Extra Exercises in Basic Probability for Financial Time Series

Andreas Petersson

March 31, 2017

Easier exercises

Ex. 1 — For $t \in \mathbb{Z}$, let $X_t = Z_t + 0.5Z_{t-1}$ where Z_t is an iid sequence with mean 0 and variance σ^2 .

- a) Compute the variance of the sample mean $(X_1 + X_2 + X_3 + X_4)/4$.
- b) Let $Y_t = Z_t 0.5Z_{t-1}$. Compute the variance of the sample mean $(Y_1 + Y_2 + Y_3 + Y_4)/4$ and compare to the previous part of the exercise.

Ex. 2 — For $t \in \mathbb{Z}$, let $X_t = X_0$ for all $t \in \mathbb{Z}$ where X_0 is a random variable with finite variance and zero mean. Is the process $(X_t, t \in \mathbb{Z})$

- a) strictly stationary?
- b) weakly stationary?

Ex. 3 — Let $(X_t, t \in \mathbb{Z})$ be a sequence of random variables with (not necessarily identical) finite variance. For $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, show that

$$\operatorname{Var}(\sum_{i=1}^n \alpha_i X_i) = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \operatorname{Cov}(X_i, X_j).$$

You may assume for simplicity that X_t all have zero mean.

Ex. 4 — Let $(X_t, t \in \mathbb{N})$ be a sequence of zero-mean iid random variables with unit variance. Let $Y_1 = X_1$ and let $Y_t = Y_{t-1} + X_t$ for $t \in \mathbb{N}$ with t > 1. Compute $\gamma_Y(1, 2)$ and $\gamma_Y(2, 3)$. Is the process $(Y_t, t \in \mathbb{N})$ stationary?

Ex. 5 — Let $U \sim \mathcal{U}([0,1])$.

- a) Find the density function of $S = U^2$.
- b) Find the density function of $T = -\log(U)/\lambda$, where $\lambda > 0$.

Ex. 6 — Let $(X_t, t \in \mathbb{Z})$ be a stationary process with autocovariance function γ . Use the Cauchy-Schwarz inequality to show that for all $h \in \mathbb{Z}$, $|\gamma(h)| \leq |\gamma(0)|$. Assume for simplicity that $(X_t, t \in \mathbb{Z})$ has zero mean.

Harder exercises

Ex. 7 — Let $X = U_1 + U_2 + ... + U_{12} - 6$ where, for $i = 1, ..., 12, U_i \sim \mathcal{U}([0, 1])$.

- a) Calculate the mean and variance of X.
- b) Use the CLT to show that X can be used to generate approximate standard normal random variables.

Ex. 8 — Assume that the random variables X and Y are continuous with joint density $f_{X,Y}(x,y)$ and finite means.

- a) Show that $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$.
- b) Show that $X \ge 0 \implies \mathbb{E}[X|Y] \ge 0$.
- c) Assume that X and Y are independent and show that $\mathbb{E}[X|Y] = \mathbb{E}[X]$.

Ex. 9 — Let B have the Bernoulli distribution with parameter p = 1/2 and let $X \sim \mathcal{N}(0,1)$ be independent of B. Let Y = (2B-1)X.

- a) Compute $\mathbb{E}[Y]$.
- b) Compute for $P(Y \leq y)$ for $y \in \mathbb{R}$. What is the distribution of Y? Hint: Note that $P(Y \leq y) = P(Y \leq y, B = 0) + P(Y \leq y, B = 1)$.
- c) Compute Cov(X, Y). Are X and Y independent?

Ex. 10 — Let $X = \exp(Z)$ where $Z \sim \mathcal{N}(0,1)$ (this is called a lognormal random variable).

- a) Find the density function of X
- b) Use this density to find the mean and variance of X.

Ex. 11 — Let \mathcal{X} be the family of all (real-valued) random variables with finite variance on the probability space (Ω, \mathcal{A}, P) . Show that \mathcal{X} is a vector space. Hint: Use the Cauchy-Schwarz inequality $|\mathbb{E}[XY]|^2 \leq \mathbb{E}[X^2]\mathbb{E}[Y^2]$. You may assume that if X and Y are random variables (i.e. measurable), then so are $\alpha X + \beta Y$ for $\alpha, \beta \in \mathbb{R}$