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Definition 3.2.1. A time series X is called an autoregressive process of order p or AR(p) process
if X is stationary and if for all t ∈ Z

Xt −
p∑
j=1

φjXt−j = Zt,

where Z ∼WN(0, σ2).

Definition 3.2.2. A time series X is called a moving average process of order q or MA(q) process
if X is stationary and if for all t ∈ Z

Xt = Zt +
q∑
j=1

θjZt−j ,

where Z ∼WN(0, σ2).

If we combine AR(p) and MA(q) processes, we end up with the following generalization to an
ARMA(p, q) process.

Definition 3.2.3. A time series X is an ARMA(p, q) process if X is stationary and if for all t ∈ Z

Xt −
p∑
j=1

φjXt−j = Zt +
q∑
j=1

θjZt−j , (3.1)

where Z ∼WN(0, σ2) and the polynomials (1−
∑p
j=1 φjz

j) and (1 +
∑q
j=1 θjz

j) have no common
factors. Further a time series X is called an ARMA(p, q) process with mean µ if X − µ is an
ARMA(p, q) process.

To simplify the notation, we set

φ(z) := 1−
p∑
j=1

φjz
j

and

θ(z) := 1 +
q∑
j=1

θjz
j .

Then the recursive form of the ARMA(p, q) process can be rewritten as

φ(B)Xt = θ(B)Zt,

where we recall that B denotes the backward shift operator.

Proposition 3.2.4 (Existence and uniqueness). A stationary solution X of Equation (3.1) exists
and is the unique stationary solution if and only if

1−
p∑
j=1

φjz
j 6= 0

for all z ∈ C with |z| = 1.

Proof. The proof uses concepts of complex analysis. To get an idea let us look at the recursive
form

φ(B)Xt = θ(B)Zt.
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Then one would usually—B being not an operator—solve the equation if φ(B) is invertible by
multiplying from both sides with φ(B)−1, which yields

φ(B)−1φ(B)Xt = φ(B)−1θ(B)Zt

and therefore
Xt = φ(B)−1θ(B)Zt.

Like that we obtain a solution to the recursion. The existence of φ(B)−1 is justified by the fact
from complex analysis that if φ(z) 6= 0 for all z ∈ C on the unit circle, then there exists δ > 0
such that for all 1− δ < |z| < 1 + δ

φ(z)−1 =
∞∑

j=−∞
χjz

j

with
∑∞
j=−∞ |χj | < +∞, i.e., it has a Laurent series expansion. Setting ψ(z) := χ(z)θ(z) =∑∞

j=−∞ ψjz
j , we obtain the solution

Xt = ψ(B)Zt =
∞∑

j=−∞
ψjZt−j ,

which is unique due to the uniqueness of the inverse. The converse can be proven by observing
that the existence of a solution and the invertibility of φ(B) are coupled by an “if and only if”
condition.

In what follows two important properties and their equivalent characterizations are introduced
that allow us to regard the ARMA process either as an infinite dimensional autoregressive or an
infinite dimensional moving average process.

Definition 3.2.5. An ARMA(p, q) process X is causal or a causal function of Z if there exists a
real-valued sequence (ψj , j ∈ N0) such that

∑∞
j=0 |ψj | < +∞ and

Xt =
∞∑
j=0

ψjZt−j

for all t ∈ Z, i.e., if X is a moving average/MA(∞) process.

The following lemma enables us to check for causality in practice.

Lemma 3.2.6. An ARMA(p, q) process X is causal if and only if

1−
p∑
j=1

φjz
j 6= 0

for all z ∈ C with |z| ≤ 1.

Proof. We have seen in the proof of Proposition 3.2.4 that the unique solution is given by

Xt = ψ(B)Zt =
∞∑

j=−∞
ψjZt−j .

Therefore we can conclude that X is causal if and only if

Xt =
∞∑
j=0

ψjZt−j ,
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which holds under the assumption that φ and θ have no common factors if and only if χ as defined
in the proof of Proposition 3.2.4 has a power series expansion

χ(z) = φ(z)−1 =
∞∑
j=0

χjz
j .

The existence of the power series expansion is equivalent to the condition that φ(z) 6= 0 for all
z ∈ C on the (closed) unit disc, which is another fact from complex analysis.

Together with Proposition 3.2.4, the lemma implies the following corollary as an immediate
consequence.

Corollary 3.2.7. A causal ARMA(p, q) process has a unique stationary solution.

Since ψ(z)φ(z) = χ(z)θ(z)φ(z) = θ(z), or equivalently

(ψ0 + ψ1z + · · · )(1− φ1z − · · · − φpzp) = (1 + θ1z + · · ·+ θqz
q),

one can explicitly find the coefficients in the power series expansion of ψ(z) by equating coefficients
of zj , j ∈ N0, in this expression. This means that the sequence (ψj , j ∈ N0), can be determined
from the equations

ψj −
p∑
k=1

φkψj−k = θj (3.2)

for all j ∈ N0, where θ0 := 1, θj := 0 for j > q, and ψj := 0 for j < 0.

A second important property of an ARMA(p, q) process is invertibility which in some sense
interchanges the roles of X and Z.

Definition 3.2.8. An ARMA(p, q) process X is invertible if there exists a real-valued sequence
(πj , j ∈ N0) such that

∑∞
j=0 |πj | < +∞ and

Zt =
∞∑
j=0

πjXt−j

for all t ∈ Z, i.e., if X is an autoregressive/AR(∞) process.

A similar lemma and characterization as for causal processes also holds for invertible processes
that helps for practical purposes since it can be checked relatively easy.

Lemma 3.2.9. An ARMA(p, q) process X is invertible if and only if

1 +
q∑
j=1

θjz
j 6= 0

for all z ∈ C with |z| ≤ 1.

Proof. Looking at the structure of the problem, it is clear that the method of proof of Lemma 3.2.6
can be used by interchanging the roles of X and Z, i.e., the invertibility is equivalent to the
existence of the inverse of θ with power series expansion

θ(z)−1 =
∞∑
j=0

πjz
j ,

which—again as consequence of complex analysis—holds if and only if θ(z) 6= 0 for all z ∈ C on
the (closed) unit disc.
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In the same way as in (3.2), the sequence (πj , j ∈ N0) is determined by the equations

πj +
q∑

k=1
θkπj−k = −φj

for j ∈ N0, where we set φ0 := −1, φj := 0 for j > p, and πj := 0 for j < 0.

3.2.1 Autocorrelation and partial autocorrelation function

Let us consider autocovariance, autocorrelation, and partial autocorrelation functions as well as
their computation in this section. We start with the calculation of the autocovariance function.
Therefore we recall that an ARMA(p, q) process is given by

φ(B)Xt = θ(B)Zt,

where Z ∼WN(0, σ2) and

φ(z) := 1−
p∑
i=1

φiz
i

as well as

θ(z) := 1 +
q∑
j=1

θjz
j .

Let us assume that the process is causal, then by definition there exists a real-valued sequence
(ψj , j ∈ N0) such that

Xt =
∞∑
j=0

ψjZt−j ,

where the coefficients ψj are determined by Equation (3.2).

In what follows we introduce three methods to compute the autocovariance function of an
ARMA(p, q) process.

Method 3.2.10. Proposition 3.1.2 implies with the above representation that

γ(h) = E(Xt+hXt) = σ2
∞∑
j=0

ψjψj+|h|.

If the coefficients (ψj , j ∈ N0) are unknown, estimators can be computed with the methods intro-
duced in the next Section 3.2.2.

Method 3.2.11. If we multiply each side of the equations

Xt −
p∑
j=1

φjXt−j = Zt +
q∑
j=1

θjZt−j

by Xt−k for k ∈ N0 and take expectations on each side, noting that

Xt−k =
∞∑
j=0

ψjZt−k−j ,

we obtain

γ(k)−
p∑
j=1

φjγ(k − j) = σ2
∞∑
j=0

θk+jψj
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for 0 ≤ k < m and

γ(k)−
p∑
j=1

φjγ(k − j) = 0

for k ≥ m, where m = max{p, q + 1}, ψj := 0 for j < 0, θ0 := 1, and θj := 0 for j /∈ {0, . . . , q}.
These equations can sometimes be solved explicitly.

Method 3.2.12. This method is a numerical version of Method 3.2.11. Use the equations there
for k = 0, . . . , p and solve them numerically to approximate γ(0), . . . , γ(p). Afterwards, use the
result and determine successively γ(j) for j > p.

Another important function for the estimation and fitting of models is the partial autocorrela-
tion function. We will first define the function before we give the definition of the sample partial
autocorrelation function that can be computed from observed data.

Definition 3.2.13. Let X be an ARMA(p, q) process. The partial autocorrelation function α
(PACF for short) of X is defined by

α(0) := 1,
α(h) := φhh

for h ≥ 1, where φhh is the last component of

φh =
(
(γ(i− j))hi,j=1

)−1 (γ(1), γ(2), . . . , γ(h))′.

For any series of observations (x1, . . . , xn) with xi 6= xj for some i and j, the sample partial
autocorrelation function α̂ is given by

α̂(0) := 1,
α̂(h) := φ̂hh

for h ≥ 1, where φ̂hh is similarly the last component of

φ̂h =
(
(γ̂(i− j))hi,j=1

)−1 (γ̂(1), γ̂(2), . . . , γ̂(h))′.

It can be shown that, when X has mean zero,

α(1) = Cor(Xt+1, Xt) = ρ(1)

and for h ≥ 2
α(h) = Cor(Xt+h − blt+h(Xh), Xt − blt(Xh))

where Xh := (Xt+1, . . . , Xt+h−1), which means that the partial autocorrelation α(h) can be
thought of as the correlation between Xt and Xt+h when adjusting for the intervening observations
Xt+1, . . . , Xt+h−1, hence the name of the function.

Furthermore it can be shown that the partial autocorrelation function of a causal AR(p) process
is zero for lags greater than p. Since algebraic computations of the partial autocorrelation function
are in general quite complicated, one should prefer numerical computations in many cases.

One method to choose an appropriate AR(p) model is to look at the sample partial autocor-
relation function α̂. If α̂(h) is significantly different from zero for h = 0, . . . , p and negligible for
h > p, an AR(p) model might be a good choice for the observed data. For sample size n one defines
“negligible” according to the Central Limit Theorem 1.1.7 that around 95% of the sample partial
autocorrelation function values beyond lag p should fall within the bounds ±1.96/

√
n, which is

justified by the fact that the sample partial autocorrelation function values at lags greater than p
are approximately independent N (0, 1/n) distributed random variables.
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3.2.2 Parameter estimation

Let us assume in this section that the order parameters p and q of an ARMA(p, q) model are known,
which is not true in most realistic cases. We will discuss the order selection in Section 3.2.3. Here
we will give methods to determine the parameters (φj , j = 1, . . . , p) and (θj , j = 1, . . . , q).

We start with computation methods for purely autoregressive models. To do parameter esti-
mation for an AR(p) model, we introduce two methods.

First we introduce the Yule–Walker estimation, which can be derived from Method 3.2.11. We
observe that the equations in Method 3.2.11 simplify for an AR(p) model to

γ(k)−
p∑
j=1

φjγ(k − j) =
{

0 k ∈ {1, . . . , p},
σ2 k = 0,

which are called the Yule–Walker equations. These equations can be rewritten as

p∑
j=1

φjγ(k − j) =
{
γ(k) k ∈ {1, . . . , p},
γ(0)− σ2 k = 0,

which leads to the linear system

(γ(i− j))pi,j=1(φ1, . . . , φp)′ = (γ(1), . . . , γ(p))′

and to
(φ1, . . . , φp) · (γ(1), . . . , γ(p))′ = γ(0)− σ2.

Often the Yule–Walker equations are used to determine γ from σ2 and (φj , j = 1, . . . , p). For
estimation we do it the other way around by using the sample autocovariance function γ̂ from the
made observations to get estimates of σ2 and (φj , j = 1, . . . , p). Due to better properties of the
sample autocorrelation function ρ̂ compared to γ̂, we transform the equations by dividing them
by γ̂(0) and obtain the following method.

Method 3.2.14 (Yule–Walker estimation). Compute estimators σ̂2 and (φ̂j , j = 1, . . . , p) from
the equations

(φ̂1, . . . , φ̂p)′ = R̂−1
p (ρ̂(1), . . . , ρ̂(p))′,

and
σ̂2 = γ̂(0)

(
1− (ρ̂(1), . . . , ρ̂(p))R̂−1

p (ρ̂(1), . . . , ρ̂(p))′
)
,

where R̂p denotes the sample autocorrelation matrix.

We observe that for large sample sizes n the vector (φ̂1, . . . , φ̂p) is approximately normally
distributed with mean (φ1, . . . , φp) and covariance matrix n−1σ2Γ−1

p , where Γp := (γ(i− j))pi,j=1.
This knowledge can be used to compute confidence regions.

Furthermore we remark that the the Yule–Walker estimates are special cases of moment esti-
mators. The analogous procedure for ARMA(p, q) models with q > 0 is easily formulated, but the
corresponding equations are nonlinear in the unknown coefficients. This might lead to nonexistence
and nonuniqueness of solutions.

The second method that we introduce for AR(p) models is Burg’s algorithm. We start by in-
troducing the necessary notation and quantities. Therefore let (xi, i = 1, . . . , n) be n observations
of a stationary times series X with mean zero. For 0 ≤ i < n let (ui(t), t = i + 1, . . . , n) be the
differences between xn+1+i−t and its best linear estimate in terms of the preceding i observations,
which are called the forward prediction errors. Similarly for 0 ≤ i < n let (vi(t), t = i+ 1, . . . , n)
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be the differences between xn+1−t and its best linear estimate in terms of the subsequent i ob-
servations, which are referred to as backward prediction errors. In an exercise one shows that the
forward and backward prediction errors satisfy the recursions

u0(t) = v0(t) = xn+1−t,

ui(t) = ui−1(t− 1)− φiivi−1(t),
vi(t) = vi−1(t)− φiiui−1(t− 1).

The transformation of these recursions leads to the following algorithm, which computes estimates
for σ2 and φii. The remaining (φ(B)

ij , j < i) can be obtained by replacing φii with φ
(B)
ii in the

Durbin–Levinson algorithm 2.3.10, where (B) indicates that the estimates are computed using
Burg’s algorithm.

Method 3.2.15 (Burg’s algorithm).

d(1) :=
n∑
t=2

(
u2

0(t− 1) + v2
0(t)

)
,

φ
(B)
ii := 2

d(i)

n∑
t=i+1

vi−1(t)ui−1(t− 1),

d(i+ 1) :=
(

1− φ(B)2
ii

)
d(i)− v2

i (i+ 1)− u2
i (n),

σ
(B)2
i :=

(
1− φ(B)2

ii

)
d(i)

2(n− i) .

For MA models and ARMA models we introduce the following two methods.

Similarly to the application of the Durbin–Levinson algorithm 2.3.10 to fit AR models, we can
use the innovations algorithm 2.3.11 to fit MA models

Xt = Zt +
m∑
j=1

θ̂mjZt−j

of given orders m ∈ N, where Z ∼WN(0, v̂m) with estimated white noise variance v̂m.

Method 3.2.16 (Innovations algorithm). Apply the innovations algorithm 2.3.11 with the sample
autocovariance function instead of the autocovariance function to obtain the coefficients of the
fitted innovations MA(m) model

Xt = Zt +
m∑
j=1

θ̂mjZt−j ,

as well as the estimated white noise variance v̂m of Z ∼WN(0, v̂m).

We remark that the obtained estimators are just consistent for invertible MA(q) processes with
Z ∼ IID(0, σ2) and E(Z4

t ) < +∞ for all t ∈ Z.

In the case of an ARMA(p, q) model with p > 0 and q > 0, we observe that the assumption of
causality ensures that

Xt =
∞∑
j=0

ψjZt−j ,

where the coefficients (ψj , j ∈ N0) satisfy for j ∈ N0 that

ψj = θj +
min{j,p}∑
i=1

φiψj−i (3.3)
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with θ0 := 1 and θj := 0 for j > q by (3.2). To estimate (ψj , j = 1, . . . , p + q) we can use the
innovation estimates θ̂m1, . . . , θ̂m(p+q). One then estimates (φi, i = 1, . . . , p) by solving the system
of equations given by (3.3) for q < j ≤ p+ q. Having done that, the coefficients (θj , j = 1, . . . , q)
are then determined from the q remaining equations given by (3.3) for j ≤ q.

The large-sample behavior of θ̂m1, . . . , θ̂m(p+q) is as follows (under smoothness assumptions,
for details see [4, Remark 5.1.3 1]): For any positive integer k the joint distribution function of

√
n(θ̂m1 − ψ1, θ̂m2 − ψ2, . . . , θ̂mk − ψk)

converges for n→ +∞ to a multivariate normal distribution with mean zero and covariance matrix
A = (aij)ki,j=1, where

aij :=
min{i,j}∑
r=1

θi−rθj−r.

This result enables us to find approximate large-sample confidence intervals for the moving average
coefficients. Moreover, the estimator v̂m is consistent for σ2.

The following algorithm is a variant of a least square regression.

Method 3.2.17 (Hannan–Rissanen algorithm).

(i) Fit a high-order AR(m) model (with m > max{p, q}) to the data using the Yule–Walker
estimates from Method 3.2.14. For estimated coefficients (φ̂m1, . . . , φ̂mm), compute the es-
timated residuals Ẑt from the equations

Ẑt = Xt −
m∑
j=1

φ̂mjXt−j

for t = m+ 1, . . . , n.

(ii) Estimate the vector of parameters β := (φ1, . . . , φp, θ1, . . . , θq) by a least squares linear
regression of Xt onto (Xt−1, . . . , Xt−p, Ẑt−1, . . . , Ẑt−q), t = m + 1 + q, . . . , n, i.e., minimize
the sum of squares

S(β) =
n∑

t=m+1+q

Xt −
p∑
j=1

φjXt−j −
q∑
i=1

θiẐt−i

2

with respect to β. This gives the Hannan–Rissanen estimator

β̂ = (Z ′Z)−1Z ′(Xm+1+q, . . . , Xn)′,

where

Z =


Xm+q Xm+q−1 · · · Xm+q+1−p Ẑm+q Ẑm+q−1 · · · Ẑm+1
Xm+q+1 Xm+q · · · Xm+q+2−p Ẑm+q+1 Ẑm+q · · · Ẑm+2

...
...

...
...

...
...

...
...

Xn−1 Xn−2 · · · Xn−p Ẑn−1 Ẑn−2 · · · Ẑn−q


(If p = 0, Z contains only the last q columns.) The Hannan–Rissanen estimator of the white
noise variance is

σ̂(HR)2 = S(β̂)
n−m− q

.
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Let us finally introduce the frequently used and well-known concept of likelihood which we use
for maximum likelihood estimation as the last but not least method in this section. Therefore
we assume that we are given a Gaussian ARMA(p, q) process (or at least act as if). Then for
any fixed values (φ1, . . . , φp), (θ1, . . . , θq), and σ2, the random variables X1 − X̂1, . . . , Xn − X̂n

are independent and normally distributed, where X̂1 := 0 and X̂j := E(Xj |X1, . . . , Xj−1), j ≥ 2.
Let Γn denote the covariance matrix of (X1, . . . , Xn) and assume that it is nonsingular. The
likelihood L(Γn) of (X1, . . . , Xn) is given by

L(Γn) = (2π)−n/2(det Γn)−1/2 exp
(
−2−1(X1, . . . , Xn)Γ−1

n (X1, . . . , Xn)′
)
.

Keeping the assumption that the process is Gaussian—which also kind of makes sense for other
processes if large sample sizes are used—one derives in our case of interest the Gaussian likelihood
for an ARMA(p, q) process

L(φ, θ, σ2) = (2πσ2)−n/2
 n∏
j=1

rj−1

−1/2

exp

−(2σ2)−1
n∑
j=1

r−1
j−1(Xj − X̂j)2

 ,

where
rj := Var(Xj+1 − X̂j+1)

σ2 ,

which can be determined by the innovations algorithm 2.3.11.

Method 3.2.18 (Maximum likelihood estimators). The maximum likelihood estimators of σ2, φ,
and θ are determined from the expression

σ̂2 = n−1S(φ̂, θ̂),

where

S(φ̂, θ̂) =
n∑
j=1

r−1
j−1(Xj − X̂j)2,

and φ̂ and θ̂ are the values of φ and θ that minimize

`(φ, θ) = ln
(
n−1S(φ, θ)

)
+ n−1

n∑
j=1

ln rj−1.

Do the minimization of ` numerically. Initial values can be computed by the methods introduced
previously in this section.

The derivation of the equations is left as an exercise to the reader. (Hint: Differentiate
lnL(φ, θ, σ2) with respect to σ2 and observe that X̂j and rj−1, j = 1, . . . , n, are independent
of σ2.)

Method 3.2.19 (Least squares estimation of mixed models). Minimize S instead of ` in
Method 3.2.18 to obtain the least squares estimates φ̃ and θ̃. The least squares estimate of σ2 is

σ̃2 = S(φ̃, θ̃)
n− p− q

.

Having fitted the model, it remains to check that the model was chosen adequately. If this is
the case, the residuals should behave like white noise and be approximately normally distributed
if a maximum likelihood estimation procedure was used. If the residuals do not appear to be
normally distributed, one can assume that the innovations follow a Student t-distribution instead
and see if the residuals fit better after a similar maximum likelihood estimation procedure.
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3.2.3 Order selection

Assume in this section that our data is already transformed, e.g., trend and seasonal components
are removed, such that the remaining series can potentially be fitted by a zero-mean ARMA(p, q)
model. In this section we treat the problem to choose appropriate values for p and q.

In general a selection for an AR(p) or MA(q) model may be made using autocorrelation and
partial autocorrelation functions. Typically, an autocorrelation function with “q peaks and then
zero” indicates a MA(q) model. This is clear since the autocovariance function of a MA(q) process
is by Proposition 3.1.2 given by

γ(h) =
{
σ2∑q

j=0 θjθj+|h| |h| ≤ q,
0 |h| > q.

On the other hand side a slowly decaying autocorrelation function and a partial autocorrelation
function with “p peaks and then zero” indicates an AR(p) model, which we discussed in Sec-
tion 3.2.1. After parameter estimation, which can be done with the procedures introduced in
Section 3.2.2, the model should be checked if the obtained residuals behave like white noise by the
methods introduced in Section 2.2.

To find an ARMA(p, q) model systematically, we just introduce the following method, although
a lot more could be written about that.

It is always possible to fit an ARMA(p, q) model with (too) large p and q, which is not an
advantage from a forecasting point of view. In general it results in a small estimated white noise
variance, but for forecasting the mean squared error of the forecast will additionally depend on
the errors arising from the parameter estimation. Therefore we introduce a “penalty factor” to
discourage the fitting of models with too many parameters.

We just introduce the AICC criterion, where AIC stands for Akaike’s Information Criterion
and the last C for biased-Corrected.

Method 3.2.20 (AICC criterion). Choose p, q, φp, and θq to minimize

−2 lnL(φp, θq, S(φp, θq)/n) + 2n p+ q + 1
n− p− q − 2

One problem with the AICC criterion that we remark is that the estimators for p and q are not
consistent, i.e., it does not hold that they converge almost surely to p and q. Consistent estimators
include, e.g., those obtained by the BIC.

In general one may say that order selection is a difficult problem and many criteria have been
proposed. Rissanen’s minimum description length (MDL) criterion seems to be rather much used
according to [10].

3.2.4 Forecasting of ARMA processes

The innovations algorithm 2.3.11 provides us with a recursive method for forecasting second-order
zero-mean processes that are not necessarily stationary. For the causal ARMA process

φ(B)Xt = θ(B)Zt,

where Z ∼ WN(0, σ2), it is possible to simplify the application drastically. The idea is to apply
the algorithm to the transformed process W = (Wt, t ∈ N) defined by

Wt :=
{
σ−1Xt t = 1, . . . ,m,
σ−1φ(B)Xt t > m,
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where m = max{p, q} (cf. [1]).

The autocovariance function γX ofX can easily be computed using any method of Section 3.2.1.
The autocovariances κ(i, j) := E(WiWj) for i, j ≥ 1, are then found from

κ(i, j) =


σ−2γX(i− j) max(i, j) ≤ m,
σ−2 (γX(i− j)−

∑p
r=1 φrγX(r − |i− j|)) min{i, j} ≤ m < max{i, j} ≤ 2m,∑q

r=0 θrθr+|i−j| min{i, j} > m,

0 otherwise.

Applying the innovations algorithm 2.3.11 to the process W we obtain

Ŵn+1 =
{∑n

j=1 θnj(Wn+1−j − Ŵn+1−j) q ≤ n < m,∑q
j=1 θnj(Wn+1−j − Ŵn+1−j) n ≥ m,

where the coefficients (θnj , n ∈ N, j ≤ min{n,m}) and the mean squared errors MSE(Ŵn+1,Wn+1)
are found recursively with κ as defined above. The notable feature of the predictors (Ŵn+1, n ∈ N)
is the vanishing of θnj when both n ≥ m and j > q.

One derives that the predictor Ŵn+1 is the best linear one-step predictor of Wn+1, i.e.,

Ŵn+1 = bln+1(Wn)

with Wn := (W1, . . . ,Wn). Furthermore we obtain that

Ŵt =
{
σ−1X̂t t = 1, . . . ,m,
σ−1

(
X̂t −

∑p
j=1 φjXt−j

)
t > m

due to the linearity of the prediction estimator. So we obtain as best linear estimator for Xn+1
with respect to Xn := (X1, . . . , Xn)

bln+1(Xn) = X̂n+1 =
{∑n

j=1 θnj(Xn+1−j − X̂n+1−j) 1 ≤ n < m,∑p
j=1 φjXn+1−j +

∑q
j=1 θnj(Xn+1−j − X̂n+1−j) n ≥ m,

with mean squared error

MSE(X̂n+1, Xn+1) = E((X̂n+1 −Xn+1)2) = σ2 E((Ŵn+1 −Wn+1)2) = σ2 MSE(Ŵn+1,Wn+1),

where we recall that the coefficients (θnj , n ∈ N, j ≤ min{n,m}) and the mean squared errors
MSE(Ŵn+1,Wn+1) are found recursively from the innovations algorithm 2.3.11. The best linear
estimators can be computed recursively.

Let us next consider h-step predictors of an ARMA(p, q) process. One can show similarly to
the results of Section 2.3 (cf. [3, Section 5.2]) that for Wn := (W1, . . . ,Wn) the best linear h-step
predictor is given by

bln+h(Wn) =
n+h−1∑
j=h

θ(n+h−1)j(Wn+h−j − Ŵn+h−j) = σ−2
n+h−1∑
j=h

θ(n+h−1)j(Xn+h−j − X̂n+h−j).

We conclude with the properties of W that the h-step predictors bln+h(Xn) with Xn :=
(X1, . . . , Xn) satisfy

bln+h(Xn) =
{∑n+h−1

j=h θ(n+h−1)j(Xn+h−j − X̂n+h−j) 1 ≤ h ≤ m− n,∑p
i=1 φib

l
n+h−i(Xn) +

∑n+h−1
j=h θ(n+h−1)j(Xn+h−j − X̂n+h−j) h > m− n.
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If, as is almost always the case in practice, n > m := max{p, q}, then for all h ≥ 1

bln+h(Xn) =
p∑
i=1

φi b
l
n+h−i(Xn) +

n+h−1∑
j=h

θ(n+h−1)j(Xn+h−j − X̂n+h−j).

Once the predictors X̂1, . . . , X̂n have been computed, it is a straightforward calculation (with
fixed n) to determine the best linear predictors bln+h(Xn) recursively.

The mean squared error of bln+h(Xn) is computed from the formula

MSE(bln+h(Xn), Xn+h) =
h−1∑
j=0

(
j∑
r=0

χrθ(n+h−r−1)(j−r)

)2

vn+h−j−1,

where the coefficients χj are computed recursively from the equations χ0 := 1 and

χj =
min{p,j}∑
k=1

φkφj−k

for j ∈ N, and the coefficients (vn+h−j−1, j = 0, . . . , h− 1) denote the mean squared errors of the
one-step predictors as introduced in the methods in Section 2.3.

Finally in this section we remark that in the special case that the ARMA process is driven
by Gaussian white noise, i.e., Z ∼ IIDN (0, σ2), for each h ≥ 1 the prediction error bln+h(Xn) −
Xn+h is normally distributed with mean zero and variance MSE(bln+h(Xn), Xn+h). This allows
to compute confidence intervals. These bounds are called (1 − α) prediction bounds for Xn+h if
the (1− α/2) quantile of the standard normal distribution is used.

3.3 ARIMA models

In this section we focus on a nonstationary time series model, which can be considered if the
observations do not seem to follow a stationary model. The class of ARIMA processes that we
introduce here is a generalization of ARMA processes. It is the class of processes that reduce to
ARMA processes when differenced finitely many times. More precisely we define it in the following
way.

Definition 3.3.1. Let X be a stochastic process and d a nonnegative integer. Then X is an
ARIMA(p, d, q) process if the process Y defined by Yt := (1 − B)dXt is a causal ARMA(p, q)
process.

Here the abbreviation ARIMA stands for autoregressive integrated moving average. Stated in
another way this definition states that X satisfies a difference equation of the form

φ∗(B)Xt := φ(B)(1−B)dXt = θ(B)Zt,

where Z ∼WN(0, σ2) and φ and θ are polynomials of degree p and q, respectively. Furthermore
φ(z) 6= 0 for |z| ≤ 1, while the polynomial φ∗ has a zero of degree d at z = 1. The process is
stationary if and only if d = 0, in which case it reduces to an ARMA(p, q) process. Furthermore
for d ≥ 1 neither the mean nor the covariance function are determined by the above difference
equation.

Observe that if d ≥ 1, we can add an arbitrary polynomial trend of degree (d−1) to X without
violating the difference equation. ARIMA models are therefore useful for representing data with
trend.
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An ARIMA model is an appropriate choice if the autocovariance function is slowly decaying.
Nevertheless, in practice it is very difficult to distinguish between an ARIMA(p, 1, q) process and
an ARMA(p+ 1, q) process with a root of φ(z) = 0 near the unit circle.

In what follows we treat unit roots to determine an appropriate model.

To treat and find ARIMA models one applies the difference operator (1−B) to the observed
data until the sample autocorrelation function is no longer slowly decaying with values near 1
at small lags but rapidly decreasing. The differenced time series can then be modeled by a low-
order ARMA(p, q) process. The resulting ARIMA(p, d, q) model for the original data has then an
autoregressive polynomial

φ∗(z) =

1−
p∑
j=1

φjz
j

 (1− z)d

with d roots on the unit circle.

A more systematic approach to decide if the observed data follow a model with roots on the
unit circle is due to Dickey and Fuller (see [6]) and described in what follows. Let us start with
the case of an AR(1) model before we extend the problem to the general case. Therefore assume
that (x1, . . . , xn) are observations of (X1, . . . , Xn) of the AR(1) model

Xt − µ = φ1(Xt−1 − µ) + Zt,

where Z ∼WN(0, σ2), |φ1| < 1, and µ := E(Xt). For large sample sizes n the maximum likelihood
estimator of φ1 is approximately normally distributed with mean φ1 and variance (1−φ2

1)/n, which
does not hold if φ1 = 1 and is therefore of no use for testing H0 : φ1 = 1 versus H1 : φ1 < 1. To
construct a hypothesis test, we rewrite the model as

∇Xt = Xt −Xt−1 = φ∗0 + φ∗1Xt−1 + Zt,

where Z ∼ WN(0, σ2), φ∗0 := µ(1 − φ1), and φ∗1 := φ1 − 1. Let φ̂∗1 be the ordinary least squares
(OLS for short) estimator of φ∗1 found by regressing ∇Xt on 1 and Xt−1, i.e.,

(φ̂∗0, φ̂∗1) = arg min
(φ∗

0 ,φ
∗
1)

n∑
t=2

(∇Xt − φ∗0 − φ∗1Xt−1)2.

Then the estimated standard error of φ̂∗1 can be shown to be

ŜE(φ̂∗1) = S

(
n∑
t=2

(Xt−1 − X̄n−1)2

)−1/2

,

where

S2 := (n− 3)−1
n∑
t=2

(∇Xt − φ̂∗0 − φ̂∗1Xt−1)2

and we recall that X̄n−1 denotes the sample mean of (X1, . . . , Xn−1). Dickey and Fuller derived
the limit distribution for n→ +∞ of the t-ratio

τ̂µ := φ̂∗1

ŜE(φ̂∗1)

under the unit root assumption φ̂∗1 = 0, from which a test of the null hypothesis H0 : φ1 = 1
versus H1 : φ1 < 1 and confidence regions can be constructed. The 0.01, 0.05, and 0.10 quantiles
of the limit distribution of τ̂µ are −3.43, −2.86, and −2.57, respectively, which can be found in [9,
Table 8.5.2]. The augmented Dickey–Fuller test then rejects the null hypothesis of a unit root at
level 0.05 if τ̂µ < −2.86.
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Note that the cutoff value for this test statistic is much smaller than the standard cutoff value
of −1.645 obtained from the normal approximation to the t-distribution, so that the unit root
hypothesis is less likely to be rejected using the correct limit distribution.

The above procedure can be extended to the case whereX follows an AR(p) model with mean µ
given by

Xt − µ =
p∑
j=1

φj(Xt−j − µ) + Zt,

where Z ∼WN(0, σ2). Similarly, the model can be rewritten as

∇Xt = φ∗0 + φ∗1Xt−1 +
p∑
j=2

φ∗j∇Xt+1−j + Zt,

where

φ∗0 := µ

(
1−

p∑
i=1

φi

)
,

φ∗1 :=
p∑
i=1

φi − 1,

φ∗j := −
p∑
i=j

φi

for j = 2, . . . , p, which is left to the reader as an exercise.

If the autoregressive polynomial has a unit root at 1, then φ∗1 = 0 and the differenced series is
an AR(p − 1) process. Consequently, we can do a similar procedure as in the AR(1) case, which
can be applied recursively and which is summarized in the following method.

Method 3.3.2 (Dickey–Fuller test). Estimate φ∗1 as the coefficient of Xt−1 in the OLS regression
of ∇Xt onto 1, Xt−1, ∇Xt−1, . . . , ∇Xt−1+p. For large n the t-ratio

τ̂µ := φ̂∗1

ŜE(φ̂∗1)
,

where ŜE(φ̂∗1) is the estimated standard error of φ̂∗1, has the same limit distribution as the AR(1)
process with 0.01, 0.05, and 0.10 quantiles −3.43, −2.86, and −2.57, respectively. Test the null
hypothesis H0 : φ∗1 = 0 and reject according to the chosen level. If a root is detected, repeat the
procedure with the differenced process until rejection to determine d.



CHAPTER 4
ARCH and GARCH processes

In this section we introduce processes that are used to model volatility.
In the famous Black-Scholes framework, volatility is assumed to be constant over time to obtain

the well-known equations. There, it is assumed that the price follows a geometric Brownian motion,
i.e., it is the solution to the stochastic differential equation

dPt = µPt dt+ σPt dBt

with initial condition P0 driven by a Brownian motion B = (Bt, t ∈ R+), also known as Wiener
process. The volatility σ is assumed to be a constant and the stochastic differential equation has
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Figure 4.1: Path of a Brownian motion.

the explicit solution
Pt = P0 exp(µt+ σBt).

Nevertheless, this does not seem to be the case in practice if one tests observed data. One option
to measure the volatility is the realized volatility, which is computed by

σ̂2
t := (τ − 1)−1

t∑
j=t−τ

(xj − x̄t)2

45
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for observed data (x1, . . . , xn), fixed τ < n, and τ < t ≤ n, where

x̄t := τ−1
t∑

j=t−τ
xj .

The time frame for τ depends on the availability of data. If intra-day data is available, the time
frame may be one day. For daily data it is typically 30 days.
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Figure 4.2: Path of a geometric Brownian motion with P0 = µ = σ = 1

The goal of this chapter is to introduce more general volatility models that allow for time
dependent volatilities.

4.1 Definitions and properties

Let us start by introducing the necessary definitions and the theoretical background of ARCH and
GARCH processes.

Definition 4.1.1. A stochastic process X = (Xt, t ∈ Z) is called an ARCH(p) process if it is
stationary and if

Xt = σtZt,

where Z ∼ IIDN (0, 1),

σ2
t = α0 +

p∑
j=1

αjX
2
t−j ,

α0 > 0, αj ≥ 0 for j = 1, . . . , p, and if Zt and (Xt−j , j ∈ N) are independent for all t.

Here the abbreviation ARCH stands for autoregressive conditional heteroscedasticity.

The requirements α0 > 0 and αj ≥ 0, j ≥ 1, guarantee that σt > 0. It is, however, not at all
easy to find conditions on α0 and αj which ascertain that there really exists an ARCH(p) process.
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Consider now an ARCH(p) process and the polynomial

α(z) := α1z + · · ·+ αpz
p.

Thus we can rewrite the equation of the volatility σt to

σ2
t = α0 + α(B)X2

t ,

where we recall that B denotes the backward shift operator introduced in Chapter 2. Due to
stationarity and the fact that E(X2

t ) = E(σ2
t ), which can be shown in an easy exercise, it holds

that
E(X2

t ) = α0 + α(1)E(X2
t ).

This implies that
E(X2

t ) = α0

1− α(1) .

It can be shown that (X2
t , t ∈ Z) is an AR process (see, e.g., [10]).

Since the order p of an ARCH process has to be rather large to be fitted to the observed data
in practice, we now consider a generalization of ARCH processes, the so-called GARCH processes.
This is one of many extensions of ARCH processes and certainly the most important one, where
GARCH means generalized ARCH.

Definition 4.1.2. A stochastic process X = (Xt, t ∈ Z) is called a GARCH(p, q) process if it is
stationary and if

Xt = σtZt,

where Z ∼ IIDN (0, 1),

σ2
t = α0 +

p∑
j=1

αjX
2
t−j +

q∑
i=1

βiσ
2
t−i,

with α0 > 0, αj ≥ 0 for j = 1, . . . , p, βi ≥ 0 for i = 1, . . . , q, and if Zt and (Xt−j , j ∈ N) are
independent for all t.

In the literature one finds that the GARCH(1, 1) process is often regarded to be a reason-
ably realistic model. Nevertheless, let us perform the following computations for GARCH(p, q)
processes. Similarly to the ARCH process we rewrite the volatility equation to

σ2
t = α0 + α(B)X2

t + β(B)σ2
t ,

where

α(z) := α1z + · · ·+ αpz
p,

β(z) := β1z + · · ·+ βqz
q.

Again since E(X2
t ) = E(σ2

t ) and due to stationarity we get

E(X2
t ) = α0 + (α(1) + β(1))E(X2

t ),

which implies that
E(X2

t ) = α0

1− α(1)− β(1) .

Under the assumption that E(σ4
t ) < +∞ one can derive that (X2

t , t ∈ Z) is an ARMA(max{p, q}, q)
process with generating polynomials

φ(z) = 1− α(z)− β(z)
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and
θ(z) = 1− β(z)

as well as mean α0(1− α(1)− β(1))−1 (see, e.g. [10]). The ARMA model can be represented by

X2
t = α0 +

max{p,q}∑
i=1

(αi + βi)X2
t−i + ηt −

q∑
j=1

βjηt−j , (4.1)

where ηt := X2
t − σ2

t . The interested reader checks in an exercise that (ηt, t ∈ Z) is a martingale
difference series, i.e., E(ηt) = 0 and Cov(ηt, ηt−j) = 0 for j 6= 0. However, the series is in general
not an iid noise.

Since—as mentioned before—it is believed that a GARCH(1, 1) model is (often) sufficient, we
state some properties of this specific choice of parameters.

The GARCH(1, 1) model is (weakly) stationary with Cov(Xt, Xs) = 0 for t 6= s if and only if
α1 + β1 < 1. Furthermore the 2m-th moments of X exist if and only if

m∑
j=0

(
m
j

)
ajα

j
1β

m−j
1 < 1,

where a0 := 1 and aj :=
∏j
i=1(2i− 1) for j ≥ 1.

We close this section by remarking that uncertainty in volatility estimation is an important
issue that is often overlooked. To assess the variability of an estimated volatility, it is necessary
to consider the kurtosis of a volatility model (cf. [17, Section 3.16]). For the GARCH(1, 1) model
it is given by

3(1− (α1 + β1)2)
1− β2

1 − 2α1β1 − 3α2
1
> 3,

where the lower bound of three can be easily computed.

4.2 Estimation

Let us introduce two methods in this section to do estimation for ARCH and GARCH models.
While the first one tests given data for ARCH effects, the second one uses the ARMA representation
to estimate the parameters αi and βi. For more methods the reader is referred to [17].

Method 4.2.1 (Test for ARCH effects). Test the null hypothesis H0 : α1 = · · · = αp = 0.

Set

SSR0 :=
n∑

t=p+1
(X2

t −X2
n)2,

where

X2
n := n−1

n∑
t=1

X2
t ,

and

SSR1 :=
n∑

t=p+1
ê2
t ,

where êt is the residual from the least squares estimation of the regression model

X2
t = α0 +

p∑
j=1

αjX
2
t−j + et
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for t = p+ 1, . . . , n.

Then the test statistic for ARCH effects is

(SSR0 − SSR1)(n− 2p− 1)
SSR1p

,

which is asymptotically χ2
p distributed.

Parameter estimation is often done using maximum likelihood estimation. For Gaussian noise,
the log-likelihood function is given by

−2−1
n∑

t=p+1

(
ln σ2

t + σ−2
t X2

t

)
,

which is maximized numerically.

Other noise distributions such as Student-t distribution or a generalized error distribution are
also possible.

The following method uses the ARMA representation of a GARCH process. It provides often
good approximations in practice but the statistical properties have not been investigated rigorously
so far.

Method 4.2.2 (Two-pass estimation of GARCH). Assume that a zero-mean set of observations
(xj , j = 1, . . . , n) is given. Use the maximum likelihood method 3.2.18 to estimate the parameters
of the ARMA representation (4.1) for (x2

j , j = 1, . . . , n), denoted by φ̂i and θ̂i. Obtain the
parameter estimates of the GARCH coefficients by setting

β̂i := θ̂i and α̂i := φ̂i − θ̂i.

4.3 Extensions

The ARCH and GARCH model both do not allow for asymmetries. Furthermore they have
problems to treat extreme events. In the literature many modifications of the GARCH model
have been proposed to overcome the problems of the model. We here just mention the exponential
GARCH model, which is abbreviated by EGARCH and given by the formula

ln(σ2
t ) = α0 +

p∑
i=1

αi
|Xt−i|+ γiXt−i

σt−i
+

q∑
j=1

βj ln(σ2
t−j ),

where the parameter γi signifies the leverage effect of Xt−i or accounts for skewness. In contrast
to the GARCH model it allows for asymmetric effects.

Nevertheless, it should be mentioned at that point that the modeling of volatility is a difficult
problem and it seems that no final satisfactory solution has been found so far.
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CHAPTER 5
Nonlinear models

This section is mainly based on [17]. It is important to mention that white noise in [17] is called
iid noise in [4] as well as here. The reader should be aware of this when looking for details in [17]
and comparing it to the presented content of these lecture notes.

As seen in Chapter 3, a centered linear model can be expressed by

Xt =
∑
j∈Z

ψjZt−j ,

where Z ∼WN(0, σ2) and (ψj , j ∈ Z) is a sequence of real numbers.
This model might not always be sufficient for observed data. In this chapter we discuss more

general models, how to test them and how to do forecasting, which becomes a lot more involved in
this case than for linear models. Therefore let us consider the more general form of a time series
model

Xt = f(Zs, s ≤ t),
where f is some not necessary linear function. If we denote by Ft the sigma algebra generated by
(Xs, s ≤ t) and (Zs, s ≤ t), i.e., (Ft, t ∈ Z) is the filtration generated by X and Z, the conditional
mean µt of Xt given Ft−1 is given by

µt = E(Xt|Ft−1) =: g(Ft−1)

and the conditional variance σ2
t by

σ2
t = Var(Xt|Ft−1) =: h(Ft−1),

where g and h are well-defined functions and h is additionally positive. Let us restrict in what
follows our class of nonlinear models to those which can be written as

Xt = g(Ft−1) +
√
h(Ft−1)εt,

where εt = Zt/σt is a standardized shock (or innovation). Furthermore assume for simplicity that
Z is iid noise, i.e., ε ∼ IID(0, 1). If g is nonlinear, the model is called nonlinear in mean, while it
is called nonlinear in variance if h is time variant. The models in Chapter 3 are linear. One can
show that those introduced in Chapter 4 are nonlinear in variance.

5.1 Nonlinear models

In this section we introduce the bilinear and the Markov switching model as two examples of
nonlinear models. For more examples the reader is referred to [17].
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The basic idea of bilinear models is to extend linear models, which can be seen as first-order
Taylor expansion of nonlinear models, by the second-order Taylor terms. This leads to

Xt = c+
p∑
i=1

φiXt−i −
q∑
j=1

θjZt−j +
m∑
i=1

s∑
j=1

βijXt−iZt−j + Zt,

where p, q, m, and s are nonnegative integers and Z is a white noise. This model was introduced
by Grander and Andersen [11] and has been widely investigated.

The second nonlinear model that we want to mention here is the so called Markov switching
autoregressive model. In order to introduce it, we first have to give the definition of a Markov
process, which is one of the important concepts in stochastic analysis.

Definition 5.1.1. A stochastic process X = (Xt, t ∈ T) on some index set T is a Markov process
if its conditional distribution function satisfies

P (Xh|Xs, s ≤ t) = P (Xh|Xs)

for arbitrary h > t. If X is a discrete-time stochastic process, i.e., T = N or Z, then the property
becomes

P (Xh|Xt, Xt−1, . . .) = P (Xh|Xt)

for arbitrary h > t and the process is also known as (first-order) Markov chain.

The following model uses the concept of Markov processes or Markov chains.

Definition 5.1.2. A time series X = (Xt, t ∈ Z) follows a Markov switching autoregressive model
(MSA for short) if it satisfies

Xt =
{
c1 +

∑p
i=1 φ1iXt−i + Z1t if St = 1,

c2 +
∑p
i=1 φ2iXt−i + Z2t if St = 2,

where S assumes values in {1, 2} and is a first-order Markov chain with transition probabilities

P (St = 2|St−1 = 1) = w1,

P (St = 1|St−1 = 2) = w2

with w1, w2 ∈ [0, 1]. The innovational series Z1 = (Z1t, t ∈ Z) and Z2 = (Z2t, t ∈ Z) are IID(0, σ2)
noise for finite σ2 and independent of each other.

5.2 Nonparametric methods for model fitting

Nonparametric methods are highly data dependent and can easily result in overfitting. They are
used if there is no sufficient knowledge about the nonlinear structure between random variables.
The essence of nonparametric methods is smoothing. To get an idea of the problem, let us look
into the following:

Assume that we are given two time series X and Y that are related by

Yt = m(Xt) + Zt, (5.1)

where m is an arbitrary, smooth, but unknown function and Z is iid noise. Our goal is to
estimate the nonlinear function m from the data. Let for the beginning X = x be constant and
(yt, t = 1, . . . , n) be a series of independent observations. Then the problem simplifies to

yt = m(x) + Zt
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and taking the sample average yields

n−1
n∑
t=1

yt = m(x) + n−1
n∑
t=1

Zt.

By the properties of the iid noise and the law of large numbers, the averaged noise converges to
zero for large n. Therefore

ȳ := n−1
n∑
t=1

yt

is a consistent estimator for m(x), i.e., ȳ ≈ m(x).
As long as m is sufficiently smooth and Xt ≈ x still almost constant, the method continues to

work fine. In other cases one possibility is to use a weighted average of y instead of the simple
one, which we denote by

m̂(x) :=
n∑
t=1

wt(x)yt, (5.2)

where the weights wt(x) are larger for those yt with xt close to x and smaller for those far away.
The weights sum up to one.

We introduce two methods to determine the weights in what follows.

Method 5.2.1 (Kernel regression). This method determines the weights by a kernel, which is
typically a probability density function denoted by K and which satisfies that it is nonnegative
and ∫

K(z) dz = 1.

To increase the flexibility in distance measure, the kernel is often rescaled by the bandwidth h > 0
and becomes

Kh(x) = h−1K(xh−1)
and ∫

Kh(z) dz = 1.

Define the weight function by
wt(x) := Kh(x− xt)∑n

s=1Kh(x− xs)
.

Plugging this into Equation (5.2), the Nadaraya–Watson kernel estimator

m̂(x) =
n∑
t=1

wt(x)yt =
∑n
t=1Kh(x− xt)yt∑n
t=1Kh(x− xt)

is obtained (see [13, 18]). Possible choices of the kernel include the Gaussian kernel

Kh(x) := h−1(2π)−1/2 exp(−2−1(x/h)2)

and the Epanechnikov kernel [7]

Kh(x) := 0.75h−1(1− (x/h)2)I(|x/h| ≤ 1),

where I denotes the indicator function, i.e., I(A) = 1 if A holds and I(A) = 0 else.

To understand the role of the bandwidth h one observes that m̂(xt) → yt for h → 0 and
m̂(xt) → ȳ for h → +∞. Therefore one could regard h as the parameter that chooses the size
of the neighborhood that is used for smoothing. In general bandwidth selection is a well-known
problem in kernel regression. In what follows we introduce two methods to determine a “good”
choice for h. For an overview to bandwidth selection, the reader is referred to Härdle [12] as well
as Fan and Yao [8].
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Method 5.2.2 (Bandwidth selection with MISE). This method is a plug-in method, which is
based on the asymptotic expansion of the mean integrated squared error (MISE for short) for
kernel smoothers

MISE := E
(∫ ∞
−∞

(m̂(x)−m(x))2 dx

)
,

where m is the true function and m̂ the estimator which depends on h. Under some regularity
conditions, one derives the optimal bandwidth by minimization of the MISE, which typically de-
pends on several unknown quantities that must be estimated from the data with some preliminary
smoothing. In practice the choice of preliminary smoothing can become a problem. A normal
reference bandwidth selector is given by Fan and Yao by

ĥopt =
{

1.06 s n−1/5 for the Gaussian kernel,
2.34 s n−1/5 for the Epanechnikov kernel,

where s is the sample standard error of the independent variable, which is assumed to be stationary.

Method 5.2.3 (Bandwidth selection with cross validation). The leave-one-out cross validation
starts with omitting one observation (xj , yj). The remaining n− 1 data points are used to obtain
the following smoother at xj :

m̂h,j(xj) :=
∑
t6=j

wt(xj)yt,

which is an estimate of yj where the weights wt(xj) sum to 1. Afterwards the same is performed
for all remaining n− 1 observations and

CV(h) :=
n∑
j=1

(yj − m̂h,j(xj))2W (xj)

is defined, where W is a nonnegative weight function satisfying
∑n
j=1W (xj) = 1 that can be

used to down-weight the boundary points if necessary. This might be the case since points at
the boundary have often fewer neighboring observations. The function CV is called the cross-
validation function because it validates the ability of the smoother to predict y. The bandwidth h
is chosen such that it minimizes CV.

Having presented two methods to choose the bandwidth in kernel regression, we continue with
another method to estimate m in Equation (5.1).

Method 5.2.4 (Local linear regression method). Assume thatm in Equation (5.1) is twice contin-
uously differentiable at some given point x in the support of m. Denote the available observations
by ((yt, xt), t = 1, . . . , n). The local linear regression method to nonparametric regression is to find
a and b that minimize

L(a, b) :=
n∑
t=1

(yt − a− b(x− xt))2Kh(x− xt),

where Kh is a kernel with bandwidth h as in Method 5.2.2. Denote the minimum of a by â, which
is the estimate of m(x), while the minimum of b denoted by b̂ can be used as an estimate of m′(x).
The least-squares problem has a closed-form solution, which is given by

â =
∑n
t=1 wt(x)yt∑n
t=1 wt(x)

,

where
wt(x) := Kh(x− xt)(sn,2(x)− (x− xt)sn,1(x))
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and

sn,j(x) :=
n∑
t=1

Kh(x− xt)(x− xt)j

for j = 1, 2. We leave the derivation to the interested reader.

In practice, to avoid that the denominator becomes zero,

m̂(x) :=
∑n
t=1 wt(x)yt∑n

t=1 wt(x) + n−2

is used as an estimate for m(x).

5.3 Nonlinearity tests

In this section we discuss both, nonparametric and parametric statistics that have decent power
against the models considered in Section 5.1.

5.3.1 Nonparametric tests

Under the null hypothesis of linearity, residuals of a properly specified linear model should be
uncorrelated. Let us here consider the stronger assumption that they are independent, which holds
automatically true for Gaussian noise. Any violation of independence in the residuals indicates
inadequacy of the entertained model, including the linearity assumption. This is the basic idea
behind various nonlinearity tests. Here we introduce two methods for the moment. For more the
reader is referred to the literature.

Method 5.3.1 (Q-statistic of squared residuals). This method by McLeod and Li applies the
Ljung–Box statistics 2.2.10 to the squared residuals of an ARMA(p, q) model to check for model
inadequacy. The test statistic is

Q(m) := n(n+ 2)
m∑
i=1

ρ̂2
i (Z2

t )
n− i

,

where n is the number of observations, m is a properly chosen number of autocorrelations used
in the test, (Zt, t = 1, . . . , n) denotes the residual series, and ρ̂i(Z2

t ) is the lag i autocorrelation
function of Z2

t . If the entertained linear model is adequate, Q(m) is asymptotically χ2
m−p−q-

distributed.

The null hypothesis of the test is

H0 : β1 = · · · = βm = 0,

where the parameter βi is the coefficient of Z2
t−i in the linear regression

Z2
t = β0 +

m∑
i=1

βiZ
2
t−i + et

for t = m+ 1, . . . , n.

Method 5.3.2 (Bispectral test). This test can be used to test for linearity and Gaussianity. It
depends on the result that a properly normalized bispectrum of a linear time series is constant
over all frequencies and that the constant is equal to zero under normality. Here, the bispectrum
of a time series is the Fourier transform of its third-order moments, but let us treat this in detail
in what follows.
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For a stationary time series

Xt = µ+
∞∑
i=0

ψiZt−i,

where µ is a constant, Z ∼ IID(0, σ2) and (ψj , j ∈ Z) is a sequence of real numbers with ψ0 = 1,
the third-order moment is defined as

c(u, v) := E(Z3
t )

∞∑
k=−∞

ψkψk+uψk+v

for u, v ∈ Z, where we set ψ0 := 1 and ψi := 0 for k < 0. For frequencies w1 and w2 the Fourier
transform is then given by

b3(w1, w2) := E(Z3
t )

4π2 Γ(−(w1 + w2))Γ(w1)Γ(w2),

where Γ is defined by

Γ(w) :=
∞∑
u=0

ψu exp(−iwu)

and i =
√
−1. Since the spectral density of X is given by

p(w) = σ2

2π |Γ(w)|2,

one obtains that the bispectrum

b(w1, w2) := |b3(w1, w2)|2

p(w1)p(w2)p(w1 + w2)

is constant for all (w1, w2). The bispectrum test estimates b over a suitably chosen grid of points
and applies a test statistic similar to Hotelling’s T 2 statistic to check the constancy. Since for a
linear Gaussian series E(Z3

t ) = 0, the bispectrum is zero for all frequencies.

5.3.2 Parametric tests

To conclude the section about nonlinearity tests we introduce one parametric method and remark
at the end how this can be extended.

Method 5.3.3 (RESET test). Ramsey [15] proposes a specification test for linear least-squares
regression analysis referred to as a RESET test, which is readily applicable to linear AR models.
Therefore consider the linear AR(p) model

Xt = (1, Xt−1, . . . , Xt−p)(φ0, φ1, . . . , φp)′ + Zt.

The first step of the RESET test is to obtain the least-squares estimate (φ̂0, φ̂1, . . . , φ̂p) and
compute the fit

X̂t := (1, Xt−1, . . . , Xt−p)(φ̂0, φ̂1, . . . , φ̂p)′,

the residuals Ẑt := Xt − X̂t, and the sum of squared residuals

SSR0 :=
n∑

t=p+1
Ẑ2
t ,

where n is as usual the sample size.
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In the second step, consider the linear regression

Ẑt = (1, Xt−1, . . . , Xt−p)(α10, . . . , α1p)′ + (X̂2
t , . . . , X̂

s+1
t )(α21, . . . , α2s)′ + Vt

for some s ≥ 1 and compute the least-squares residuals

V̂t = Ẑt − (1, Xt−1, . . . , Xt−p)(α̂10, . . . , α̂1p)′ − (X̂2
t , . . . , X̂

s+1
t )(α̂21, . . . , α̂2s)′

and the sum of squared residuals

SSR1 :=
n∑

t=p+1
V̂ 2
t

of the regression. The idea of the RESET test is that if the linear AR(p) model is adequate, then
all α1i and α2j should be zero. This can be tested by using the F statistic given by

F := (SSR0 − SSR1)(n− p− g)
SSR1g

,

where g := s+ p+ 1, which under linearity and normality assumption, has an F distribution with
degrees of freedom g and n− p− g.

We remark that there exist several improvements of the RESET test. We here mention only
the modification of the second step of the RESET test by Keenan and a different choice of the
regressor by Tsay. For details the reader is referred to the literature.

5.4 Forecasting

We have seen in Section 2.3 that forecasting for linear time series can be done with closed-form
formulas. This does not hold for most nonlinear models when the forecast horizon is greater
than 1. In what follows we introduce parametric bootstraps to compute nonlinear forecasts.

Method 5.4.1 (Parametric bootstrap). Given Xn, we want to forecast Xn+h for some h > 0.
The parametric bootstrap computes realizations Xn+1, . . . , Xn+h sequentially in the following way.
For i = 1, . . . , h repeat:

(i) Generate a random sample of the innovation at time n+i according to the underlying model.

(ii) Compute Xn+i using the generated sample, the model, the data, and the previous forecasts
Xn, . . . , Xn+i−1.

Repeat this whole procedureM times to getM realizations of Xn+h. Compute the sample average
over the realizations to obtain a point forecast for Xn+h which we denote by Xn(h). The latter is
also known as Monte Carlo simulation.

The realizations could also be used to obtain an empirical distribution function which might
be of use in the following methods when forecasting evaluation is done.

In what follows we introduce different methods to evaluate the performance of a forecast.
Therefore let us do the following: Given a data set, we subdivide it into two subsamples which we
refer to as estimation subsample and forecasting subsample. We will use the first one to build a
nonlinear model. We derive the performance then by comparing the obtained forecasts computed
by the model with the data of the forecasting subsample. In what follows three measures are used
to get an idea of the performance which are commonly used in the literature. Nevertheless, we
should mention that there exists no widely accepted measure to compare models.
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Method 5.4.2 (Directional measure). A typical measure for the evaluation of the performance
of forecasts is to use a 2× 2 contingency table that summarizes the number of “hits” and “misses”
of the model in predicting ups and downs up to xn+h in the forecasting subsample. Let the table
be given by

Actual Predicted
Up Down

Up m11 m12 m10
Down m21 m22 m20

m01 m02 m

where m is the total number of h-step-ahead forecasts in the forecasting subsample, m11 is the
number of “hits” in predicting upward movements, m21 is the number of “misses” in predicting
downward movements of the market, and so on. It is clear that larger values in m11 and m22
indicate better forecasts. The test statistic

χ2 :=
2∑

i,j=1

(mij −mi0m0j/m)2

mi0m0j/m

can be used to evaluate the performance of the model, where a large χ2 signifies that the model
outperforms the chance of random choice. Under some assumptions, χ2 has an asymptotic χ2

distribution with one degree of freedom. For more details the reader is referred to the literature,
especially to [5].

Method 5.4.3 (Magnitude measure). Three statistics that are commonly used to measure per-
formance of point forecasts are

• the mean squared error

MSE(h) := m−1
m−1∑
j=0

(Xn+h+j −Xn+j(h))2,

• the mean absolute deviation

MAD(h) := m−1
m−1∑
j=0
|Xn+h+j −Xn+j(h))|,

• the mean absolute percentage error

MAPE(h) := m−1
m−1∑
j=0

∣∣∣∣Xn+j(h)
Xn+h+j

− 1
∣∣∣∣ ,

where m is the number of h-step-ahead forecasts available in the forecasting subsample. The
error computation is done between the data from the forecasting subsample and the h-step-ahead
forecasts computed from the model that was derived from the estimation subsample.

In application one often chooses one of the above measures and then the model with the
smallest magnitude on that measure. This is regarded as the best h-step-ahead forecasting model.
Be aware that it might happen that different models are chosen for different forecast horizons h. For
limitations in model comparison of the different measures, the reader is referred to the literature.
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Method 5.4.4 (Distributional measure). Compute the empirical distribution function F̂ out
of the sample obtained by the parametric bootstrap method 5.4.1 for the desired h-step-ahead
forecast according to the model obtained from the estimation subsample. Use the forecasting
subsample to compute

un+j(h) := F̂ (xn+h+j)

for all j = 0, . . . ,m − 1, where m denotes the total number of h-step-ahead forecasts in the
forecasting subsample. If the model is adequate, then (un+j(h), j = 0, . . . ,m− 1) will behave like
a random sample from the uniform distribution on [0, 1]. For sufficiently largem, the Kolmogorov–
Smirnov statistic can be used to test the sample with respect to the uniform distribution.

The method can be used for both, model checking and forecasting comparison.

At the end of this chapter it should be mentioned that in contrast to linear models, where we
proved most of the results and methods or referred for the proofs to the literature, prediction with
nonlinear models is a lot more heuristically. More complicated models lead to more complicated
theory—if available. This implies that extra care has to be taken into account when applying
these methods in practice possibly without completely understanding them. Consequences of that
(as one reason) could be seen in the financial crisis.



60 CHAPTER 5. NONLINEAR MODELS



Bibliography

[1] Craig F. Ansley. An algorithm for the exact likelihood of a mixed autoregressive-moving
average process. Biometrika, 66:59–65, 1979.

[2] George E. P. Box and Gwilym M. Jenkins. Time Series Analysis: Forecasting and Control.
Holden-Day, San Francisco, Calif.-Düsseldorf-Johannesburg, revised edition, 1976. Holden-
Day Series in Time Series Analysis.

[3] Peter J. Brockwell and Richard A. Davis. Time Series: Theory and Methods. Springer Series
in Statistics. Springer-Verlag, New York, second edition, 1991.

[4] Peter J. Brockwell and Richard A. Davis. Introduction to Time Series and Forecasting.
Springer Texts in Statistics. New York, NY: Springer, 2nd edition, 2002.

[5] Christian M. Dahl and Svend Hylleberg. Specifying nonlinear econometric models by flex-
ible regression models and relative forecast performance. Working paper, Department of
Economics, University of Aarhus, Denmark, 1999.

[6] David A. Dickey and Wayne A. Fuller. Distribution of the estimators for autoregressive time
series with a unit root. J. Am. Stat. Assoc., 74:427–431, 1979.

[7] V.A. Epanechnikov. Nonparametric estimates of a multivariate probability density. Theory
of Probability and Its Applications, 14:153–158, 1969.

[8] Jianqing Fan and Qiwei Yao. Nonlinear Time Series. Nonparametric and Parametric Methods.
New York, NY: Springer, 2003.

[9] Wayne A. Fuller. Introduction to Statistical Time Series. Wiley Series in Probability and
Mathematical Statistics. John Wiley & Sons, 1976.

[10] Jan Grandell. Time series analysis. Lecture notes, 2011.

[11] Clive William John Granger and Allan Paul Andersen. An introduction to bilinear time
series models. Angewandte Statistik und Ökonometrie. Heft 8. Göttingen: Vandenhoeck &
Ruprecht, 1978.

[12] Wolfgang Härdle. Applied Nonparametric Regression, volume 19 of Econometric Society
Monographs. Cambridge: Cambridge University Press, 1991.

[13] Èlizbar A. Nadaraya. On estimating regression. Theory and Probability Application, 10:186–
190, 1964.

[14] Jürgen Potthoff. Einführung in die Wahrscheinlichkeitstheorie. Lecture notes for an intro-
ductory course in probability theory.

[15] James B. Ramsey. Tests for specification errors in classical linear least-squares regression
analysis. J. R. Stat. Soc., Ser. B, 31:350–371, 1969.

61



62 BIBLIOGRAPHY

[16] Sheldon M. Ross. A First Course in Probability. Pearson, 9th edition, 2014.

[17] Ruey S. Tsay. Analysis of Financial Time Series. Wiley Series in Probability and Statistics.
Hoboken, NJ: John Wiley & Sons, 3rd edition, 2010.

[18] Geoffrey S. Watson. Smooth regression analysis. Sankhyā, Ser. A, 26:359–372, 1964.
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